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Cutinase is a serine hydrolases enzyme that is widely used as a biocatalyst to produce 
industrially important chemicals ranging from pharmaceuticals to biological and food 
additives. However, low thermal stability and lack of efficient recovery are the limitation 
of cutinase. Enzyme immobilization is one of the techniques used to improve enzyme 
stability and activity. Recently, immobilization with porous materials such as metal-
organic frameworks (MOFs) have shown to improve the thermostability of enzymes even 
in extreme conditions. Here, quantum mechanics (QM) calculations and molecular 
dynamics (MD) simulations were performed in order to investigate the structural stability 
of cutinase when encapsulated within an IRMOF-74-VI. Ab initio calculations were 
performed on the crystal structure of IRMOF-74-VI to obtain partial atomic charges for 
IRMOF-74-VI atoms. Then, MD simulations of cutinase and cutinase-IRMOF-74-VI in 
water were performed at different temperatures (300, 350, 400, 450 and 500 K) and 1 atm 
pressure. The encapsulated cutinase showed greater stability than the free enzyme. 
Although the average root mean square deviation (RMSD) value increased for both 
systems with temperature, the cutinase-IRMOF-74-VI exhibited lower RMSD values 
when compared to free-cutinase especially at 500 K. IRMOF-74-VI was able to control 
the strong fluctuations at higher temperatures and thereby, helped retain the cutinase 
structure. The key interactions that maintained the stability of cutinase were identified, 
such as hydrophobic interactions between amino acid residues of Pro193 and Thr45 with 
aromatic ring of IRMOF-74-VI. In addition, ion pair interactions between Arg96 residue 
and carboxylate group of IRMOF-74-VI was found to have a distance of 4.53 Å and was 
classified as a strong salt bridge.  MD simulations also have been employed to study the 
effect of encapsulation towards stability and flexibility of cutinase in different solvents 
(water, ethanol and hexane) at room temperature. Cutinase-IRMOF-74-VI in water and 
ethanol produced lower RMSD values (0.14 ± 0.006 and 0.17 ± 0.017 nm respectively) 
compared to cutinase-IRMOF-74-VI in hexane (0.24 ± 0.015 nm). Further analysis also 
showed that cutinase-IRMOF74-VI complex was more stable in polar solvent. Cutinase-
IRMOF-74-VI exhibited the highest number of intermolecular interactions with hexane 
compared to water and ethanol, leading to the least stable conformation between the three 
solvents. These findings demonstrate the potential for cutinase-encapsulation applications 
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in cage-like pore frameworks by showing that encapsulation of cutinase with IRMOF-74-
VI helps to retain the structural integrity at high temperature. However, IRMOF-74-VI 
destabilized cutinase in hexane compared to higher polarity solvents which are ethanol and 
water. This information can be used to optimize cutinase-MOF applications and develop 
new cutinase-specific MOF for biocatalysis and biosensing purposes. The interactions 
between cutinase and IRMOF-74-VI under different temperatures and solvents would be 
beneficial as guideline for future rational design of enzyme-MOF biocatalysts. 
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Cutinase ialah serine hidrolasi enzim yang digunakan secara meluas sebagai biomangkin 
untuk menghasilkan bahan kimia perindustrian penting yang terdiri daripada farmaseutikal 
untuk bahan tambahan biologi dan makanan. Walau bagaimanapun, kestabilan haba yang 
rendah dan kekurangan pemulihan cekap adalah kekurangan cutinase. Enzim enkapsulasi 
adalah salah satu teknik yang digunakan untuk meningkatkan kestabilan enzim dan 
aktiviti. Baru-baru ini, rangkaian organik logam (MOFs) telah ditunjukkan untuk 
meningkatkan kestabilan termal enzim walaupun dalam keadaan suhu yang melampau. Di 
sini, mekanik kuantum (QM) pengiraan dan dinamik molekul (MD) simulasi telah 
dijalankan untuk menyiasat kestabilan struktur cutinase apabila terkandung dalam 
rangkaian organik IRMOF-74-VI Pengiraan ab initio telah dilakukan ke atas struktur 
kristal IRMOF-74-VI untuk mendapatkan caj atom separa untuk setiap atom IRMOF-74-
VI. Kemudian, MD simulasi cutinase dan cutinase-IRMOF-74-VI di dalam air telah 
dijalankan pada suhu yang berbeza (300, 350, 400, 450 dan 500 K) dan tekanan 1 atm. 
Cutinase terkandung menunjukkan kestabilan yang lebih besar daripada enzim sahaja. 
Walaupun akar purata min nilai sisihan persegi (PGPR) meningkat untuk kedua-dua sistem 
dengan suhu, cutinase-IRMOF-74-VI dipamerkan nilai PGPR lebih rendah jika 
dibandingkan dengan cutinase sahaja terutama pada 500 K. IRMOF-74-VI dapat 
mengawal kestabilan pada suhu yang lebih tinggi dan membantu mengekalkan struktur 
cutinase tersebut. Interaksi utama yang mengekalkan kestabilan cutinase telah dikenal 
pasti, seperti interaksi hidrofobik antara amino asid Pro193 dan Thr45 dengan cincin 
aromatik IRMOF-74-VI. Di samping itu, interaksi pasangan ion antara Arg96 dan 
kumpulan karboksilat daripada IRMOF-74-VI didapati mempunyai jarak 4.53 Å dan telah 
diklasifikasikan sebagai jambatan garam yang kuat. MD simulasi juga telah digunakan 
untuk mengkaji kesan enkapsulasi ke arah kestabilan dan fleksibiliti cutinase dalam pelarut 
yang berbeza (air, etanol dan heksana) pada suhu bilik. Cutinase-IRMOF-74-VI dalam air 
dan etanol dihasilkan nilai PGPR lebih rendah (0.14 ± 0.006 dan masing-masing 0.17 ± 
0.017 nm) berbanding cutinase-IRMOF-74-VI dalam heksana (0.24 ± 0.015 nm). Analisis 
selanjutnya juga menunjukkan bahawa cutinase-IRMOF74-VI kompleks adalah lebih 
stabil dalam pelarut kepolaran yang tinggi. Cutinase-IRMOF-74-VI dipamerkan bilangan 
tertinggi interaksi antara molekul dengan heksana berbanding air dan etanol, yang 
membawa kepada kestabilan yang rendah bagi perbandingan ketiga tiga pelarut. Dapatan 
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ini menunjukkan potensi untuk aplikasi cutinase-enkapsulasi dalam sangkar seperti 
rangkaian organik logam dengan menunjukkan bahawa pengkapsulan cutinase dengan 
IRMOF-74-VI membantu untuk mengekalkan integriti struktur pada suhu tinggi. Walau 
bagaimanapun, IRMOF-74-VI mengurangkan kestabilan cutinase dalam heksana 
berbanding pelarut kepolaran lebih tinggi seperti etanol dan air. Maklumat ini boleh 
digunakan untuk mengoptimumkan aplikasi cutinase-MOF dan membangunkan MOF 
cutinase yang baru khusus untuk tujuan biocatalisis dan biosensor. Interaksi antara cutinase 
dan IRMOF-74-VI di bawah suhu dan pelarut yang berbeza akan memberi manfaat sebagai 
panduan untuk masa depan dalam reka bentuk pemangkin biologi enzim-MOF.
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CHAPTER 1 

INTRODUCTION 

 

1.1  Overview 
 

Enzymes have been applied as catalysts for manufacturing of industrially applicable 
chemicals ranging from pharmaceuticals to biological and food additives. Enzymes have 
rapidly improved in terms of their catalytic performance, yet their uses in industrial 
applications are limited by the low thermal stability, denaturation and lack of efficient 
recovery. Daniel et al. (1996) also discovered that in aqueous solution, enzymes can only 
be active at a temperature up to 85°C and at higher temperature; the denaturation of the 
enzymes becomes faster. Without any support or protection, enzymes are not stable and 
their functions becomes very limited. Cutinase is one of those enzymes having the same 
limitation. Cutinase tends to deactivate and degrade at high temperature. Carvalho et al. 
(1998) had discovered that cutinase possess a very short half-life in water. 

 

Several successful strategies have been proposed to improve the thermal stability of 
enzymes using either immobilization, encapsulation or biomineralization approaches 
(Mateo et al., 2007). Normally, physical adsorption such as immobilization or 
encapsulation was preferred, since the methods do not change the initial structure of the 
catalyst and do not interrupt its active site (Krajewska et al., 2014). Over the past few 
years, protein encapsulation in metal organic framework (MOF) has been developed as 
a new potential application area of these materials. Other than encapsulation methods, 
conjugation and infiltration also were other methods used for stabilizing biomolecules 
by MOFs. The metal cluster of MOFs are also called as secondary building units (SBUs). 
There are variety of SBUs types in MOFs such as triangle, trigonal prism and octahedron. 
MOFs also can be made up by different types of organic linker either ditopic, tritopic, 
tetratopic, or multitopic linkers (Sharmin & Zafar, 2016). Currently, the most recent 
trend regarding the designation of metal cluster and linkers in MOFs are by using mixed 
linker and mixed metal cluster in the same structure of MOFs (Amarajothi et al., 2016). 
This combination of linkers or metal clusters could result in MOF with a greater catalytic 
activity than single metal or single linker MOFs. MOFs have been widely studied over 
the past decade for a variation of potential applications such as catalysis (Howarth & 
Hupp, 2017), gas storage (Fracaroli et al., 2014), drug delivery (Erucar & Keskin, 2016), 
agricultural (Rieth et al., 2017; Jr et al., 2018) and also in the water treatment (Kumar et 
al., 2018).  
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Figure 1.1: Schematic representation of a MOF system 

 

MOFs are compounds that are made up by combinations of various metal ions connected 
by organic linker (Figure 1.1). One of the most interesting features of MOFs is the 
concept of the reticular chemistry in its design and synthesis.  MOFs and covalent organic 
frameworks (COFs) are the established materials that used the concept of reticular 
chemistry. Isoreticular synthesis also provided a way to increase the pore apertures of 
MOFs, which allows for big molecules such as enzymes to enter the pore.  
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1.2   Problem Statement 
 

MOFs have already shown their ability to increase the stability and performance of 
enzymes. Even at elevated temperatures and pressure, MOF can act as a protective layer, 
enabling the enzymes to retain their high activity (Li et al., 2016). Although MOFs can 
improve the stability and performance of enzymes, the behavior and intermolecular 
interactions between MOFs and enzymes are not yet being fully understood. The 
encapsulation mechanism which stabilizes enzymes is important to be unveiled in order 
to further improve the biocatalyst composite. Such information can be the basis of 
modification for the current MOFs or as guidelines to design new MOFs for biocatalytic 
applications.  

 

In some cases, the structures of the MOFs are too complicated to be solved 
experimentally (Liang et al., 2015) thus computational methods are used to explore 
further the intermolecular interaction of the enzyme encapsulated in the MOFs. 
Specifically, this project examined a cutinase enzyme, encapsulated in IRMOF-74-VI 
(Figure 1.2) to test the effect of encapsulation towards the stability of the enzyme at 
different temperatures and solvent systems. 

 

 

 

Figure 1.2: Graphical representation of cutinase encapsulation in IRMOF-74-
VI. (a) 2,5-dioxidoterephthalate (DOT) as the organic linker, (b) cutinase, (c) 
IRMOF-74-VI and (d) cutinase-IRMOF-74-VI composite 
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1.3  Objectives 
 

The main goal of this research is to determine the structural and dynamics properties of 
cutinase encapsulated in IRMOF-74-VI by using molecular dynamics simulation 
methods. Therefore, four specific objectives were pursued; 

i) To model and parameterize the structure of IRMOF-74-VI for application 
in MD simulations, 

ii) To determine the effect of encapsulation in IRMOF-74-VI towards the 
structural stability of cutinase at different temperatures, 

iii) To elucidate the intermolecular interactions between IRMOF-74-VI and 
cutinase, 

iv) To determine the effect of different solvent towards the structural stability 
of cutinase-IRMOF74-VI composite. 
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