

UNIVERSITI PUTRA MALAYSIA

DOPING OF ERBIUM AND SILVER IN ZINC TELLURITE GLASS SYSTEM FOR OPTICAL APPLICATION

NAZIRUL NAZRIN BIN SHAHROL NIDZAM

FS 2021 64

DOPING OF ERBIUM AND SILVER IN ZINC TELLURITE GLASS SYSTEM FOR OPTICAL APPLICATION

NAZIRUL NAZRIN BIN SHAHROL NIDZAM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

September 2020

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

DEDICATION

This thesis is especially dedicated to my parents, Shahrol Nidzam B. Shaari and Sa'adiah Bt. Abd Hadi, family members, lecturers, teachers and friends.

Not to forget, my late grandfather, Hj Shaari B. Majid, Uncle Azli B. Mat and Mdm Ambika Krishnasamy.

Thank you for encouraging me to accomplish this journey that full of cuts and thorns.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

DOPING OF ERBIUM AND SILVER IN ZINC TELLURITE GLASS SYSTEM FOR OPTICAL APPLICATION

By

NAZIRUL NAZRIN BIN SHAHROL NIDZAM

September 2020

Chairman : Professor Halimah Mohamed Kamari, PhD Faculty : Science

The improvement of properties for glass material application in disparate range are open-ended challenges especially in materials science and technology. Although there are researches being executed on lanthanide elements with zinc tellurite glass as parent material, no researchers have tried to assimilate both erbium and silver in a glass system in order to investigate the changes made by the glass materials. To reveal the effect of erbium and silver oxides on structural, physical, elastic, thermal, optical properties as well as the execution of McCumber and Judd-Ofelt theory analysis, four glass series of zinc tellurite glasses that were doped with erbium and silver oxides were successfully synthesized by melt-quenching method. The glasses were prepared based on the chemical composition provided with variation concentration of dopants; 1) $[(\text{TeO}_2)_{0.7} (\text{ZnO})_{0.3}]_{1-x} (\text{Er}_2\text{O}_3)_x, 2) [[(\text{TeO}_2)_{0.7} (\text{ZnO})_{0.3}]_{0.96} (\text{Er}_2\text{O}_3)_{0.04}]]_{1-y} (\text{Ag}_2\text{O})$ y, 3) $[(TeO_2)_{0.7} (ZnO)_{0.3}]_{1-x} (Ag_2O)_x and 4) [[(TeO_2)_{0.7} (ZnO)_{0.3}]_{0.98} (Ag_2O)_{0.02}]_{1-y}$ $(Er_2O_3)_v$ where in first, second and fourth glass series, the molar fraction, x = 0.01, 0.02, 0.03, 0.04 and 0.05 whereas in third glass series, x = 0.005, 0.010, 0.015, 0.020 and 0.025. The different dopant's amount in third glass series were attributed to the less fragility of the glass if low concentration as low as 0.025 is employed. The structural, physical, elastic, thermal and optical properties of the glass samples were elucidated using equipment such as X-ray diffraction (XRD), Fourier transform infrared (FTIR), densimeter, Ultrasonic machine, Differential scanning calorimeter (DSC), UV-Visible (UV-Vis) and photoluminescence spectrometers. Meanwhile, Origin 6.0 had been used for deconvolution and McCumber analysis and spectragryph had been employed for Judd-Ofelt evaluation. The amorphous nature of the prepared glass samples is confirmed from the XRD analysis. In the study of FTIR spectra, the presence of TeO₄ was detected while TeO₃, ZnO, Er₂O₃ and Ag₂O functional groups were not detected. The non-existence of the remaining functional groups implies that these bonds have been broken down within the glass network. By implementing the deconvolution technique using Origin 6.0 software, the remaining functional groups were found. This phenomenon confirms that there is still a little amount of concentration of the remaining functional groups that can be observed. The density of all glass series is found to increase approximately from 4.0 to 6.0 g/cm^3 due to the improvement in the compactness of the glass samples. Nevertheless, the molar volume (V_m) inclines for glasses that consists of erbium oxide as the main dopant while for the glasses that consist of silver oxide as the main dopant, the molar volume decreases. The inclination of molar volume is attributed to larger bond length of the dopant. On the other hand, the decrement of the molar volume can be theoretically related to the inverse relation between density and molar volume. The elastic moduli and some of the elastic parameters of the glasses are generally found to vary with the increase of erbium oxide and silver oxide while the Poisson's ratio lies in the expected range of 0.2 to 0.3. The presence of erbium oxide and silver oxide in the glass system make the glass sample becomes compact and rigid due to their larger atomic mass compared to the host glass materials. Besides that, the experimental study of elastic properties has shown the similarities in most of the theoretical elastic including Makishima and Mackenzie model and rocherulle model. The thermal properties were measured for all glass series. The glass stability for most of the glass samples with erbium oxide as the main dopant are been found to exceed 100°C, which is convenient in fiber optic application. The erbium oxide enhances the link of cation-anion in the glass system which will improve the strength of the glass. In terms of optical parameters, the optical band gap, refractive index and metallization criterion display some variation as the dopants were inserted into the glass samples. The band gap of the prepared glasses in this work ranges from 3.0 to 5.0 eV which is suitable for semiconductor device application. Meanwhile, refractive index values of the prepared glasses are found to be around 2.3 to 2.5, which are relatively high due to the presence of non-bridging oxygen, making them useful for laser operation. Metallization criterion with value of 0.30-0.45 guarantees the glasses ability for non-linear application such as optical switching and optical limiting. Blue, green and red emission are found in all glass series under 375 nm excitation wavelength. Intense and broad near infrared 1500 nm emission above 48 to 137 nm FWHM and gain bandwidth within the range of (97 to 625) x 10⁻²⁸ cm³ had been attained in all glass system except for third glass series. This result suggests that the fabricated glass samples have the potential to become a promising optical material for broadband telecommunication technology. In laser designation, the Judd-Ofelt analysis had been analyzed for all the glass system consisting of rare earth element. Large values of Ω_2 , Ω_4 and Ω_6 are strongly related to the improvement of the asymmetrical behavior of erbium ions sites with the formation of higher electron density on the oxygen ligand ion. As a result, strong Er-O covalence is formed with the increasing erbium ions concentration.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falfasah

PENDOPAN ERBIUM DAN ARGENTUM DALAM KACA ZINK TELURIT UNTUK APLIKASI OPTIK

Oleh

NAZIRUL NAZRIN BIN SHAHROL NIDZAM

September 2020

Pengerusi : Profesor Halimah Mohamed Kamari, PhD Fakulti : Sains

Peningkatan sifat untuk aplikasi bahan kaca dalam jurang yang berbeza adalah cabaran terbuka terutama dalam sains dan teknologi bahan. Walaupun terdapat penyelidikan yang dilakukan terhadap unsur lanthanid dengan kaca zink tellurit sebagai bahan induk, tidak ada penyelidik yang telah cuba mengasimilasikan kedua erbium dan argentum dalam sistem kaca untuk menyiasat perubahan yang dibuat oleh bahan kaca. Untuk mendedahkan kesan erbium dan argentum oksida pada sifat struktur, fizikal, elastik, terma, optik serta pelaksanaan analisis teori McCumber dan Judd-Ofelt, empat siri kaca zink telurit yang didop dengan erbium dan argentum oksida telah berjaya disintesis dengan kaedah lebur lindap. Kaca-kaca telah disediakan berdasarkan komposisi kimia yang disediakan dengan kepekatan variasi dopan; 1) [(TeO₂)_{0.7} (ZnO) _{0.3}]_{1-x} (Er₂O₃)_x, 2) $[[(TeO_2)_{0.7}(ZnO)_{0.3}]_{0.96}(Er_2O_3)_{0.04}]_{1-y}(Ag_2O)y, 3) [(TeO_2)_{0.7}(ZnO)_{0.3}]_{1-x}(Ag_2O)_x dan$ 4) $[[(TeO_2)_{0.7}(ZnO)_{0.3}]_{0.98}$ (Ag₂O)_{0.02}]]_{1-y} (Er₂O₃) y ialah pada siri kaca pertama, kedua dan keempat, pecahan molar, x = 0.01, 0.02, 0.03, 0.04 dan 0.05 sedangkan pada siri kaca ketiga, x = 0.005, 0.010, 0.015, 0.020 dan 0.025. Jumlah dopan yang berbeza dalam siri kaca ketiga telah dikaitkan dengan kerapuhan kaca yang kurang jika kepekatannya adalah serendah 0.025 digunakan. Sifat struktur, fizikal, elastik, terma dan optik sampel kaca dilaksanakan menggunakan peralatan seperti difraksi sinar-X (XRD), inframerah transformasi Fourier (FTIR), densimeter, mesin ultrasonik, kalorimeter pengimbasan pembeza (DSC), UV- Spektrometer cahaya (UV-Vis) dan fotoluminesen. Sementara itu, Origin 6.0 telah digunakan untuk dekonvolusi dan analisis McCumber dan spectragryph telah digunakan untuk penilaian Judd-Ofelt. Sifat amorfus sampel kaca yang disiapkan, disahkan daripada analisis XRD. Dalam kajian spektrum FTIR, kehadiran TeO₄ telah dikesan sementara kumpulan fungsian TeO₃, ZnO, Er₂O₃ dan Ag₂O tidak dapat dikesan. Ketiadaan kumpulan fungsi yang berbaki menunjukkan bahawa ikatan ini telah dipecah dalam rangkaian kaca. Dengan menerapkan teknik dekonvolusi menggunakan perisian Origin 6.0, kumpulan berfungsi yang masih berbaki telah dijumpai. Fenomena ini mengesahkan bahawa masih terdapat sedikit kepekatan kumpulan fungsi yang masih dapat diperhatikan. Ketumpatan semua siri kaca didapati meningkat kira-kira daripada 4.0 hingga 6.0 g/cm³ disebabkan peningkatan padat sampel kaca. Walaupun begitu,

isipadu molar (V_m) meningkat untuk kaca yang terdiri daripada erbium oksida sebagai dopan utama sementara bagi kaca yang terdiri daripada argentum oksida sebagai dopan utama, isipadu molar menurun. Kenaikan isipadu molar disebabkan oleh panjang ikatan dopan yang lebih besar. Sebaliknya, penurunan isipadu molar boleh dikaitkan secara teoritis dengan hubungan songsang antara ketumpatan dan isipadu molar. Moduli elastik dan beberapa parameter elastik untuk kaca-kaca didapati berbeza-beza dengan peningkatan erbium oksida dan argentum oksida sementara nisbah Poisson berada pada julat yang diharapkan daripada 0.2 hingga 0.3. Kehadiran erbium oksida dan argentum oksida dalam sistem kaca menjadikan sampel kaca menjadi padat dan tegar kerana jisim atomnya yang lebih besar berbanding dengan bahan kaca hos. Selain itu, kajian eksperimen sifat elastik telah menunjukkan persamaan pada kebanyakan teori elastik termasuk model Makishima dan Mackenzie dan model rocherulle. Sifat termal telah diukur untuk semua siri kaca. Kestabilan kaca bagi kebanyakan sampel kaca dengan erbium oksida sebagai dopan utama didapati melebihi 100°C, yang mudah digunakan dalam aplikasi optik gentian. Erbium oksida meningkatkan hubungan kation-anion dalam sistem kaca yang akan meningkatkan kekuatan kaca. Dari segi parameter optik, jurang jalur optik, indeks biasan dan kriteria metalisasi menunjukkan beberapa variasi apabila dopan dimasukkan ke dalam sampel kaca. Jurang jalur kaca-kaca yang telah disediakan dalam kerja ini berkisar antara 3.0 hingga 5.0 eV yang sesuai untuk aplikas i peranti semikonduktor. Sementara itu, nilai indeks biasan kaca yang disiapkan didapati sekitar 2.3 hingga 2.5, yang secara relatifnya tinggi kerana adanya oksigen bukan penghubung, menjadikannya berguna untuk operasi laser. Kriteria metalisasi dengan nilai 0.30 - 0.45 menjamin kemampuan kaca-kaca untuk aplikasi bukan linear seperti peralihan optik dan penghadan optik. Pencahayaan biru, hijau dan merah terdapat pada semua siri kaca dengan panjang gelombang pengujaan 375 nm. Pencahayaan 1500 nm berhampiran inframerah yang kuat dan luas melebihi 48 hingga 137 nm FWHM dan dapatan lebar jalur berada dalam julat (97 hingga 625) x 10-28 cm³ telah dicapai pada semua sistem kaca kecuali untuk siri kaca ketiga. Hasil ini menunjukkan bahawa sampel kaca buatan berpotensi menjadi bahan optik yang menjanjikan untuk teknologi telekomunikasi jalur lebar. Dalam sebutan laser, analisis Judd-Ofelt telah dianalisis untuk semua sistem kaca yang terdiri daripada unsur nadir bumi. Nilai besar Ω_2 , Ω_4 dan Ω_6 sangat berkaitan dengan peningkatan tingkah laku asimetri tapak ion erbium dengan pembentukan ketumpatan elektron yang lebih tinggi pada ion ligan oksigen. Akibatnya, kovalen Er-O yang kuat terbentuk dengan kepekatan ion erbium yang semakin meningkat.

ACKNOWLEDGEMENTS

All praises to Allah, the most beneficent, the Lord of the entire universe. Only by His grace and mercy, this thesis has been completed successfully.

With appreciation and million thanks to the supervisor, Prof Dr. Halimah Mohamed Kamari for her invaluable advice, strong motivation, sharing expertise, great coaching and constant encouragement during the completion of the work. Besides my supervisor, I would like to thank to my co-supervisors, Dr. Farah Diana Muhammad and Dr. Amirah Abdul Latif for their insightful comments and encouragement, which inspired me to widen my research from various perspectives.

My sincere thanks also go to Prof Dr. Abdul Halim Shaari, Prof Dr. Sidek Ab Aziz, Prof Dr. Yasser Bakr Saddeek Muhammed, Assoc Prof Dr. Chen Soo Kien and Dr. Muhammad Khalis Abdul Karim for their guidance, suggestion and encouragement while I am defending this work of study.

My great appreciations to my mother, Sa'adiah binti Abdul Hadi and my father, Shahrol Nidzam bin Shaari for their unlimited support and encouragement in order for me to complete this project. Not to forget my siblings and other big family members especially Nadiah Syuhada, Az'lina, Shahrol Munawar and Nornajah for always been 'there' when I am lost. May Allah bless their life here and after.

Many thanks to my lab colleagues, Dr. Faznny Fudzi, Dr. Zaitizila Ismail, Mdm Suzliyana Muhamad, Mdm Norhayati Mohd Nor, Miss Nurul As yikin Ahmad Sukri, Dr. Abdulkarim Mohammad Hamza, Dr. Hasnimulyati Laoding, Dr. Umar Saad Aliyu, Dr. Eevon Chua, Dr. Muhammad Noorazlan Abdul Azis, Miss Ami Hazlin Mohd Nor and others for their supports as well as for knowledge, experience, creativity and inspiration.

My sincere gratitude to my close and best friends, Muhammad Syaamil, Dr. Raja Muhammad Hafriz, Wan Mohd Ebtisyam Mustaqim, Norita Mohd Yusof, Muhammad Amin Hamid and the rest for their constant moral support, understanding, patient and encouragement. Without them, the path to this thesis will be a lonely journey.

Last but not least, I would like to reserve my appreciation to the staff of Faculty of Science, who gave me the permission to use all the machinery and required equipment and to the staff of all colleges of 'serumpun', K13, K5 and K10 for a place to live. Without all the supports, I might not be able to complete this project.

Again, thank you to all family members, lecturers, teachers, friends and to anyone who has ever been directly and indirectly involved.

I certify that a Thesis Examination Committee has met on (date of viva voce) to conduct the final examination of Nazirul Nazrin bin Shahrol Nidzam on his thesis entitled 'Doping of Erbium and Silver in Zinc Tellurite Glass System for Optical Application' in accordance with the Universities and University Collages Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Chen Soo Kien, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Muhammad Khalis Abdul Karim, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Assistant Chairman)

Sidek Hj Ab Aziz, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Abdul Halim Shaari, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Yasser Bakr Saddeek Muhammed, PhD

Professor Department of Physics University of Al Azhar Egypt (External Examiner)

ZURIATI AHMAD ZUKARNAIN, PhD

Professor Ts. and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Halimah binti Mohamed Kamari, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Farah Diana binti Muhammad, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Member)

Amirah binti Abdul Latif, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 14 January 2021

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: Name of Chairman of Supervisory Committee:	Professor Dr. Halimah binti Mohamed Kamari
Signature: Name of Member of Supervisory Committee:	Dr. Farah Diana binti Muhammad
Signature: Name of Member of Supervisory Committee:	Dr. Amirah binti AbdulLatif

ix

TABLE OF CONTENTS

	Page
ABSTRACT	i
ABSTRAK	iii
ACKNOWLEDGEMENTS	V
APPROVAL	vi
DECLARATION	viii
LIST OF TABLES	XV
LIST OF FIGURES	xxi
LIST OF ABBREVIATIONS	xxxii
CHAPTER	
1 INTRODUCTION	

1

1	INIK	ODUCTION	1
	1.1	Preamble	1
	1.2	General introduction	4
	1.3	Problem statements	6
	1.4	Scope of study and limitations	8
	1.5	Research objectives	8
	1.6	Hypothesis	9
	1.7	Significance of study	10
	1.8	Outline of thesis	10
2	LITE	RATURE REVIEW	11
	2.1	Structure of tellurite glass	11
	2.2	Structural properties	13
	2.3	Physical properties	14
	2.4	Elastic properties (Experimental)	14
	2.5	Elastic properties (Theoretical)	17
	2.6	Thermal properties	17
	2.7	Optical properties	18
	2.8	Photoluminescence	19
	2.9	McCumber theory/EDFA gain	20
	2.10	Judd-Ofelt	20
3	THEO	ORY	27
	3.1	Glass	27
	3.2	Tellurite glass	29
	3.3	Structural properties	33
		3.3.1 X-ray diffraction (XRD)	33
		3.3.2 Fourier transform infrared (FTIR)	34
	3.4	Physical properties	34
	3.5	Elastic properties	35
		3.5.1 Experimental	35
		3.5.2 Theoretical	38
		3.5.2.1 Bond compression mode	1 38
		3.5.2.2 Ring deformation model	41

Х

			3.5.2.3	Makishima and Mackenzie model	42
			3.5.2.4	Rocherulle model	44
	3.6	Thermal	properties		45
		3.6.1	Glass trai	isition	45
		3.6.2	Inermal s	stability and glass stability	40
	27	3.0.3	Hruby, Ir	aginty and activation energy	47
	5.7		Or tion lal	a comption	48
		270	Optical a	and gap	40
		3.7.2	Urbach a	and gap	49 50
		3.7.5	Refractiv	index	51
		375	Molar ref	raction and electronic polarizability	53
		376	Oxide ior	polarizability	54
		3.7.7	Optical b	asicity	55
		3.7.8	Metalliza	tion criterion	55
	3.8	Photolum	ninescenc	e	56
	3.9	McCu mb	per theory		59
		3.9.1	Absorptio	on and emission cross-section	59
		3.9.2	Gain coef	ficient	59
		3.9.3	Full wic	th half maximum (FWHM), gain	
			bandwidt	h (GBW) and figure of merit (FOM)	60
	3.10	Judd-Ofe	elt theory		60
4	MAT	ERIALS A	AND ME	THODOLOGY	63
	4.1	Glass pre	eparation		64
	4.2	Polishing	g and Grin	ding	67
	4.3	Structura	ll properti	es (upp)	67
		4.3.1	X-ray dif	fraction (XRD) spectroscopy	6/
	4.4	4.5.2 Dhysical	A nolucio	ansions infrared (FIIR) spectroscopy	08 69
	4.4	A A 1	Donaity	nd moler volume	60
	15	4.4.1	Density a	ament	60 60
	4.5	Thermal	measuren	ent	70
	47	Optical n	neasureme	ent	71
	4.8	Photolun	ninescenc	e	71
	4.9	Error ana	lysis		71
5	RESU	JLTS AND	DISCU	SSIONS	73
	5.1	Glass ser	ries		73
	5.2	Structura	l properti	2S	74
		5.2.1	X-ray dif	fraction (XRD) analysis	74
		5.2.2	Fourier tr	ansform infrared (FTIR) analysis	75
		5.2.3	Deconvo	ution technique analysis	77
	5.3	Physical	properties	3	82
		5.3.1	Density a	nd molar volume analysis	82
	5.4	Elastic pi	roperties		86
		5.4.1	Experime	ntal results	86
			5.4.1.1	Ultrasonic velocities	86
			5.4.1.2	Elastic moduli	89

		5.4.1.3 Poisson's ratio and fractal bond	
		connectivity	92
		5.4.1.4 Micro-hardness	95
		5.4.1.5 Debye temperature and mean velocity	97
		5.4.1.6 Acoustic impedance	99
		5.4.1.7 Softening temperature	101
	5.4.2	Theoretical results	103
		5.4.2.1 Bond compression model	103
		5.4.2.2 Ring deformation model	103
		5.4.2.3 Makishima and Mackenzie model	116
		5.4.2.4 Rocherulle model	122
5.5	Therma	al properties	128
	5.5.1	Glass transition temperature	130
	5.5.2	Glass stability	132
	5.5.3	Thermal stability	133
	5.5.4	Hruby parameter	134
	5.5.5	Fragility index and activation energy	134
5.6	Linear	optical properties	135
	5.6.1	Absorbance	135
	5.6.2	Direct and indirect energy band gap	136
	5.6.3	Urbach energy	142
	5.6.4	Refractive index	144
	5.6.5	Molar refraction	147
	5.6.6	Electronic polarizability	148
	5.6 <mark>.7</mark>	Oxide ion polarizability	150
	5. <mark>6.8</mark>	Optical basicity	151
	5.6.9	Metallization criterion	153
5.7	Photolu	uminescence	155
	5.7.1	Photoluminescence spectra analysis	155
	5.7.2	Energy level diagram analysis	156
	5.7.3	Ouenching effect analysis	158
5.8	McCur	mber theory	159
	5.8.1	Absorption and emission cross-section analysis	159
	5.8.2	Gain coefficient analysis	162
	5.8.3	Spectroscopic parameters under McCumber	
		theory	163
5.9	Judd-O	Dfelt analysis	164
5.10	Glass s	series	170
5.11	Structu	Iral properties	170
	5.11.1	X-ray diffraction (XRD) analysis	170
	5.11.2	Fourier transform infrared (FTIR) analysis	172
	5.11.3	Deconvolution technique analysis	174
5.12	Physica	al properties	178
	5.12.1	Density and molar volume analysis	178
5.13	Elastic	properties	181
	5.13.1	Experimental results	181
		5.13.1.1 Ultrasonic velocities	181
		5.13.1.2 Elastic moduli	184
		5.13.1.3 Poisson's ratio and fractal bond	
		connectivity	187

		5.13.1.4 Micro-hardness	190
		5.13.1.5 Debye temperature and mean velocity	192
		5.13.1.6 Acoustic impedance	194
		5.13.1.7 Softening temperature	196
	5.13.2	Theoretical results	197
		5.13.2.1 Bond compression model	197
		5.13.2.2 Ring deformation model	197
		5.13.2.3 Makishima and Mackenzie model	210
		5.13.2.4 Rocherulle model	217
5 14	4 Therma	1 properties	223
5.1	5 14 1	Glass transition temperature	225
	5 14 2	Glass stability	225
	5 14 3	Thermal stability	220
	5 14.3	Hruby parameter	220
	5 14 5	Fragility index	228
5 1	5 Lincor	International properties	220
J.1.	5 Liliear (Absorbance	229
	5 15 2	Direct and indirect hand gap	229
	5 15 2	Urbach an array	230
	5 15 4	Dibacii energy	233
	5.15.4	Nelar m fraction	238
	5.15.5		240
	5.15.0	Child in a latin bility	241
	5.15.7	Oxide ion polarizability	243
	5.15.8	Optical basicity	245
5.1	5.15.9	Metallization criterion	246
5.10	5 Photolu	minescence	248
	5.16.1	Photoluminescence spectra analysis	248
	5.16.2	Energy level diagram analysis	249
	5.16.3	Quenching effect analysis	250
5.1	/ McCun	nber theory	252
	5.17.1	Absorption and emission cross-section analysis	252
	5.17.2	Gain coefficient analysis	253
	5.17.3	Spectroscopic parameters under McCumber	
		theory	254
5.1	8 Judd-O	telt analysis	255
5.19	9 Compai	rative study on different dopants of zinc tellurite	
	glass s	system	259
	5.19.1	Physical properties	259
	5.19.2	Elastic properties	262
	5.19.3	Thermal properties	266
	5.19.4	Linear optical properties	268
	5.19.5	Judd-Ofelt	269
	5.19.6	1500 nm emission of zinc tellurite glasses with	
		different dopants	270
6 CO	NCLUSIO	N AND FUTURE RESEARCH	272
6.1	Conclu	sion	272
6.2	Sugges	tion for future works	274

REFERENCES BIODATA OF STUDENT LIST OF PUBLICATIONS

 (\mathbf{C})

LIST OF TABLES

Table		Page
2.1	Highlighted parameters that has been used in this studies	22
4.1	Amounts of each chemical used in four glass series	65
4.2	Error analysis for each measurement in this work	72
5.1	Assignments of the peaks observed in the FTIR spectra of erbium- doped zinc tellurite glasses	79
5.2	Assignments of the peaks observed in the FTIR spectra of silver-doped erbium zinc tellurite glasses	79
5.3	Assignments of the peaks of erbium-doped and silver-doped zinc tellurite glasses using deconvolution technique	80
5.4	Band center, B and band area, A of erbium-doped zinc tellurite glasses	80
5.5	Band center, B and band area, A of silver-doped erbium zinc tellurite glasses	80
5.6	Density, ρ and molar volume, V_m of erbium-doped zinc tellurite glasses	83
5.7	Density, ρ and molar volume, V_m of silver-doped erbium zinc tellurite glasses	83
5.8	Longitudinal velocity, v_L and shear velocity, v_S of erbium-doped zinc tellurite glasses	86
5.9	Longitudinal velocity, v_L and shear velocity, v_S of silver-doped erbium zinc tellurite glasses	86
5.10	Elastic moduli (longitudinal modulus, L, shear modulus, G, bulk modulus, K, and Young's modulus, E), Poisson's ratio, σ , micro- hardness, H, Debye temperature, θ_D , mean velocity, v_{mean} , acoustic impedance, Z, softening temperature, T _s , and fractal bond connectivity, d, of erbium-doped zinc tellurite glasses	89
5.11	Elastic moduli (longitudinal modulus, L, shear modulus, G, bulk modulus, K, and Young's modulus, E), Poisson's ratio, σ , micro-hardness, H, Debye temperature, θ_D , mean velocity, v_{mean} , acoustic impedance, Z, softening temperature, T _s , and fractal bond	
	connectivity, d, of silver-doped erbium zinc tellurite glasses	90

5.12	Number of bond per unit volume, n _b , average stretching force constant, F, atomic ring size, l, average cross-link density per unit formula, $<$ n _c >, Poisson's ratio, σ , bulk modulus, K _{bc} , ratio of K _{bc} /K _e , elastic moduli by bond compression model and ring deformation model of erbium-doped zinc tellurite glasses	103
5.13	Number of bond per unit volume, n _b , average stretching force constant, F, atomic ring size, l, average cross-link density per unit formula, $<$ n _c >, Poisson's ratio, σ , bulk modulus, K _{bc} , ratio of K _{bc} /K _e , elastic moduli by bond compression model and ring deformation model of silver-doped erbium zinc tellurite glasses	103
5.14	Packing density, V_t , dissociation energy, G_t , elastic moduli by Makishima and Mackenzie model and Poisson's ratio, σ_{nm} of erbium-doped zinc tellurite glasses	116
5.15	Packing density, V_t , dissociation energy, G_t , elastic moduli by Makishima and Mackenzie model and Poisson's ratio, σ_{nm} of silver- doped erbium zinc tellurite glasses	116
5.16	Packing density, C_t , dissociation energy, G_t , elastic moduli by rocherulle model and Poisson's ratio, σ_r of erbium-doped zinc tellurite glasses	123
5.17	Packing density, C _t , dissociation energy, G _t , elastic moduli by rocherulle model and Poisson's ratio, σ_r of silver-doped erbium zinc tellurite glasses	123
5.18	Glass transition temperature, T_g , onset crystallization temperature, T_o , crystallization temperature, T_c , melting temperature, T_m , glass stability, ΔT and thermal stability, S, Hruby value, H _r , fragility index, F and activation energy, E_a of erbium-doped zinc tellurite glasses	130
5.19	Glass transition temperature, T_g , onset crystallization temperature, T_o , crystallization temperature, T_c , melting temperature, T_m , glass stability, ΔT and thermal stability, S, Hruby value, H _r , fragility index, F and activation energy, E_a of silver-doped erbium zinc tellurite glasses	130
5.20	Direct and indirect energy band gap, E_{dir} and E_{ind} , Urbach energy, E_u , refractive index, n molar refraction, R_m , electronic polarizability, α_e , oxide ion polarizability, α_0^{2-} , optical basicity, Λ , and metallization criterion, M of erbium-doped zinc tellurite glasses	139
5.21	Direct and indirect energy band gap, E_{dir} and E_{ind} , Urbach energy, E_u , refractive index, n molar refraction, R_m , electronic polarizability, α_e , oxide ion polarizability, α_0^{2-} , optical basicity, Λ , and metallization criterion, M of silver-doped erbium zinc tellurite glasses	140

G)

5.22	Full width half maximum, FWHM, gain bandwidth, GBW and figure of merit, FOM of erbium-doped zinc tellurite glasses	164
5.23	Full width half maximum, FWHM, gain bandwidth, GBW and figure of merit, FOM of silver-doped erbium zinc tellurite glasses	164
5.24	Experimental, f_{exp} and theoretical, f_{th} oscillator strength of optical transition of erbium-doped zinc tellurite glasses	165
5.25	Experimental, f_{exp} and theoretical, f_{th} oscillator strength of optical transition of silver-doped erbium zinc tellurite glasses	165
5.26	Judd-Ofelt parameters, Ω_2 , Ω_4 and Ω_6 and spectroscopic quality factor, Ω_4/Ω_6 of erbium-doped zinc tellurite glasses	165
5.27	Judd-Ofelt parameters, Ω_2 , Ω_4 and Ω_6 and spectroscopic quality factor, Ω_4/Ω_6 of silver-doped erbium zinc tellurite glasses	165
5.28	Evaluated values of transition probabilities, A, branching ratio, β and radiative lifetime, τ_r of erbium-doped zinc tellurite glasses	166
5.29	Evaluated values of transition probabilities, A, branching ratio, β and radiative lifetime, τ_r of silver-doped erbium zinc tellurite glasses	166
5.30	Assignments of the peaks observed in the FTIR spectra of silver-doped zinc tellurite glasses	176
5.31	Assignments of the peaks observed in the FTIR spectra of erbium- doped silver zinc tellurite glasses	176
5.32	Assignments of the peaks of silver-doped and erbium-doped zinc tellurite glasses using deconvolution technique	176
5.33	Band center, B and band area, A of silver-doped zinc tellurite glasses	176
5.34	Band center, B and band area, A of erbium-doped silver zinc tellurite glasses	177
5.35	Density, $\boldsymbol{\rho}$ and molar volume, V_m of silver-doped zinc tellurite glasses	179
5.36	Density, ρ and molar volume, V_m of erbium-doped silver zinc tellurite glasses	179
5.37	Longitudinal velocity, v_L and shear velocity, v_S of silver-doped zinc tellurite glasses	181
5.38	Longitudinal velocity, v_L and shear velocity, v_S of erbium-doped silver zinc tellurite glasses	182

5.39	Elastic moduli (longitudinal modulus, L, shear modulus, G, bulk modulus, K, and Young's modulus, E), Poisson's ratio, σ , micro- hardness, H, Debye temperature, θ_D , mean velocity, v_{mean} , acoustic impedance, Z, softening temperature, T _s , and fractal bond connectivity, d, of silver-doped zinc tellurite glasses	185
5.40	Elastic moduli (longitudinal modulus, L, shear modulus, G, bulk modulus, K, and Young's modulus, E), Poisson's ratio, σ , micro-hardness, H, Debye temperature, θ_D , mean velocity, v_{mean} , acoustic impedance, Z, softening temperature, T _s , and fractal bond connectivity, d, erbiu m-doped silver zinc tellurite glasses	185
5.41	Number of bond per unit volume, n_b , average stretching force constant, F, atomic ring size, l, average cross-link density per unit formula, $< n_c >$, Poisson's ratio, σ , bulk modulus, K_{bc} , ratio of K_{bc}/K_e , elastic moduli by bond compression model and ring deformation model of silver-doped zinc tellurite glasses	198
5.42	Number of bond per unit volume, n_b , average stretching force constant, F, atomic ring size, l, average cross-link density per unit formula, $$, Poisson's ratio, σ , bulk modulus, K _{bc} , ratio of K _{bc} /K _e , elastic moduli by bond compression model and ring deformation model of erbium-doped silver zinc tellurite glasses	198
5.43	Packing density, V_t , dissociation energy, G_t , elastic moduli by Makishima and Mackenzie model and Poisson's ratio, σ_{nm} of silver-doped zinc tellurite glasses	210
5.44	Packing density, V_t , dissociation energy, G_t , elastic moduli by Makishima and Mackenzie model and Poisson's ratio, σ_{nm} of erbium-doped silver zinc tellurite glasses	211
5.45	Number of bond per unit volume, n_b , average stretching force constant, F, atomic ring size, l, average cross-link density per unit formula, $< n_c >$, Poisson's ratio, σ , bulk modulus, K_{bc} , ratio of K_{bc}/K_e , elastic moduli by rocherulle model of silver zinc tellurite glasses	217
5.46	Number of bond per unit volume, n_b , average stretching force constant, F, atomic ring size, l, average cross-link density per unit formula, $\langle n_c \rangle$, Poisson's ratio, σ , bulk modulus, K_{bc} , ratio of K_{bc}/K_e , elastic moduli by rocherulle model of erbium-doped silver zinc tellurite glasses	217
5.47	Glass transition temperature, T_g , onset crystallization temperature, T_o , crystallization temperature, T_c , melting temperature, T_m , glass stability, ΔT , thermal stability, S, Hruby value, H_r , fragility index, F and activation energy, E_a of silver-doped zinc tellurite glasses	225

5.48	Glass transition temperature, T_g , onset crystallization temperature, T_o , crystallization temperature, T_c , melting temperature, T_m , glass stability, ΔT , thermal stability, S, Hruby value, H _r , fragility index, F and activation energy, E_a of erbium-doped silver zinc tellurite glasses	225
5.49	Direct and indirect energy band gap, E_{dir} and E_{ind} , Urbach energy, E_u refractive index, n molar refraction, R_m , electronic polarizability, α_e , oxide ion polarizability, α_0^{2-} , optical basicity, Λ and metallization criterion, M of silver-doped zinc tellurite glasses	233
5.50	Direct and indirect energy band gap, E_{dir} and E_{ind} , Urbach energy, E_u refractive index, n molar refraction, R_m , electronic polarizability, α_e , oxide ion polarizability, α_0^{2-} , optical basicity, Λ and metallization criterion, M of erbium-doped silver zinc tellurite glasses	233
5.51	Full width half maximum, FWHM, gain bandwidth, GBW and figure of merit, FOM of erbium-doped silver zinc tellurite glasses	255
5.52	Experimental, f_{exp} and theoretical, f_{th} oscillator strength of optical transition of erbiu m-doped silver zinc tellurite glasses	256
5.53	Judd-Ofelt parameters, Ω_2 , Ω_4 and Ω_6 and spectroscopic quality factor, Ω_4/Ω_6 of erbium-doped silver zinc tellurite glasses	256
5.54	Evaluated values of transition probabilities, A, branching ratio, β and radiative lifetime, τ_r of erbium-doped silver zinc tellurite glasses	256
5.55	Density, ρ and molar volume, V_m of erbium-doped zinc tellurite glasses, $[(TeO_2)_{0.7} (ZnO)_{0.3}]_{1-x} (Er_2O_3)_x$	260
5.56	Density, ρ and molar volume, V_m of silver-doped erbium zinc tellurite glasses, [[(TeO ₂) _{0.7} (ZnO) _{0.3}] _{0.96} (Er ₂ O ₃) _{0.04}]] _{1-y} (Ag ₂ O) _y	261
5.57	Density, ρ and molar volume, V_m of silver-doped zinc tellurite glasses, $[(TeO_2)_{0.7} (ZnO)_{0.3}]_{1-x} (Ag_2O)_x$	261
5.58	Density, ρ and molar volume, V_m of erbium-doped silver zinc tellurite glasses, [[(TeO ₂) _{0.7} (ZnO) _{0.3}] _{0.98} (Ag ₂ O) _{0.02}]] _{1-y} (Er ₂ O ₃) _y	261
5.59	Comparative of density, ρ and molar volume, V_{m} of present study against previous work	261
5.60	Comparison of elastic properties experimentally and theoretically for $[(TeO_2)_{0.7} (ZnO)_{0.3}]_{1-x} (Er_2O_3)_x$	262
5.61	Comparison of elastic properties experimentally and theoretically for $[[(TeO_2)_{0.7}(ZnO)_{0.3}]_{0.96} (Er_2O_3)_{0.04}]]_{1-y} (Ag_2O)_y$	262

xix

5.62	Comparison of elastic properties experimentally and theoretically for $[(TeO_2)_{0.7}(ZnO)_{0.3}]_{1\text{-}x}(Ag_2O)_x$	263
5.63	Comparison of elastic properties experimentally and theoretically for $[[(TeO_2)_{0.7}(ZnO)_{0.3}]_{0.98} (Ag_2O)_{0.02}]]_{1-y} (Er_2O_3)_y$	263
5.64	Comparison of glass transition temperature, T_g and glass stability, ΔT of present study with previous work	268
5.65	Comparison on the refractive index, n and indirect energy band gap, $\in E_{ind}$ of the present study with previous work	269
5.66	Comparison of Judd-Ofelt parameters, Ω_2 , Ω_4 and Ω_6 of current study with previous works	270
5.67	Comparative of full width half maximum, FWHM and gain bandwidth, GBW of the current study to the previous works	271

 \bigcirc

LIST OF FIGURES

Figure		Page
1.1	Basic glass structure	5
1.2	Diagram of glass transition	6
3.1	Schematic diagram of glass transition	28
3.2	Effect of temperature on the rates of nucleation and crystal growth for a glass-forming melts	29
3.3	TeO ₂ unit in paratellurite α-TeO ₂	31
3.4	Structural units of tellurite systems	32
3.5	Transformation of tellurite structural units	32
3.6	X-ray scattering in material	33
3.7	Illustration definition of constant of elasticity: a) Young's modulus; b) shear modulus; c) bulk modulus	35
3.8	Bulk compression in three-dimensional network as glass is dominated to isotropic deformation	40
3.9	Bulk compression and bending in layered structure as glass is subjected to isotropic deformation	40
3.10	Bond compression and bending in chain structure as glass is dominated to isotropic deformation	40
3.11	Ring deformation model; $l = (nu \text{ mber of bond x bond length})/2\pi$	41
3.12	Depiction of different cross-link density in glass network	43
3.13	Schematic diagram of the transformation in volume with temperature as super-cooled liquid is cooled via the glass transition temperature	45
3.14	Schematic diagram of the experimental identification by extrapolation of the fictive temperature	46
3.15	Direct allowed transition	50
3.16	Indirect allowed transition	50

3.17	Luminescent material consisting of activator ions, A (showing the desired emission) and sensitizing ions, S (where the UV excitation can take place)	57
3.18	Visualization of energy transfer by Coulomb interaction (a) and exchange interaction (b) between two ions	58
4.1	Flow process of glass preparation	66
5.1	XRD patterns of erbium-doped zinc tellurite glasses	74
5.2	XRD patterns of silver-doped erbium zinc tellurite glasses	75
5.3	FTIR spectra of erbium-doped zinc tellurite glasses	76
5.4	FTIR spectra of silver-doped erbium zinc tellurite glasses	76
5.5	Deconvolution of FTIR spectra of erbium-doped zinc tellurite glasses	78
5.6	Deconvolution of FTIR spectra of silver-doped erbium zinc tellurite glasses	78
5.7	Concentration of TeO ₄ and TeO ₃ structural units of erbium-doped zin c tellurite glasses	81
5.8	Concentration of TeO_4 and TeO_3 structural units of silver-doped erbium zinc tellurite glasses	82
5.9	Density and molar volume of erbium-doped zinc tellurite glasses	83
5.10	Density and molar volume of silver-doped erbium zinc tellurite glasses	84
5.11	Longitudinal velocity and shear velocity of erbium-doped zinc tellurite glasses	87
5.12	Longitudinal velocity and shear velocity of silver-doped erbium zinc tellurite glasses	87
5.13	Elastic moduli of erbium-doped zinc tellurite glasses	91
5.14	Elastic moduli of silver-doped erbium zinc tellurite glasses	91
5.15	Poisson's ratio of erbium-doped zinc tellurite glasses	93
5.16	Poisson's ratio of silver-doped erbium zinc tellurite glasses	93
5.17	Fractal bond connectivity of erbium-doped zinc tellurite glasses	94

5.18	Fractal bond connectivity of silver-doped erbium zinc tellurite glasses	95
5.19	Micro-hardness of erbium-doped zinc tellurite glasses	96
5.20	Micro-hardness of silver-doped erbium zinc tellurite glasses	96
5.21	Debye temperature and mean velocity of erbium-doped zinc tellurite glasses	98
5.22	Debye temperature and mean velocity of silver-doped erbium zinc tellurite glasses	98
5.23	Acoustic impedance of erbium-doped zinc tellurite glasses	100
5.24	Acoustic impedance of silver-doped erbium zinc tellurite glasses	100
5.25	Softening temperature of erbium-doped zinc tellurite glasses	101
5.26	Softening temperature of silver-doped erbium zinc tellurite glasses	102
5.27	Number of network bonds of erbium-doped zinc tellurite glasses	104
5.28	Number of network bonds of silver-doped erbium zinc tellurite glasses	104
5.29	Average stretching force constant of erbium-doped zinc tellurite glasses	106
5.30	Average stretching force constant of silver-doped erbium zinc tellurite glasses	106
5.31	Average atomic ring size of erbium-doped zinc tellurite glasses	107
5.32	Average atomic ring size of silver-doped erbium zinc tellurite glasses	108
5.33	Average cross-link density of erbium-doped zinc tellurite glasses	109
5.34	Average cross-link density of silver-doped erbium zinc tellurite glasses	109
5.35	Poisson's ratio of erbium-doped zinc tellurite glasses	110
5.36	Poisson's ratio of silver-doped erbium zinc tellurite glasses	111
5.37	Bulk modulus based on bond compression model of erbium-doped zinc tellurite glasses	112

5.38	Bulk modulus based on bond compression model of silver-doped erbium zinc tellurite glasses	112
5.39	Ratio of K_{bc}/K_e and 1 of erbium-doped zinc tellurite glasses	113
5.40	Ratio of K_{bc}/K_e and 1 of silver-doped erbium zinc tellurite glasses	114
5.41	Elastic moduli of erbium-doped zinc tellurite glasses	115
5.42	Elastic moduli of silver-doped erbium zinc tellurite glasses	115
5.43	Packing density of erbium-doped zinc tellurite glasses	117
5.44	Packing density of silver-doped erbium zinc te llurite glasses	117
5.45	Dissociation energy of erbium-doped zinc tellurite glasses	118
5.46	Dissociation energy of silver-doped erbium zinc tellurite glasses	119
5.47	Elastic moduli of erbium-doped zinc tellurite glasses	120
5.48	Elastic moduli of silver-doped erbium zinc tellurite glasses	120
5.49	Poisson's ratio of erbium-doped zinc tellurite glasses	121
5.50	Poisson's ratio of silver-doped erbium zinc tellurite glasses	122
5.51	Packing density of erbium-doped zinc tellurite glasses	123
5.52	Packing density of silver-doped erbium zinc te llurite glasses	124
5.53	Dissociation energy of erbium-doped zinc tellurite glasses	125
5.54	Dissociation energy of silver-doped erbium zinc tellurite glasses	125
5.55	Elastic moduli of erbium-doped zinc tellurite glasses	126
5.56	Elastic moduli of silver-doped erbium zinc tellurite glasses	126
5.57	Poisson's ratio of erbium-doped zinc tellurite glasses	127
5.58	Poisson's ratio of silver-doped erbium zinc tellurite glasses	128
5.59	DSC curve of erbium-doped zinc tellurite glasses	129
5.60	DSC curve of silver-doped erbium zinc tellurite glasses	129
5.61	Glass stability of erbium-doped zinc tellurite glasses	132

5.62	Glass stability of silver-doped erbium zinc tellurite glasses	133
5.63	Optical absorbance spectra of erbium-doped zinc tellurite glasses	135
5.64	Optical absorbance spectra of silver-doped erbium zinc tellurite glasses	136
5.65	Tauc's plot for indirect band gap of erbium-doped zinc tellurite glasses	137
5.66	Tauc's plot for direct band gap of erbium-doped zinc tellurite glasses	138
5.67	Tauc's plot for indirect band gap of silver-doped erbium zinc tellurite glasses	138
5.68	Tauc's plot for direct band gap of silver-doped erbium zinc tellurite glasses	139
5.69	Direct and indirect energy band gap of erbium-doped zinc tellurite glasses	140
5.70	Direct and indirect energy band gap of silver-doped erbium zinc tellurite glasses	141
5.71	Plot of $\ln \alpha$ against photon energy of erbium-doped zinc tellurite glasses	142
5.72	Plot of ln α against photon energy of silver-doped erbium zinc tellurite glasses	143
5.73	Urbach energy of erbium-doped zinc te llurite glasses	143
5.74	Urbach energy of silver-doped erbium zinc tellurite glasses	144
5.75	Refractive index of erbium-doped zinc tellurite glasses	145
5.76	Refractive index of silver-doped erbium zinc tellurite glasses	145
5.77	Molar refraction of erbium-doped zinc tellurite glasses	147
5.78	Molar refraction of silver-doped erbium zinc tellurite glasses	148
5.79	Electronic polarizability of erbium-doped zinc tellurite glasses	149
5.80	Electronic polarizability of silver-doped erbium zinc tellurite glasses	149
5.81	Oxide ion polarizability of erbium-doped zinc tellurite glasses	150
5.82	Oxide ion polarizability of silver-doped erbium zinc tellurite glasses	151

5.83	Optical basicity of erbium-doped zinc tellurite glasses	152
5.84	Optical basicity of silver-doped erbium zinc tellurite glasses	152
5.85	Metallization criterion of erbium-doped zinc tellurite glasses	154
5.86	Metallization criterion of silver-doped erbium zinc tellurite glasses	154
5.87	Photoluminescence spectra of erbium-doped zinc tellurite glasses	155
5.88	Photoluminescence spectra of silver-doped erbium zinc tellurite glasses	156
5.89	Energy level diagram of erbium-doped zinc tellurite glasses for visible emission	157
5.90	Energy level diagram of silver-doped erbium zinc tellurite glasses for visible emission	157
5.91	Emission intesities of erbiu m-doped zinc tellurite glasses	158
5.92	Emission intesities of silver-doped erbium zinc tellurite glasses	159
5.93	Absorption cross section against wavelength of erbium-doped zinc tellurite glasses	160
5.94	Absorption cross section against wavelength of silver-doped erbium zinc tellurite glasses	160
5.95	Emission cross section against wavelength of erbium-doped zinc tellurite glasses	161
5.96	Emission cross section against wavelength of silver-doped erbium zinc tellurite glasses	161
5.97	Optical gain against wavelength of erbium-doped zinc tellurite glasses	162
5.98	Optical gain against wavelength of silver-doped erbium zinc tellurite glasses	163
5.99	XRD patterns of silver-doped zinc tellurite glasses	171
5.100	XRD patterns of erbium-doped silver zinc tellurite glasses	171
5.101	FTIR spectra of silver-doped zinc tellurite glasses	172
5.102	FTIR spectra of erbium-doped silver zinc tellurite glasses	173

5.103	Deconvolution of FTIR of silver-doped zinc tellurite glasses	174
5.104	Deconvolution of FTIR spectra of erbium-doped silver zinc tellurite glasses	175
5.105	Concentration of TeO ₄ and TeO ₃ structural units of silver-doped zinc tellurite glasses	177
5.106	Concentration of TeO ₄ and TeO ₃ structural units of erbium-doped silver zinc tellurite glasses	178
5.107	Density and molar volume of silver-doped zinc tellurite glasses	179
5.108	Density and molar volume of erbium-doped silver zinc tellurite glasses	180
5.109	Longitudinal velocity and shear velocity of silver-doped zinc tellurite glasses	182
5.110	Longitudinal velocity and shear velocity of erbium-doped silver zinc tellurite glasses	183
5.111	Elastic moduli of silver-doped zinc tellurite glasses	186
5.112	Elastic moduli of erbium-doped silver zinc tellurite glasses	186
5.113	Poisson's ratio of silver-doped zinc tellurite glasses	188
5.114	Poisson's ratio of erbium-doped silver zinc tellurite glasses	188
5.115	Fractal bond connectivity of silver-doped zinc tellurite glasses	189
5.116	Fractal bond connectivity of erbium-doped silver zinc tellurite glasses	190
5.117	Micro-hardness of silver-doped zinc tellurite glasses	191
5.118	Micro-hardness of erbium-doped silver zinc tellurite glasses	191
5.119	Debye temperature and mean velocity of silver-doped zinc tellurite glasses	193
5.120	Debye temperature and mean velocity of erbium-doped silver zinc tellurite glasses	193
5.121	Acoustic impedance of silver-doped zinc tellurite glasses	195
5.122	Acoustic impedance of erbium-doped silver zinc tellurite glasses	195

	5.123	Softening temperature of silver-doped zinc tellurite glasses	196
	5.124	Softening temperature of erbium-doped silver zinc tellurite glasses	197
	5.125	Number of network bonds of silver-doped zinc tellurite glasses	199
	5.126	Number of network bonds of erbium-doped silver zinc tellurite glasses	199
	5.127	Average stretching force constant of silver-doped zinc tellurite glasses	200
	5.128	Average stretching force constant of erbium-doped silver zinc tellurite glasses	201
	5.129	Average atomic ring size of silver-doped zinc tellurite glasses	202
	5.130	Average atomic ring size of erbium-doped silver zinc tellurite glasses	202
	5.131	Average cross-link density of silver-doped zinc tellurite glasses	203
	5.132	Average cross-link density of erbium-doped silver zinc tellurite glasses	204
	5.133	Poisson's ratio of silver-doped zinc tellurite glasses	205
	5.134	Poisson's ratio of erbium-doped silver zinc te llurite glasses	205
	5.135	Bulk modulus based on bond compression model of silver-doped zinc tellurite glasses	206
	5.136	Bulk modulus based on bond compression model of erbium-doped silver zinc tellurite glasses	207
	5.137	Ratio of K _{bc} /K _e and l of silver-doped zinc tellurite glasses	208
	5.138	Ratio of K_{bc}/K_e and l of erbium-doped silver zinc tellurite glasses	208
	5.139	Elastic moduli of silver-doped zinc tellurite glasses	209
	5.140	Elastic moduli of erbium-doped silver zinc tellurite glasses	210
	5.141	Packing density of silver-doped zinc tellurite glasses	211
	5.142	Packing density of erbium-doped silver zinc tellurite glasses	212
	5.143	Dissociation energy of silver-doped zinc tellurite glasses	213
	5.144	Dissociation energy of erbium-doped silver zinc tellurite glasses	213

5.145	Elastic moduli of silver-doped zinc tellurite glasses	214
5.146	Elastic moduli of erbium-doped silver zinc tellurite glasses	215
5.147	Poisson's ratio of silver-doped zinc tellurite glasses	216
5.148	Poisson's ratio of erbium-doped silver zinc tellurite glasses	216
5.149	Packing density of silver-doped zinc tellurite glasses	218
5.150	Packing density of erbium-doped silver zinc tellurite glasses	218
5.151	Dissociation energy of silver-doped zinc tellurite glasses	219
5.152	Dissociation energy of erbium-doped silver zinc tellurite glasses	220
5.153	Elastic moduli of silver-doped zinc tellurite glasses	221
5.154	Elastic moduli of erbium-doped silver zinc tellurite glasses	221
5.155	Poisson's ratio of silver-doped zinc tellurite glasses	222
5.156	Poisson's ratio of erbium-doped silver zinc tellurite glasses	223
5.157	DSC curve of silver-doped zinc tellurite glasses	224
5.158	DSC curve of erbium-doped silver zinc tellurite glasses	224
5.159	Glass stability of silver-doped zinc tellurite glasses	227
5.160	Glass stability of erbium-doped silver zinc tellurite glasses	227
5.161	Optical absorbance spectra of silver-doped zinc tellurite glasses	229
5.162	Optical absorbance spectra of erbium-doped silver zinc tellurite glasses	230
5.163	Tauc's plot for indirect band gap of silver-doped zinc tellurite glasses	231
5.164	Tauc's plot for direct band gap of silver-doped zinc tellurite glasses	231
5.165	Tauc's plot for indirect band gap of erbium-doped silver zinc tellurite glasses	232
5.166	Tauc's plot for direct band gap of erbium-doped silver zinc tellurite glasses	232
5.167	Direct and indirect energy band gap of silver-doped zinc tellurite glasses	234

5.168	Direct and indirect energy band gap of erbium-doped silver zinc tellurite glasses	234
5.169	Plot of ln α against photon energy of silver-doped zinc tellurite glasses	236
5.170	Plot of ln α against photon energy of erbium-doped silver zinc tellurite glasses	236
5.171	Urbach energy of silver-doped zinc tellurite glasses	237
5.172	Urbach energy of erbium-doped silver zinc tellurite glasses	237
5.173	Refractive index of silver-doped zinc tellurite glasses	238
5.174	Refractive index of erbium-doped silver zinc tellurite glasses	239
5.175	Molar refraction of silver-doped zinc tellurite glasses	240
5.176	Molar refraction of erbium-doped silver zinc tellurite glasses	241
5.177	Electronic polarizability of silver-doped zinc tellurite glasses	242
5.178	Electronic polarizability of erbium-doped silver zinc tellurite glasses	242
5.179	Oxide ion polarizability of silver-doped zinc tellurite glasses	244
5.180	Oxide ion polarizability of erbium-doped silver zinc tellurite glasses	244
5.181	Optical basicity of silver-doped zinc tellurite glasses	245
5.182	Optical basicity of erbium-doped silver zinc tellurite glasses	246
5.183	Metallization criterion of silver-doped zinc tellurite glasses	247
5.184	Metallization criterion of erbium-doped silver zinc tellurite glasses	247
5.185	Photoluminescence spectra of silver-doped zinc tellurite glasses	248
5.186	Photoluminescence spectra of erbium-doped silver zinc tellurite glasses	249
5.187	Energy level diagram of erbium-doped silver zinc tellurite glasses for visible emission	250
5.188	Emission intesities of silver-doped zinc tellurite glasses	251
5.189	Emission intesities of erbium-doped silver zinc tellurite glasses	251

5.190	Absorption cross section against wavelength of erbium-doped silver zinc tellurite glasses	252
5.191	Emission cross section against wavelength of erbium-doped silver zinc tellurite glasses	253
5.192	Optical gain against wavelength of erbium-doped silver zinc tellurite glasses	254
5.193	Comparison between elastic experimental and theoretical on shear modulus against the molar fraction of dopant	264
5.194	Comparison between elastic experimental and theoretical on bulk modulus against the molar fraction of dopant	264
5.195	Comparison between elastic experimental and theoretical on Young's modulus against molar fraction of dopant	265
5.196	Comparison between elastic experimental and theoretical on Poisson's ratio against molar fraction of dopant	265
5.197	Glass stability of erbium-doped zinc tellurite glasses, $[(TeO_2)_{0.7} (ZnO)_{0.3}]_{1-x} (Er_2O_3)_x$	267
5.198	Glass stability of erbium-doped silver-zinc tellurite glasses, [[(TeO ₂) _{0.7} (ZnO) $_{0.3}$] $_{0.98}$ (Ag ₂ O) $_{0.02}$]] $_{1-y}$ (Er ₂ O ₃) $_{y}$	267

G

LIST OF ABBREVIATIONS

А	Area
D	Thickness
Tg	Glass transition temperature
NBO	Non-bridging oxygen
ВО	Bridging oxygen
ΔΕ	Energy difference
Ν	Refractive index
Λ	wavelength
XRD	X-ray diffraction
FTIR	Fourier transform infrared spectroscopy
Eopt	Optical energy gap
α	constant
ħν	Photon energy
Ec	Urbach energy
TeO ₂	Tellurium oxide
ZnO	Zinc oxide
Er ₂ O ₃	Erbium oxide
Ag ₂ O	Silver oxide
ρ	density
Vm	Molar volume
vL	Longitudinal velocity
Vs	Shear velocity
L	Longitudinal modulus
G	Shear modulus

	Κ	Bulk modulus
	E	Young's modulus
	σ	Poisson's ratio
	Н	Micro-hardness
	Θ_{D}	Debye temperature
	Z	Acoustic impedance
	Ts	Softening temperature
	М	Metallization criterion
	R _m	Molar refraction
	α _e	Electronic polarizability
	α ₀ ²⁻	Oxide ion polarizability
	Λ	Optical basicity
	DSC	Differential scanning calorimeter
	IR	Infrared
	UV	Ultraviolet
	Vis	Visible
	А	Absorbance
	Т	Transmittance
	3D	3 Dimensions
	Vmean	Mean velocity
	NA	Avogadro constant
	T _f	Fictive temperature
	v	velocity
	с	Speed of light in vacuum
	h	Planck's constant
	k	Boltzmann's constant
	ed	Electric dipole
	ET	Energy transfer
	FWHM	Full width half maximum

G	BW	Gain band width
H	r	Hruby parameter
JC)	Judd-Ofelt
m	d	Magnetic dipole line strength
To	0	Onset crystallization temperature
Tc	2	Crystallization temperature
Tr	m	Melting temperature
Te	eO ₃	Trigonal pyramid
Te	eO4	Trigonal bipyramid
Sn	neas	Measured line strength
Se	ed	Electric dipole line strength
Sc	calc	Calculated dipole line strength
Ω		JO intensity parameters
$ au_{ m ra}$	ad	Radiative lifetimes
σ _e	,	Emission cross section
σ _a	L I	Absorption cross section
ß		Branching ratio
S		Thermal stability
Ts	s	Glass stability
Ea	ı 🖌	Activation energy
n _b	,	Number of bonds per unit volume
n _c	;	Average cross-link density
F		Average stretching force constant
\mathbf{V}_{t}	£	Packing density
G		Dissociation energy

xxxiv

CHAPTER 1

INTRODUCTION

This chapter discusses the introduction of glass, tellurite glass and all the chemicals that are used in this research. This chapter also includes problem statements, scope of study and limitations, objectives of the study, hypothesis, significance of the study, and outline of the thesis.

1.1 Preamble

Glass has brought the biggest definition to the world which contributes a lot of benefits to mankind especially in the scientific development and also in industry (Oliver, 1975). Recently, the contribution of glass has enlarged the scope of study of certain material based on the engineering perspective. The comprehensive findings on glass science and technology which discover the recent research on the application of photonic and optical is unquestionable. The novelty in the research on the application of glass is investigated consistently due to the unique properties in this era. Further quest in the glass field regarding the novelty of glass application inspires the scientist all over the world. The useful requirement and concern especially on communication system improve the evolution of glass material that has a high potential to be implemented in optical communication. There are numerous types of glass material which are established in the application of optic.

To date, silicate-based glass is required as the crucial component of making good fibre optics. However, silicate-based glass has weak absorbance and weak nonlinearity as well as high melting point (Halimah *et al.*, 2010). A good quality of optical glass is necessary to enhance the on-going of optical application. For that reason, tellurite-based glass has been chosen to be one of the best successors which produce a great quality of glass materials (Halimah *et al.*, 2010).

Halimah *et al.*, (2010) had reported that the tellurite glasses are the promising materials for non-linear application especially in optic and also laser which is due to several aspects, for instance, low phonon maxima, low melting point, and high refractive index. TeO₂ is also known as a conditional glass former where it requires an addition of modifier ion in order to form the glassy state easily. This will eventually lead to the creation of new structural units such as trigonal pyramidal (TeO₃) and trigonal bipyramidal (TeO₄). TeO₂ has its own influence where in certain chemical composition, it tends to decrease the hygroscopic level which will enhance the quality of the glass, making the glass less brittle and free from bubbles as well as improving the IR transmission.

Tellurite-based glass is also highlighted to be one of the unique and highly recommendable components in glass materials due to its wide band infrared transmittance; high refractive index and high dielectric constant (Sidek *et al.*, 2009). It has been deeply promoted in several optical applications such as optoelectronics, light emitting diode (LED), glass sensor and fiber optics. Up until now, the improvement of tellurite-based glass in the optical application is still in progress. As this glass is adaptable to several types of oxide materials, different oxides have been added into the tellurite glass network with a purpose to investigate either is it preferable to enhance the optical properties or contrariwise.

According to Sidek *et al.*, (2009), tellurite glasses had been thoroughly investigated due to its scientific and technological relevance. Tellurite glasses are considered as a good candidate for recent usage in optical materials due to some desirable aspects such as a wideband infrared transmittance, high refractive index and high dielectric constant. In addition, they also exhibit high densities, low transformation temperature and non-hygroscopic properties which can overcome the application of phosphate and borate glasses. Hence, these glasses are appropriate as a host material for active element doping and serving as the major justification for their endless technological significance in certain areas of optoelectronics such as optical fibre, sensor system, and laser technology.

As is known, zinc oxide is a chemical compound that has a molecular formula of ZnO. According to Noorazlan *et al.*, (2013), zinc oxide has promoted the reduction of melting point and improved the capability of the glass forming during the glass production. It has been informed that the reaction of ZnO in the glass sample can reduce the optical energy band gap and enhance the refractive index. In addition, ZnO can also fill up both network former and network modifier position in the glass network. As a result, the physical properties of such glasses show non-continuous changes when the structural role of the cation changes. Zinc oxide can act as a glass stabilizer in order to produce suitable and good glass system as well.

The combination of zinc oxide and tellurium oxide will form a series of zinc tellurite glass system. Zinc tellurite glass system unveils the favourable and reliable glass-forming ability within a broad region. Nonetheless, this glass formation firmly relies on the cooling rate specifically in the tellurium dioxide rich region. This glass system is suitable to be used as a basis for multi-component optical glass synthesis and a good candidate of composition especially for super heavy optical flint glasses (Noorazlan *et al.*, 2013)

Currently, lanthanide or rare earth oxide group doped glasses have attracted a lot of attentions. The lanthanide doped glasses offers a huge, latest and crucial application especially in the field of optical communication. Different type of lanthanide doped glasses have enhanced towards linear and nonlinear optical properties which are applicable for the devices in the area of photonics in last decades. The refractive index, optical absorption and optical band gap of a material are the crucial optical properties

that should be studied before the material is implemented to optical system in the area of photonics (Noorazlan *et al.*, 2013). Therefore, lanthanide or rare earth oxide group is the promising successor to improve the optical properties of tellurite-based glass. Currently, the finding on rare-earth oxide doped tellurite glass has also been widely explored due to their potential applications in several fields, specifically in optical communication.

One of the rare earth oxide groups that are highly recommendable is erbium oxide. Back in the days, a lot of efforts were devoted in order to discover the optical behaviour of the Er^{3+} ions due to its broadband emission at 1.53 µm, which is essential for the applications of optical data transmission (Mahraz *et al.*, 2014). Therefore, erbium-doped glasses have been investigated in a number of studies as it is also applicable in fiber amplifiers of long-range optical fiber communications (Azlan *et al.*, 2015). Mahraz *et al.*, (2014) had also discussed that the trivalent erbium ion is one of the most crucial and efficient ions, and its solubility could achieve up to 0.1 molar fractions. It was figured out that the refractive index of erbium-doped tellurite glasses had the largest value among the functional glasses (Azlan *et al.*, 2015). One of the impressive properties of erbium oxide is their capability of up conversion takes place when infrared or visible radiation with a small energy of light is converted to visible or infrared radiation with larger energy light through multiple transfer or absorption of energy.

Rare earth doped fiber amplifier is used to improve the optical communication. One of the good and preferable candidates of fiber amplifiers is Er^{3+} -doped fiber amplifier (EDFA) devices. The photonic-based system is an attractive application for ultra-high speed transfer and processing. Glass is one of the examples to be utilized in the selected application because of its desirable properties of nonlinear optical (NLO) and low phonon energy (Duffy and Ingram, 1971).

Other than that, silver (Ag) is one of the heavy metal oxides which subsist of special properties such as high refractive index and optical enhancement that have shown its good and suitable element for the preparation of glass-based materials. The aforementioned properties of this element has achieved a peculiar position among the dopants in order to obtain the glassy materials. Hence, the doping of glasses with silver has brought more focus to the scientific society correlate with the materials science area such as photonics and optoelectronics. Silver-doped glasses are the solution for materials to expand its functions in every single aspect such as structural, physical and chemical properties. It forms a variety of attractive characteristics which contribute to branches of advantages. The advantages have included a lot of applications which enhance some phenomena to occur such as silver-glass interaction, diffusion of silver into the glass, and optical response (Gonella, 2015).

1.2 General introduction

In the study done by Alemi *et al.*, (2009), glass has been defined as a homogenous material with a random, liquid-like (non-crystalline) molecular structure. In this process, the raw materials are required to be heated at a sufficient temperature in order to form the entire fused melt. Then, the molten is cooled rapidly; turn to rigid solid without crystallization. Glass which is located at the fourth state of matter connects the rigidity of crystals with the random molecular structure of liquids. The arrangement of the atom in a glass is random but frozen in position. Therefore, the combination of glass can be explained in the aspects of crystalline solid and liquid which can be classified as rigid like a solid but random in the atomic structure of the liquid.

In addition, the development of natural glass is due to the cooling of molten in different compounds including alkaline, alkaline earth, and transition metal oxide. The order of glass formation had been reported by Zachariasen (1932) where a few outlines came out in line with the formation of glass such as:

- 1) Each oxygen atom is linked to not more than two cations
- 2) The cation coordination number is small which is 3 or 4
- 3) Oxygen polyhedral share corners, not edges or faces
- 4) For 3D networks, at least three corners must be shared

Besides that, the molten must also be cooled under appropriate conditions to allow the production of the glass. Basically, the glass structure consists of random network and amorphous structural arrangement as shown in Figure 1.1.

Figure 1.1 : Basic glass structure (Stachurski, 2011)

Although glass does not consist of any crystalline phase, it still has a strong rigidity while holding to the liquid structure. The atoms are connected to one another and form a random structure. In the heating process of liquid, there are two mechanisms exists which are:

- 1) The atoms' vibration
- 2) The atoms' and molecules' movement in a random motion

The atoms' vibration or atoms' and molecules' vibration are mainly related to the absorption of energy which is corresponding to the vibrations' frequency. A fundamental vibration is aroused when one such quantum of energy is absorbed by the molecule in its ground state. However, when multiple quanta are absorbed, the first or any higher frequency that is greater than the frequency of a sound are excited.

As the temperature is lowered, the heat energy is slowly reduced until freezing process takes place. The liquid is changed to solid where the structure turns into regular order. However, when the liquid is cooled down from high temperature to room temperature rapidly, the structure becomes rigid but still able to keep the internal structure of a liquid in control. This process is basically known as "supercooled" liquid.

The supercooled liquid state can be defined as a metastable state. At freezing point, the liquid is turned to a solid state where at this point, the internal energy is reduced until it achieves a minimum point and reaches a stable state. However, the supercooled liquid is not in a stable state. Therefore, in order to obtain the stable state, it has to undergo the

intermediate state at higher energy. Hence, the supercooled liquid can produce glass whenever the internal energy is provided in which the crystalline state is obtained. The supercooled liquid which has a potential to perform glass (glass-forming liquid) shows speedy increment in viscosity or stiffness as the temperature decreases at below than melting point.

In the area positioned below than melting point, the glass-forming liquids are required to be cooled down swiftly to ensure that the glass-forming liquid does not achieve crystalline phase. Withal, the slow cooling process might give an effect in the production of crystalline phase and yet the glass systemformed will not be purely amorphous.

In the process of transition of glass, it is crucial to plot the behavior of the amorphous materials from the supercooled state to glass in a V-T diagram as shown in Figure 1.2. The temperature is conspired in the x-axis and the volume enthalpy employed by the material is conspired along the y-axis, where the T_m is the melting point and T_g is the glass transition temperature. The glass transition temperature arises when the supercooled liquid freezes into an amorphous solid with no hasty discontinuity in volume, nearby the glass transition temperature (El-Mallawany, 2002; Adler, 1971; Vogel, 1985; Yamane and Asahara, 2000; Varshneya, 1994).

Figure 1.2 : Diagram of glass transition (Stachurski, 2011)

1.3 Problem statements

The crusade of enhancing the properties of glass material for their application in miscellaneous field including the improvement in materials science and technology is an irrepressible challenge for researches all over the world. Until now, many researchers

had researched on numerous glass systems with different chemical compositions that have the potency to be employed as fiber optic execution and laser designation, semiconductor devices such as light-emitting diodes (LEDs), non-linear application including optical switching and optical limiting devices, conducting materials, supercapacitor, microwave materials as well as the theoretical approach which is the artificial neural network (ANN) (Eevon *et al.*, 2016; Sasmal *et al.*, 2014).

It is a notable fact that tellurite based glass is the outstanding glass material to be employed as photonic devices. Tellurite glass has been proposed as the glass with high potential to be exploited in the photonic field, owing to its remarkable chemical durability, good thermal stability, good optical switching response, low optical loss as well as great optical nonlinearity (Yousef *et al.*, 2012). High polarizable tellurium ions in tellurite based glass are liable to the high polarizability of the overall glass that eventually able to dwindle the energy band gap and deepen the linear and nonlinear refractive index of the respective glass system. Reddy *et al.*, (2008) declared that the inclusion of tellurium element in a particular glass systemalong with the introduction of suitable dopants ions can upgrade the overall transmission capability of the glass as well as expanding the moisture resistance and transparency of the glass in the ultraviolet and infrared wavelength regions.

Various approaches of oxide glass components for instance zinc oxide, lead oxide and tungsten oxide are among the potential candidates for this objective. Hence, the option of choosing a suitable composition is very important since it will affect the chemistry, physical and optical properties of the glass host. Zinc oxide is an element that has a superior glass modifier which will make the glass formation in parent with tellurite glass as a host glass matrix to become smoother (Sidebottom *et al.*, 1997).

By having advantages of the tellurite glass system incorporated with zinc oxide, researchers had tried and succeeded in doping rare earth elements into the host glass material by utilizing the conventional melt-quenching method. Unusually, the inclusion of rare earth elements into the host glass material seems to farther improve the optical properties and broaden the promising application of the doped glass such as fiber amplifier, laser, optical data storage, optical communication device and sensor (Akmar Roslan *et al.*, 2012).

Notwithstanding, there are little facts on the response of erbium oxide micro-particles to the zinc tellurite glass system. Although zinc tellurite glass systemdoped with lanthanide element with 4f electrons such as holmium and neodymium has been investigated ne wly, unprecedented erbium might predispose the comprehensive characteristics as well as properties of the zinc tellurite glass system. Furthermore, the co-doping of erbium and silver element in the same glass system has never been explored by any researchers up until now.

The structural, physical, elastic, thermal, and optical properties of erbium oxide and silver oxide zinc tellurite glass system have been investigated to permit their attainable application categorically in fiber optic and laser implementation. Moreover, the application of glass as potential material for the aforementioned application has never been examined while it's potential to be explored as fiber optic and laser can be prevailed through the photoluminescence effect as well as McCumber and Judd-Ofelt theories. Therefore, the purpose of this research is to study the effect of erbium oxide and silver oxide on structural, physical, elastic (experimentally and theoretically), thermal and optical properties along with McCumber and Judd-Ofelt analysis of zinc tellurite glass system to its possible application as fiber optic and laser designation.

1.4 Scope of study and limitations

The scope of this study is limited to the structural properties (XRD, FTIR and deconvolution), physical properties (density and molar volume), elastic experimental (longitudinal velocity, shear velocity, longitudinal modulus, shear modulus, bulk modulus, Young modulus, Poisson's ratio, hardness, Debye temperature, mean velocity, acoustic impedance, softening temperature and fractal bond connectivity), elastic theoretical (Makishima and Mackenzie model, bulk compression model, ring deformation model and rocherulle model), thermal properties (glass transition temperature, onset crystallization temperature, crystallization temperature, melting temperature, glass stability, thermal stability, reduced glass transition temperature, Hruby parameter, fragility and activation energy), optical properties (optical absorption, energy band gap, Urbach energy, refractive index, molar or electronic polarizability, oxide ion polarizability, optical basicity. and metallization criterion). photoluminescence, McCumber theory (absorption and emission cross-section and gain), and Judd Ofelt analysis.

1.5 Research objectives

The introduction of erbium oxide and silver oxide with variation composition are important to understand the investigated properties in the glass system. Moreover, in this current study, the use of different composition of dopant is necessary to determine the most satisfactory properties for the optical application. Therefore, four objectives have been included in this research work:

- 1) To determine the effect of erbium oxide and silver oxide on structural and physical properties of zinc tellurite glass system.
- 2) To study the repercussion of erbium oxide and silver oxide on elastic properties experimentally and theoretically of zinc tellurite glass system.
- 3) To evaluate the imprint of erbium oxide and silver oxide on thermal and optical properties of zinc tellurite glass system.
- 4) To investigate the ability of erbium-doped and silver-doped zinc tellurite glass systemon producing efficient device for laser application.

1.6 Hypothesis

According to the four specific objectives, the hypotheses for this research are:

- 1) The inclusion of the dopants into zinc tellurite glass system form glasses with amorphous nature that can be validated via XRD and the formation of glass structure which will form TeO₄ and TeO₃ in the glass system should be detected by the FTIR spectroscopy. However, the presence of other elements such as zinc oxide, erbium oxide and silver oxide can also be discovered by doing deconvolution process via Origin 6.0 software, if only the elements cannot be detected by the instrument due to low amount of concentration.
- 2) The density values are expected to be increased as heavier dopants are added into the glass matrix. Nevertheless, there is still a possibility for the molar volume not to obey the theoretical relationship which is inversely proportional to each other due to several reasons such as longer bond length and larger interstices space within the glass structure.
- 3) The addition of different dopants into the glass samples are expected to enhance the elastic properties of the glasses by increasing the ultrasonic velocity, elastic moduli and other elastic parameters. This is because rare earth and heavy metal ion can cause the formation of bridging oxygen that will increase the rigidity of the glass samples. The inconsistency of the trend might be due to the concurrent presence of bridging oxygen and non-bridging oxygen that can be proven from the FTIR and deconvolution analysis.
- 4) The thermal properties such as glass transition temperature, glass stability, thermal stability, reduced glass transition temperature and Hruby parameter are predicted to increase but opposely to the fragility value. The effect of dopants in the glass system can enhance the glass sample to become either stiffer or brittle.
- 5) The linear optical properties parameters for zinc tellurite glass system with various dopants can be constant in trend either increase or decrease. This might be due to the presence of dopants in the glass system that might act as a glass modifier or glass former. When the dopants play a role as a glass modifier, there is a possibility for the creation of more polarizable non-bridging oxygen which contributes to the reduction in energy band gap as well as the increment in linear refractive index. The results can also be distinguished if the dopants act as a glass former in the glass system.
- 6) The emission of photoluminescence from the dopants of erbium oxide and silver are anticipated to exist at certain transition levels of the zinc tellurite glasses.
- 7) The absorption and emission cross-section is investigated based on different types of dopants and concentration. High emission cross-section has a tendency to produce more gain in a laser application.
- 8) The values of Ω_2 and Ω_4 parameters are expected to correspond to the asymmetry of the local environment of Er^{3+} ions sites which depend on the covalency between Er^{3+} ions and ligand anions. Meanwhile, the value of Ω_6

parameter is linked to the local basicity of the Er^{3+} ions and inversely proportional to the covalency of the Er-O bond.

1.7 Significance of study

In these days, the usage of glass is not only restricted for the things that can be seen by naked eyes such as windows, building and furniture instead it is comprehensively can also be applied in optoelectronic, laser and fiber optic. A few studies on the rare earth and heavy metal elements are investigated in order to encourage the properties of the glasses, for instance the optical properties. Since then, huge interests and passions of the researchers of exploring more in order to make good glass with better properties is very encouraging.

In determining good parameters for laser application, some major properties such as elastic, thermal and optical properties are investigated as well. The investigation of the respective properties would determine the best glass sample to be used in laser application. Therefore, the outcome of this study may provide deeper knowledge about the properties of the new composition of glasses towards the laser application. This research can be a reference for further research on elastic, thermal and optical properties of both rare earth and heavy metal doped glasses in the educational field and also in industrial applications.

1.8 Outline of thesis

Chapters are divided into few sections as well as the sub-sections. Chapter 1 is the overview in the field of research work and brief introduction of glass materials. It also concentrates on the finding of the research and highlights the objective of the investigation. The relevant points are also listed in the problem statements. Chapter 2 reports the earlier information regarding the related field of research. It also mentions about various views and some approaches from previous researchers which are related in this study. Chapter 3 outlines the theory that being implied in this investigation. The derivations of equations are also included in this chapter. Chapter 4 explains deeply about the method of fabrication and collection of data. The overview of the instrument used is also described in this section. Chapter 5 discusses in details regarding the results obtained in this study and the comparison among the glass series. The discussions cover a few types of measurement such as X-ray diffraction (XRD), Fourier transform infrared (FTIR), deconvolution analysis, density, molar volume, ultrasonic technique, Differential scanning calorimeter (DSC), UV-Visible spectroscopy (UV-Vis), photoluminescence spectroscopy, McCumber theory and Judd Ofelt analysis. Chapter 6 summarizes the crucial result of the finding and recommendation for the future works.

REFERENCES

- Abdel-Baki, M., El-Diasty, F., & Wahab, F. A. A. (2006). Optical characterization of xTiO₂- (60- x) SiO₂-40Na₂O glasses: II. Absorption edge, Fermi level, electronic polarizability and optical basicity. *Optics Communications*, 261(1), 65-70.
- Abd El-Aal, N. S. (2001). Elastic properties of g-radiated borate glasses using pulse echo technique. *Egypt. J. Soli*, 24(2), 181-192.
- Adler, D. (1971). Amorphous semiconductors. Critical Reviews in Solid State and Material Sciences, 2(3), 317-465.
- Afifi, H., & Marzouk, S. (2003). Ultrasonic velocity and elastic moduli of heavy metal tellurite glasses. *Materials chemistry and physics*, 80(2), 517-523.
- Agazzi, L, Wörhoff, K., Kahn, A., Fechner, M., Huber, G., & Pollnau, M. (2013). Spectroscopy of upper energy levels in an Er ³⁺-doped amorphous oxide. J of Optical Societ of America B, 30(3), 663-677.
- Ahmed, J., Zhang, J. X., Song, Z., & Varshney, S. K. (2009). Thermal properties of polylactides. *Journal of Thermal Analysis and Calorimetry*, 95(3), 957-964.
- Akmar Roslan, S., Rahim Sahar, M., Arifin, R., Ghoshal, S. K., Rohani, M., & Hamzah, K. (2012). Optical Absorption of Er³⁺/Nd³⁺ Co-Doped Tellurite Glass. In Advanced Materials Research (Vol. 501, pp. 96-100). Trans Tech Publications.
- Alemi, A., Kafi-ahmadi, L., & Sadeghi-sorkhani, M. T. (2009). Synthesis and Characterization of Nd³⁺-Doped Indium-sodium Tetraborate Glasses. *Chinese Journal of Chemistry*, 27(12), 2347-2351.
- Al-Qaisi, B. (2013). UV spectroscopy, refractive indices and elastic properties of the (76- x) TeO₂· 9P₂O₅· 15ZnO· xLiNbO₃ glass. Solid State Sciences, 19, 6-11.
- Al-Shamiri, H. A., & Eid, A. S. (2012). Optical and ultrasonic properties of chromium oxide in sodium zinc phosphate glass. *Photonics and Optoelectronics*, 1(1), 1-8.
- Anderson, O. L., Chopelas, A., & Boehler, R. (1990). Thermal expansivity versus pressure at constant temperature: A re-examination. *Geophysical Research Letters*, 17(6), 685-688.
- Ayuni, J. N., Halimah, M. K., Talib, Z. A., Sidek, H. A. A., Daud, W. M., Zaidan, A. W., & Khamirul, A. M. (2011). Optical properties of ternary TeO₂-B₂O₃-ZnO glass system. In *IOP Conference Series: Materials Science and Engineering* (Vol. 17, No. 1, p. 012027). IOP Publishing.
- Azianty, S., Yahya, A. K., & Halimah, M. K. (2012). Effects of Fe₂O₃ replacement of ZnO on elastic and structural properties of 80TeO₂- (20- x) ZnO-xFe₂O₃ tellurite glass system. *Journal of Non-Crystalline Solids*, *358*(12-13), 1562-1568.

- Azlan, M. N., Halimah, M. K., El-Mallawany, R., Faznny, M. F., & Eevon, C. (2017). Optical properties of zinc borotellurite glass system doped with erbium and erbium nanoparticles for photonic applications. *Journal of Materials Science: Materials in Electronics*, 28(5), 4318-4327.
- Azlan, M. N., Halimah, M. K., Shafinas, S. Z., & Daud, W. M. (2015). Electronic polarizability of zinc borotellurite glass system containing erbium nanoparticles. *Materials Express*, 5(3), 211-218.
- Azuraida, A., Halimah, M. K., Sidek, A. A., Azurahanim, C. A. C., Iskandar, S. M., Ishak, M., & Nurazlin, A. (2015). Comparative studies of bismuth and barium boro-tellurite glass system: Structural and optical properties. *Chalcogenide Letters*, 12(10), 497-503.
- Babu, P., Seo, H. J., Kesavulu, C. R., Jang, K. H., & Jayasankar, C. K. (2009). Thermal and optical properties of Er³⁺-doped oxyfluorotellurite glasses. *Journal of Luminescence*, 129(5), 444-448.
- Babu, S. S., Jang, K., Cho, E. J., Lee, H., & Jayasankar, C. K. (2007). Thermal, structural and optical properties of Eu³⁺-doped zinc-tellurite glasses. *Journal of Physics D: Applied Physics*, 40(18), 5767.
- Baizura, N., & Yahya, A. K. (2011). Effects of Nb₂O₅ Replacement by Er₂O₃ on elastic and structural properties of 75TeO₂- (10- x) Nb₂O₅-15ZnO-(x) Er₂O₃ glass. *Journal of Non-Crystalline Solids*, 357(15), 2810-2815.
- Baki, S. O., Tan, L. S., Kan, C. S., Kamari, H. M., Noor, A. S. M., & Mahdi, M. A. (2013). Structural and optical properties of Er³⁺-Yb³⁺ codoped multicomposition TeO₂-ZnO-PbO-TiO₂-Na₂O glass. *Journal of Non-Crystalline Solids*, 362, 156-161.
- Balaji, S., Biswas, K., Sontakke, A. D., Gupta, G., Ghosh, D., & Annapurna, K. (2014). Al₂O₃ influence on structural, elastic, thermal properties of Yb³⁺ doped Ba–Latellurite glass: Evidence of reduction in self-radiation trapping at 1 μm emission. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 318-325.
- Balda, R., Lacha, L. M., Fernández, J., Arriandiaga, M. A., Fernández-Navarro, J. M., & Muñoz-Martín, D. (2008). Spectroscopic properties of the 1.4 μm emission of Tm ³⁺ ions in TeO 2-WO 3-PbO glasses. *Optics express*, 16(16), 11836-11846.
- Basavapoornima, C., Linganna, K., Kesavulu, C. R., Ju, S., Kim, B. H., Han, W. T., & Jayasankar, C. K. (2017). Spectroscopic and pump power dependent upconversion studies of Er³⁺-doped lead phosphate glasses for photonic applications. *Journal of Alloys and Compounds*, 699, 959-968.
- Begum, A. N., Rajendran, V., & Ylänen, H. (2006). Effect of thermal treatment on physical properties of bioactive glass. *Materials Chemistry and Physics*, 96(2-3), 409-417.

- Belharouak, I., Parent, C., Tanguy, B., Le Flem, G., & Couzi, M. (1999). Silver aggregates in photoluminescent phosphate glasses of theAg₂O–ZnO–P₂O₅'system. *Journal of Non-Crystalline Solids*, 244(2-3), 238-249.
- Bergman, D. J., & Kantor, Y. (1984). Critical properties of an elastic fractal. *Physical Review Letters*, 53(6), 511.
- Bilir, G., Kaya, A., Cinkaya, H., & Eryürek, G. (2016). Spectroscopic investigation of zinc tellurite glasses doped with Yb³⁺ and Er³⁺ ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 165, 183-190.
- Boetti, N. G., Lousteau, J., Chiasera, A., Ferrari, M., Mura, E., Scarpignato, G. C., & Milanese, D. (2012). Thermal stability and spectroscopic properties of erbiumdoped niobic-tungsten-tellurite glasses for laser and amplifier devices. *Journal of Luminescence*, 132(5), 1265-1269.
- Bogue, R., & Sladek, R. J. (1990). Elasticity and thermal expansivity of (AgI) x (AgPO 3) 1-x glasses. *Physical Review B*, 42(8), 5280.
- Böhmer, R., & Angell, C. A. (1994). Local and global relaxations in glass forming materials. In *Disorder effects on relaxational processes* (pp. 11-54). Springer, Berlin, Heidelberg.
- Bootjomchai, C. (2015). Comparative studies between theoretical and experimental of elastic properties and irradiation effects of soda lime glasses doped with neodymium oxide. *Radiation Physics and Chemistry*, *110*, 96-104.
- Bosca, M., Pop, L., Borodi, G., Pascuta, P., & Culea, E. (2009). XRD and FTIR structural investigations of erbium-doped bismuth-lead-silver glasses and glass ceramics. *Journal of Alloys and Compounds*, 479(1-2), 579-582.
- Bridge, B., & Higazy, A. A. (1986). Acoustic and optical Debye temperatures of the vitreous system CoO-Co₂ O₃-P₂O₅. *Journal of Materials Science*, 21(7), 2385-2390.
- Bridge, B., Patel, N. D., & Waters, D. N. (1983). On the elastic constants and structure of the pure inorganic oxide glasses. *Physica Status Solidi* (*a*), 77(2), 655-668.
- Cai, M., Lu, Y., Cao, R., Tian, Y., Xu, S., & Zhang, J. (2016). 2 μm emission properties and hydroxy groups quenching of Tm³⁺ in germanate-tellurite glass. *Optical Materials*, 57, 236-242.

Çelikbilek, M., Ersundu, A. E., & Aydin, S. (2013). Preparation and characterization of TeO₂–WO₃–Li₂O glasses. *Journal of Non-Crystalline Solids*, 378, 247-253.

Chen, F., Wei, T., Jing, X., Tian, Y., Zhang, J., & Xu, S. (2015). Investigation of midinfrared emission characteristics and energy transfer dynamics in Er ³⁺ doped oxyfluoride tellurite glass. *Scientific Reports*, *5*, 10676.

- Chen, Q., Shen, J., Zhang, D., Fan, H., Sun, J., & McCartney, D. G. (2006). A new criterion for evaluating the glass-forming ability of bulk metallic glasses. *Materials Science and Engineering: A*, 433(1-2), 155-160.
- Choi, Y. G., Kim, K. H., & Heo, J. (1999). Spectroscopic properties of and energy transfer in PbO–Bi₂O₃–Ga₂O₃ glass doped with Er₂O₃. *Journal of the American Ceramic Society*, 82(10), 2762-2768.
- Coelho, J., Freire, C., & Hussain, N. S. (2012). Structural studies of lead lithium borate glasses doped with silver oxide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 86, 392-398.
- Culea, E., Vida-Simiti, I., Borodi, G., Culea, E. N., Stefan, R., & Pascuta, P. (2014). Effects of Er³⁺: Ag codoping on structural and spectroscopic properties of lead tellurite glass ceramics. *Ceramics International*, 40(7), 11001-11007.
- D. Munoz-Martin. (2008). Spectroscopic properties of Tm³⁺: TeO₂–PbF₂ glasses.
- Das, M., Annapurna, K., Kundu, P., Dwivedi, R. N., & Buddhudu, S. (2006). Optical spectra of Nd³⁺: CaO-La₂O₃-B₂O₃ glasses. *Materials Letters*, 60(2), 222-229.
- Davis, E. A., & Mott, N. (1970). Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. *Philosophical Magazine*, 22(179), 0903-0922.
- Desurvire, E., Bayart, D., Desthieux, B., & Bigo, S. (2002). *Erbium-doped fiber amplifiers: Device and System Developments* (Vol. 2). New York, NY: Wiley-Interscience.
- Dhara, A., Show, B., Baral, A., Chabri, S., Sinha, A., Bandyopadhyay, N. R., & Mukherjee, N. (2016). Core-shell CuO-ZnO pn heterojunction with high specific surface area for enhanced photoelectrochemical (PEC) energy conversion. *Solar Energy*, 136, 327-332.
- Dimitrov, V., & Komatsu, T. (1999). Electronic polarizability, optical basicity and nonlinear optical properties of oxide glasses. *Journal of Non-Crystalline Solids*, 249(2-3), 160-179.
- Dimitrov, V., & Komatsu, T. (2005). Classification of oxide glasses: A polarizability approach. Journal of Solid State Chemistry, 178(3), 831-846.
- Dimitrov, V., & Komatsu, T. (2010). An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J. Univ. Chem. Technol. Metall, 45(3), 219-250.
- Dimitrov, V., & Sakka, S. (1996). Electronic oxide polarizability and optical basicity of simple oxides. I. *Journal of Applied Physics*, 79(3), 1736-1740.

- Dimitrov, V., Komatsu, T., & Sato, R. (1999). Polarizability, optical basicity and O1s binding energy of simple oxides. *Journal of the Ceramic Society of Japan*, 107(1241), 21-26.
- Dousti, M. R., Amjad, R. J., Sahar, M. R., Zabidi, Z. M., Alias, A. N., & De Camargo, A. S. S. (2015). Er³⁺-doped zinc tellurite glasses revisited: concentration dependent chemical durability, thermal stability and spectroscopic properties. *Journal of Non-Crystalline Solids*, 429, 70-78.
- Dousti, M. R., Poirier, G. Y., Amjad, R. J., & de Camargo, A. S. (2016). Luminescence quenching versus enhancement in WO₃-NaPO₃ glasses doped with trivalent rare earth ions and containing silver nanoparticles. *Optical Materials*, 60, 331-340.
- Dousti, M. R., Sahar, M. R., Amjad, R. J., Ghoshal, S. K., & Awang, A. (2013). Surface enhanced Raman scattering and up-conversion emission by silver nanoparticles in erbium-zinc-tellurite glass. *Journal of Luminescence*, 143, 368-373.
- Duffy, J. A. (1989). Electronic polarizability and related properties of the oxide ion. *Physics and Chemistry of Glasses*, 30(1), 1-4.
- Duffy, J. A. (1993). A review of optical basicity and its applications to oxidic systems. *Geochimica et Cosmochimica Acta*, 57(16), 3961-3970.
- Duffy, J. A., & Ingram, M. D. (1971). Establishment of an optical scale for Lewis basicity in inorganic oxyacids, molten salts, and glasses. *Journal of the American Chemical Society*, 93(24), 6448-6454.
- Duffy, J. A., & Ingram, M. D. (1976). An interpretation of glass chemistry in terms of the optical basicity concept. *Journal of Non-Crystalline Solids*, 21(3), 373-410.
- Dult, M., Kundu, R. S., Murugavel, S., Punia, R., & Kishore, N. (2014). Conduction mechanism in bismuth silicate glasses containing titanium. *Physica B: Condensed Matter*, 452, 102-107.
- Dutton, W. A., & Cooper, W. C. (1966). The oxides and oxyacids of tellurium. Chemical Reviews, 66(6), 657-675.
- Duval, E., Boukenter, A., & Achibat, T. (1990). Vibrational dynamics and the structure of glasses. *Journal of Physics: Condensed Matter*, 2(51), 10227.
- Eevon, C., Halimah, M. K., Azmi, Z., & Azurahanim, C. (2016). Elastic properties of TeO₂-B₂O₃—ZnO-Gd₂O₃ glasses using non-destructive ultrasonic technique. *Chalcogenide Letters*, 13(6), 281-289.
- El-Damrawi, G., & El-Egili, K. (2001). Characterization of novel CeO₂–B₂O₃ glasses, structure and properties. *Physica B: Condensed Matter*, 299(1-2), 180-186.
- El-Fayoumi, M. A. K., & Farouk, M. (2009). Structural properties of Li–borate glasses doped with Sm³⁺ and Eu³⁺ ions. *Journal of Alloys and Compounds*, 482(1-2), 356-360.

- Elkhoshkhany, N. (2014). Optical Properties of WO₃-PbO Tellurite Glasses Doped with Rare Earths. *Journal of Chemistry and Chemical Engineering*, 8(1), 11.
- Elkhoshkhany, N., Abbas, R., & El-Mallawany, R. (2014). Thermal properties of quaternary TeO₂–ZnO–Nb₂O₅–Gd₂O₃ glasses. *Ceramics International*, 40(8), 11985-11994.
- Elkhoshkhany, N., Abbas, R., Gaafar, M. S., & El-Mallawany, R. (2015). Elastic properties of quaternaryTeO₂–ZnO–Nb₂O₅–Gd₂O₃ glasses. *Ceramics International*, 41(8), 9862-9866.
- Elkhoshkhany, N., El-Mallawany, R., & Syala, E. (2016). Mechanical and thermal properties of TeO₂-Bi₂O₃-V₂O₅-Na₂O-TiO₂ glass system. *Ceramics International*, 42(16), 19218-19224.
- Elliot, R. (1983). Eutectic Soldification Processing: Crystalline and Glassy Alloys. Butterworths & Company.
- El-Malak, N. A. (2002). Ultrasonic studies on irradiated sodium borate glasses. *Materials chemistry and physics*, 73(2-3), 156-161.
- El-Mallawany, R. (1992). Structural and vibrational investigations of thermal properties of tellurite glasses. *Journal of materials research*, 7(1), 224-228.
- El-Mallawany, R. (1995). Devitrification and vitrification of tellurite glasses. *Journal of Materials Science: Materials in Electronics*, 6(1), 1-3.
- El-Mallawany, R. (1998). Tellurite glasses part 1. Elastic properties. *Materials Chemistry and Physics*, 53(2), 93-120.
- El-Mallawany, R. (1999). Tellurite glasses: Part 2. Anelastic, phase separation, Debye temperature and thermal properties. *Materials chemistry and physics*, 60(2), 103-131.
- El-Mallawany, R. (2000). Structural interpretations on tellurite glasses. *Materials chemistry and physics*, 63(2), 109-115.
- El-Mallawany, R. (2002). Handbook of tellurite glasses, physical properties & data. *CRC Press, Boca Raton, FL.*
- El-Mallawany, R. A., & Saunders, G. A. (1987). Elastic behaviour under pressure of the binary tellurite glasses TeO 2-ZnCl 2 and TeO 2-WO 3. *Journal of Materials Science Letters*, 6(4), 443-446.
- El-Mallawany, R., (2002). Tellurite glasses handbook: Physical properties and data.
- El-Mallawany, R., Abdalla, M. D., & Ahmed, I. A. (2008). New tellurite glass: Optical properties. *Materials Chemistry and Physics*, 109(2-3), 291-296.

- El-Mallawany, R., Abousehly, A., & Yousef, E. (2000). Elastic moduli of tricomponent tellurite glasses TeO₂-V₂O₅-Ag₂O. *Journal of Materials Science Letters*, 19(5), 409-411.
- El-Moneim, A. A. (2001). Bond compression bulk modulus and Poisson's ratio of the polycomponent silicate glasses. *Materials Chemistry and Physics*, 70(3), 340-343.
- El-Moneim, A. A. (2003). Quantitative analysis of elastic moduli and structure of B₂O₃– SiO₂ and Na₂O–B₂O₃–SiO₂ glasses. *Physica B: Condensed Matter*, *325*, 319-332.
- El-Moneim, A. A. (2014). Correlation between acoustical and structural parameters in some oxide glasses. *Journal of Non-Crystalline Solids*, 405, 141-147.
- El-Moneim, A. A. (2018). BaF₂-contained tellurite glasses: Quantitative analysis and prediction of elastic properties and ultrasonic attenuation-Part II. *Journal of Fluorine Chemistry*, 212, 5-12.
- El-Moneim, A. A., Youssof, I. M., & El-Latif, L. A. (2006). Structural role of RO and Al₂O₃ in borate glasses using an ultrasonic technique. *Acta Materialia*, 54(14), 3811-3819.
- El-Moneim, A. A., Youssof, I. M., & Shoaib, M. M. (1998). Elastic moduli prediction and correlation in SiO₂-based glasses. *Materials Chemistry and Physics*, 52(3), 258-262.
- Elokr, M. M., & AbouDeif, Y. M. (2016). Optical, elastic properties and DTA of TNZP host tellurite glasses doped with Er³⁺ ions. *Journal of Molecular Structure*, *1108*, 257-262.
- Elokr, M. M., Metawe, F., El-Nahrawy, A. M., & Osman, B. A. (2016). Enhanced structural and spectroscopic properties of phosphosilicate nanostructures by doping with Al₂O₃ ions and calcinations temperature. *Int. J. Chem. Tech. Res*, 9, 228-34.
- Eraiah, B. (2006). Optical properties of samarium doped zinc-tellurite glasses. *Bulletin* of Materials Science, 29(4), 375-378.
- Eraiah, B. (2010). Optical properties of lead-tellurite glasses doped with samarium trioxide. *Bulletin of Materials Science*, *33*(4), 391-394.
- Ersundu, M. Ç., & Ersundu, A. E. (2016). Structure and crystallization kinetics of lithium tellurite glasses. *Journal of Non-Crystalline Solids*, 453, 150-157.
- Fajans, K., & Kreidl, N. J. (1948). Stability of lead glasses and polarization of ions. Journal of the American Ceramic Society, 31(4), 105-114.

Fanderlik, I. (1983). Optical properties of glass. North-Holland.

- Fang, Y., Hu, L., Liao, M., & Wen, L. (2007). Effect of bismuth oxide on the thermal stability and Judd–Ofelt parameters of Er³⁺/Yb³⁺ co-doped aluminophosphate glasses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 68(3), 542-547.
- Fares, H., Jlassi, I., Elhouichet, H., & Férid, M. (2014). Investigations of thermal, structural and optical properties of tellurite glass with WO₃ adding. *Journal of Non-Crystalline Solids*, 396, 1-7.
- Fares, H., Jlassi, I., Hraiech, S., Elhouichet, H., & Férid, M. (2014). Radiative parameters of Nd³⁺-doped titanium and tungsten modified tellurite glasses for 1.06 μm laser materials. *Journal of Quantitative Spectroscopy and Radiative Transfer*, 147, 224-232.
- Fayek, S. A., & Fadel, M. (2009). Crystallization kinetics for Sb added to GeSe chalcogenide glass. *Journal of Non-Oxide Glasses*, *1*, 239-246.
- Ferrer, N. Ú. R. I. A., & Sistach, M. C. (2007). FTIR technique used to study acidic paper manuscripts dating from the thirteenth to the sixteenth century from the Archive of the Crown of Aragón. *The Book and Paper Group Annual*, 26, 21-25.
- Fleet, M. E., Liu, X., & King, P. L. (2004). Accommodation of the carbonate ion in apatite: An FTIR and X-ray structure study of crystals synthesized at 2–4 GPa. American Mineralogist, 89(10), 1422-1432.
- Fortes, L. M., Santos, L. F., Gonçalves, M. C., & Almeida, R. M. (2003). Preparation and characterization of Er³⁺-doped TeO₂-based oxyhalide glasses. *Journal of Non-Crystalline Solids*, 324(1-2), 150-158.
- Gaafar, M. S., El-Aal, N. A., Gerges, O. W., & El-Amir, G. (2009a). Elastic properties and structural studies on some zinc-borate glasses derived from ultrasonic, FT-IR and X-ray techniques. *Journal of Alloys and Compounds*, 475(1-2), 535-542.
- Gaafar, M. S., El-Batal, F. H., El-Gazery, M., & Mansour, S. A. (2009b). Effect of doping by different transition metals on the acoustical properties of alkali borate glasses. *Acta Physica Polonica A*, 115(3), 671.
- Gaafar, M. S., Marzouk, S. Y., Zayed, H. A., Soliman, L. I., & El-Deen, A. S. (2013). Structural studies and mechanical properties of some borate glasses doped with different alkali and cobalt oxides. *Current Applied Physics*, 13(1), 152-158.
- Gedam, R. S., & Ramteke, D. D. (2012). Electrical and optical properties of lithium borate glasses doped with Nd₂O₃. *Journal of rare Earths*, *30*(8), 785-789.
- Gonella, F. (2015). Silver doping of glasses. Ceramics International, 41(5), 6693-6701.
- Gowda, V. V. (2015). Physical, thermal, infrared and optical properties of Nd³⁺ doped lithium–lead-germanate glasses. *Physica B: Condensed Matter*, 456, 298-305.

- Grelowska, I., Reben, M., Burtan, B., Sitarz, M., Cisowski, J., Knapik, A., & Dudek, M. (2016). Structural and optical study of tellurite-barium glasses. *Journal of Molecular Structure*, 1126, 219-225.
- Hager, I. Z., & El-Mallawany, R. (2010). Preparation and structural studies in the (70x) TeO 2-20WO 3-10Li 2 O-xLn 2 O 3 glasses. Journal of Materials Science, 45(4), 897-905.
- Hajer, S. S., Halimah, M. K., Azmi, Z., & Azlan, M. N. (2014). Optical properties of zinc-borotellurite doped samarium. *Chalcogenide Letters*, 11(11).
- Halimah, M. K., Chiew, W. H., Sidek, H. A. A., Daud, W. M., Wahab, Z. A., Khamirul, A. M., & Iskandar, S. M. (2014). Optical properties of lithium borate glass (Li₂O) x (B₂O₃). Sains Malaysiana, 43(6), 899-902.
- Halimah, M. K., Daud, W. M., Sidek, H. A. A., Zaidan, A. W., & Zainal, A. S. (2010). Optical properties of ternary tellurite glasses. *Materials Science-Poland*, 28(1), 173-180.
- Halimah, M. K., Hasnimulyati, L., Zakaria, A., Halim, S. A., Ishak, M., Azuraida, A., & Al-Hada, N. M. (2017). Influence of gamma radiation on the structural and optical properties of thulium-doped glass. *Materials Science and Engineering: B*, 226, 158-163.
- Hamza, A. M., Halimah, M. K., Muhammad, F. D., & Chan, K. T. (2019). Physical properties, ligand field and Judd-Ofelt intensity parameters of bio-silicate borotellurite glass system doped with erbium oxide. *Journal of Luminescence*, 207, 497-506.
- Hirashima, H., Kamimura, S., Muratake, R., & Yoshida, T. (1988). Preparation and physical properties of amorphous V₂O₅ containing TiO₂, Na₂O or Li₂O. *Journal of Non-Crystalline Solids*, *100*(1-3), 394-398.
- Hoffmann, K., & Hahn, D. (1974). Electron spin resonance of lattice defects in zinc oxide. *Physica Status Solidi* (*a*), 24(2), 637-648.
- Hoppe, H., Arnold, N., Meissner, D., & Sariciftci, N. S. (2004). Modeling of optical absorption in conjugated polymer/fullerene bulk-heterojunction plastic solar cells. *Thin Solid Films*, 451, 589-592.
- Hrubý, A. (1972). Evaluation of glass-forming tendency by means of DTA. *Czechoslovak Journal of Physics B*, 22(11), 1187-1193.
- Huang, C. H., McCaughan, L., & Gill, D. M. (1994). Evaluation of absorption and emission cross sections of Er-doped LiNbO/sub 3/for application to integrated optic amplifiers. *Journal of Lightwave Technology*, 12(5), 803-809.
- Huang, H., Polavarapu, L., Sichert, J. A., Susha, A. S., Urban, A. S., & Rogach, A. L. (2016). Colloidal lead halide perovskite nanocrystals:synthesis, optical properties and applications. NPG Asia Materials, 8(11), e328.

- Ibrahim, S., Abdel-Baki, M., & El-Diasty, F. (2012). Zinc borophosphate glasses for infrared-based optical applications. *Optical Engineering*, *51*(9), 093401.
- Inoue, T., Honma, T., Dimitrov, V., & Komatsu, T. (2010). Approach to thermal properties and electronic polarizability from average single bond strength in ZnO; Bi₂O₃; B₂O₃ glasses. *Journal of Solid State Chemistry*, 183(12), 3078-3085.
- Iskandar, S. M., Halimah, M. K., Daud, W. M., Sidek, H. A. A., & Zaman, M. K. (2010). Optical and structural properties of PbO-B₂O₃-TeO₂ glasses. *Solid State Sci. Technol*, 18, 84-90.
- Issa, S. A., Saddeek, Y. B., Tekin, H. O., Sayyed, M. I., & saber Shaaban, K. (2018). Investigations of radiation shielding using Monte Carlo method and elastic properties of PbO-SiO₂-B₂O₃-Na₂O glasses. *Current Applied Physics*, 18(6), 717-727.
- Jaba, N., Mermet, A., Duval, E., & Champagnon, B. (2005). Raman spectroscopy studies of Er³⁺-doped zinc tellurite glasses. *Journal of Non-Crystalline Solids*, 351(10-11), 833-837.
- Jaba, N., Mansour, H. B., Kanoun, A., Brenier, A., & Champagnon, B. (2009). Spectral broadening and luminescence quenching of 1.53 μm emission in Er³⁺-doped zinc tellurite glass. *Journal of Luminescence*, 129(3), 270-276.
- Jamalaiah, B. C., Kumar, J. S., Babu, A. M., Suhasini, T., & Moorthy, L. R. (2009). Photoluminescence properties of Sm3⁺ in LBTAF glasses. *Journal of Luminescence*, 129(4), 363-369.
- Jin, Z., Nie, Q., Xu, T., Dai, S., Shen, X., & Zhang, X. (2007). Optical transitions and upconversion luminescence of Er³⁺/Yb³⁺ codoped lead–zinc–tellurite oxide glass. *Materials Chemistry and Physics*, 104(1), 62-67.
- Jlassi, I., Elhouichet, H., Hraiech, S., & Ferid, M. (2012). Effect of heat treatment on the structural and optical properties of tellurite glasses doped erbium. *Journal of Luminescence*, 132(3), 832-840.
- Joraid, A. A., Alamri, S. N., Abu-Sehly, A. A., & Benghanem, M. (2012). Nonisothermal crystallisation kinetics of amorphous selenium prepared by high-energy ball milling: A comparison with the melt-quenching and thin-film techniques. *Journal of Non-Crystalline Solids*, *358*(10), 1268-1273.
- Jørgensen, C. K., & Reisfeld, R. (1983). Judd-Ofelt parameters and chemical bonding. *Journal of the Less Common Metals*, 93(1), 107-112.
- Joshi, C., Dwivedi, Y., & Rai, S. B. (2011). Structural and optical properties of Ho₂TeO₆ micro-crystals embedded in tellurite matrix. *Ceramics International*, *37*(7), 2603-2608.
- Judd, B. R. (1962). Optical absorption intensities of rare-earth ions. *Physical Review*, 127(3), 750.

- Kannappan, A. N., Thirumaran, S., & Palani, R. (2009). Elastic and mechanical properties of glass specimen by ultrasonic method. ARPN Journal of Engineering and Applied Sciences, 4(1), 27-31.
- Karmakar, S., Dasgupta, C., & Sastry, S. (2016). Short-time beta relaxation in glassforming liquids is cooperative in nature. *Physical Review Letters*, 116(8), 085701.
- Kaur, A., Khanna, A., González, F., Pesquera, C., & Chen, B. (2016). Structural, optical, dielectric and thermal properties of molybdenum tellurite and borotellurite glasses. *Journal of Non-Crystalline Solids*, 444, 1-10.
- Kaur, A., Khanna, A., Pesquera, C., González, F., & Sathe, V. (2010). Preparation and characterization of lead and zinc tellurite glasses. *Journal of Non-Crystalline Solids*, 356(18-19), 864-872.
- Kaur, N., & Khanna, A. (2014). Structural characterization of borotellurite and aluminoborotellurite glasses. *Journal of Non-Crystalline Solids*, 404, 116-123.
- Kesavulu, C. R., Kim, H. J., Lee, S. W., Kaewkhao, J., Wantana, N., Kothan, S., & Kaewjaeng, S. (2016). Influence of Er³⁺ ion concentration on optical and photoluminescence properties of Er³⁺-doped gadolinium-calcium silica borate glasses. *Journal of Alloys and Compounds*, 683, 590-598.
- Khafagy, A. H., El-Adawy, A. A., Higazy, A. A., El-Rabaie, S., & Eid, A. S. (2008). The glass transition temperature and infrared absorption spectra of: (70- x) TeO₂+ 15B₂O₃+ 15P₂O₅+ xLi₂O glasses. *Journal of Non-Crystalline Solids*, 354(14), 1460-1466.
- Kissinger, H. E. (1957). Reaction kinetics in differential thermal analysis. *Analytical chemistry*, 29(11), 1702-1706.
- Kumar, A. (2010). Preparation of Apatite-Wollastonite and Phlogophite Glass Ceramic and Study of Its Properties (Doctoral dissertation).
- Kumar, V., Sharma, S., Pandey, O. P., & Singh, K. (2010). Thermal and physical properties of 30SrO–40SiO₂–20B₂O₃–10A₂O₃ (A= La, Y, Al) glasses and their chemical reaction with bismuth vanadate for SOFC. *Solid State Ionics*, 181(1-2), 79-85.
- Kundu, R. S., Dhankhar, S., Punia, R., Sharma, S., & Kishore, N. (2013). ZnCl₂ Modified Physical and Optical Properties of Barium Tellurite Glasses. *Transactions of the Indian Ceramic Society*, 72(3), 206-210.
- Lafi, O. A., & Imran, M. M. (2011). Compositional dependence of thermal stability, glass-forming ability and fragility index in some Se-Te-Sn glasses. *Journal of Alloys and Compounds*, 509(16), 5090-5094.
- Lafi, O. A., Imran, M. M., & Ma'rouf, K. A. (2007). Glass transition activation energy, glass-forming ability and thermal stability of Se90In10– xSn_x (x= 2, 4, 6 and 8) chalcogenide glasses. *Physica B: Condensed Matter*, 395(1-2), 69-75.

- Lakshminarayana, G., Yang, R., Qiu, J. R., Brik, M. G., Kumar, G. A., & Kityk, I. V. (2008). White light emission from Sm³⁺/Tb³⁺ codoped oxyfluoride aluminosilicate glasses under UV light excitation. *Journal of Physics D: Applied Physics*, 42(1), 015414.
- Lambson, E. F., Saunders, G. A., Bridge, B., & El-Mallawany, R. A. (1984). The elastic behaviour of TeO₂ glass under uniaxial and hydrostatic pressure. *Journal of Non-Crystalline Solids*, 69(1), 117-133.
- Leciejewicz, J. (1961). The crystal structure of tellurium dioxide. A redetermination by neutron diffraction. Zeitschrift für Kristallographie-Crystalline Materials, 116(1-6), 345-353.
- Lewandowski*, J. J., Wang, W. H., & Greer, A. L. (2005). Intrinsic plasticity or brittleness of metallic glasses. *Philosophical Magazine Letters*, 85(2), 77-87.
- Lim, T. Y., Wagiran, H., Hussin, R., Hashim, S., & Saeed, M. A. (2014). Physical and optical properties of dysprosium ion doped strontium borate glasses. *Physica B: Condensed Matter*, 451, 63-67.
- Linda, D., Duclère, J. R., Hayakawa, T., Dutreilh-Colas, M., Cardinal, T., Mirgorodsky, A., & Thomas, P. (2013). Optical properties of tellurite glasses elaborated within the TeO₂-Tl₂O-Ag₂O and TeO₂-ZnO-Ag₂O ternary systems. *Journal of Alloys* and Compounds, 561, 151-160.
- Maheshvaran, K., Veeran, P. K., & Marimuthu, K. (2013). Structural and optical studies on Eu³⁺ doped boro-tellurite glasses. *Solid State Sciences*, *17*, 54-62.
- Mahraz, Z. A. S., Sahar, M. R., & Ghoshal, S. K. (2014). Band gap and polarizability of boro-tellurite glass: influence of erbium ions. *Journal of Molecular Structure*, 1072, 238-241.
- Mahraz, Z. A. S., Sahar, M. R., & Ghoshal, S. K. (2015). Enhanced luminescence from silver nanoparticles integrated Er³⁺-doped boro-tellurite glasses: Impact of annealing temperature. *Journal of Alloys and Compounds*, 649, 1102-1109.
- Mahraz, Z. A. S., Sahar, M. R., & Ghoshal, S. K. (2016). Impact of annealing time on silver nanoparticles growth assisted spectral features of erbium-zinc-boro-tellurite glass. *Journal of Luminescence*, 180, 1-7.
- Mahraz, Z. A. S., Sahar, M. R., & Ghoshal, S. K. (2017). Reduction of non-radiative decay rates in boro-tellurite glass via silver nanoparticles assisted surface plasmon impingement: Judd Ofelt analysis. *Journal of Luminescence*, 190, 335-343.
- Mahraz, Z. A. S., Sahar, M. R., Ghoshal, S. K., & Dousti, M. R. (2013). Concentration dependent luminescence quenching of Er3+-doped zinc boro-tellurite glass. *Journal of luminescence*, 144, 139-145.
- Makishima, A., & Mackenzie, J. D. (1973). Direct calculation of Young's moidulus of glass. *Journal of Non-Crystalline Solids*, 12(1), 35-45.

- Makishima, A., & Mackenzie, J. D. (1975). Calculation of bulk modulus, shear modulus and Poisson's ratio of glass. *Journal of Non-Crystalline solids*, *17*(2), 147-157.
- Mallur, S. B., Czarnecki, T., Adhikari, A., & Babu, P. K. (2015). Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses. *Materials Research Bulletin*, 68, 27-34.
- Malta, O. L., & Carlos, L. D. (2003). Intensities of 4f-4f transitions in glass materials. *Química Nova*, 26(6), 889-895.
- Mansour, E. (2012). FTIR spectra of pseudo-binary sodium borate glasses containing TeO₂. *Journal of Molecular Structure*, *1014*, 1-6.
- Mao, Zhaozhao, Jiao Duan, Xiaojie Zheng, Minghui Zhang, Liping Zhang, Hongyang Zhao, and Jianding Yu. "Study on optical properties of La₂O₃–TiO₂–Nb₂O₅ glasses prepared by containerless processing." *Ceramics International* 41 (2015): S51-S56.
- Marzouk, S. Y. (2010). The acoustic properties of borosilicate glass affected by oxide of rare earth gadolinium. *Physica B: Condensed Matter*, 405(16), 3395-3400.
- Marzouk, S. Y., & Azooz, M. A. (2012). Optical Properties of CeO ₂ Doped SiO ₂-Na ₂ O-CaO-P ₂O ₅ Glasses. *Silicon*, 4(3), 157-165.
- McCumber, D. E. (1964). Theory of phonon-terminated optical masers. *Physical Review*, 134(2A), A299.
- McGinley, A. (2000). *Producing sound waves: Discover! Sound*. Dayton: Milliken Publishing Company.
- Mesnaoui, M., Maazaz, M., Parent, C., Tanguy, B., & Le Flem, G. (1992). Spectroscopic properties of Ag⁺ions in phosphate glasses of NaPO₃- AgPO₃ system. *European Journal of Solid State and Inorganic Chemistry*, 29(6), 1001-1013.
- Miniscalco, W. J., & Quimby, R. S. (1991). General procedure for the analysis of Er ³⁺ cross sections. Optics letters, 16(4), 258-260.
- Mohamed, N. B., Yahya, A. K., Deni, M. S. M., Mohamed, S. N., Halimah, M. K., & Sidek, H. A. A. (2010). Effects of concurrent TeO2 reduction and ZnO addition on elastic and structural properties of (90– x) TeO₂–10Nb₂O₅–(x) ZnO glass. *Journal of Non-Crystalline Solids*, 356(33-34), 1626-1630.
- Mohan, S., & Thind, K. S. (2016). Investigation of luminescence and spectroscopic properties of Nd₃₊ ions in cadmium alkali borate glasses. *Optical Materials*, 57, 134-139.
- Mori, H., Kitami, T., & Sakata, H. (1994). Electrical conductivity of V₂O₅; Sb₂O₃; TeO₂ glasses. *Journal of Non-Crystalline Solids*, *168*(1-2), 157-166.

- Mott, N. F., & Davis, E. A. (1979). Electronic processes in non-crystalline materials, 2nd edn. Clarendon.
- Moustafa, S. Y., Sahar, M. R., & Ghoshal, S. K. (2017). Spectroscopic attributes of Er³⁺ ions in antimony phosphate glass incorporated with Ag nanoparticles: Judd-Ofelt analysis. *Journal of Alloys and Compounds*, *712*, 781-794.
- Nadia, S., & Afifi, H. A. (2009). Structure and ultrasonic properties of vanadium tellurite glasses containing copper oxide. *Archives of Acoustics*, *34*(4), 641-654.
- Nanda, K., Berwal, N., Kundu, R. S., Punia, R., & Kishore, N. (2015). Effect of doping of Nd³⁺ ions in BaO–TeO₂–B₂O₃ glasses: A vibrational and optical study. *Journal* of Molecular Structure, 1088, 147-154.
- Nasu, H., Matsushita, O., Kamiya, K., Kobayashi, H., & Kubodera, K. I. (1990). Third harmonic generation from Li₂O; TiO₂; TeO₂ glasses. *Journal of Non-Crystalline Solids*, 124(2-3), 275-277.
- Nazabal, V., Todoroki, S., Nukui, A., Matsumoto, T., Suehara, S., Hondo, T., & Cardinal, T. (2003). Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties. *Journal of Non-Crystalline Solids*, 325(1-3), 85-102.
- Neov, S., Gerasimova, I., Kozhukharov, V., & Marinov, M. (1980). The structure of glasses in the TeO 2-P 2 O 5 system. *Journal of Materials Science*, 15(5), 1153-1166.

Newman, J. (2010). Physics of the life sciences. Springer Science & Business Media.

- Nicklin, R. C., Johnstone, J. K., Barnes, R. G., & Wilder, D. R. (1973). Electron spin resonance of Gd³⁺ in glasses of the soda-silica-yttria system. *The Journal of Chemical Physics*, 59(4), 1652-1668.
- Nobarzad, E., & Keyvan, A. (2017). Influence of microstructure on susceptibility to weld defects in two high strength low alloy steels (Doctoral dissertation, École de technologie supérieure).
- Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M., & Hosono, H. (2003). Thinfilm transistor fabricated in single-crystalline transparent oxide semiconductor. *Science*, 300(5623), 1269-1272.
- Noorazlan, A. M., Kamari, H. M., Zulkefly, S. S., & Mohamad, D. W. (2013). Effect of erbium nanoparticles on optical properties of zinc borotellurite glass system. *Journal of Nanomaterials*, 2013, 168.
- Novatski, A., Steimacher, A., Medina, A. N., Bento, A. C., Baesso, M. L., Andrade, L. H. C., & Boulon, G. (2008). Relations among nonbridging oxygen, optical properties, optical basicity, and color center formation in CaO–MgO aluminosilicate glasses. *Journal of Applied Physics*, 104(9), 094910.

- Obayes, H. K., Wagiran, H., Hussin, R., & Saeed, M. A. (2016). Structural and optical properties of strontium/copper co-doped lithium borate glass system. *Materials & Design*, 94, 121-131.
- Ofelt, G. S. (1962). Intensities of crystal spectra of rare-earth ions. *The Journal of Chemical Physics*, 37(3), 511-520.
- Oliver, D. S. (1975). *The use of glass in engineering*. Oxford University Press for the Design Council, the British Standards Institution, and the Council of Engineering Institutions.
- Oo, H. M., Mohamed-Kamari, H., & Wan-Yusoff, W. M. D. (2012). Optical properties of bismuth tellurite based glass. *International journal of molecular sciences*, 13(4), 4623-4631.
- Pandarinath, M. A., Upender, G., Rao, K. N., & Babu, D. S. (2016). Thermal, optical and spectroscopic studies of boro-tellurite glass system containing ZnO. *Journal* of Non-Crystalline Solids, 433, 60-67.
- Pascuta, P., & Culea, E. (2008). FTIR spectroscopic study of some bis muth germanate glasses containing gadolinium ions. *Materials Letters*, 62(25), 4127-4129.
- Pascuta, P., Bosca, M., Borodi, G., & Culea, E. (2011). Thermal, structural and magnetic properties of some zinc phosphate glasses doped with manganese ions. *Journal of Alloys and Compounds*, 509(11), 4314-4319.
- Patel, A. T., & Pratap, A. (2012). Study of kinetics of glass transition of metallic glasses. Journal of Thermal Analysis and Calorimetry, 110(2), 567-571.
- Pavani, P. G., Sadhana, K., & Mouli, V. C. (2011). Optical, physical and structural studies of boro-zinc tellurite glasses. *Physica B: Condensed Matter*, 406(6-7), 1242-1247.
- Peng, S., Wu, L., Wang, B., Yang, F., Qi, Y., & Zhou, Y. (2015). Intense visible upconversion and energy transfer in Ho³⁺/Yb³⁺ codoped tellurite glasses for potential fiber laser. *Optical Fiber Technology*, 22, 95-101.
- Pérez-Castañeda, T., Rodríguez-Tinoco, C., Rodríguez-Viejo, J., & Ramos, M. A. (2014). Suppression of tunneling two-level systems in ultrastable glasses of indomethacin. *Proceedings of the National Academy of Sciences*, 111(31), 11275-11280.
- Plucinski, M., & Zwanziger, J. W. (2015). Topological constraints and the Makishima– Mackenzie model. *Journal of Non-Crystalline Solids*, 429, 20-23.
- Pynenkov, A. A., Firstov, S. V., Panov, A. A., Firstova, E. G., Nishchev, K. N., Bufetov, I. A., & Dianov, E. M. (2013). IR luminescence in bismuth-doped germanate glasses and fibres. *Quantum Electronics*, 43(2), 174.

- Qian, B., Liang, X., Yang, S., He, S., & Gao, L. (2012). Effects of lanthanum addition on the structure and properties of iron phosphate glasses. *Journal of Molecular Structure*, 1027, 31-35.
- Rajendran, V., Begum, A. N., Azooz, M. A., & El Batal, F. H. (2002). Microstructural dependence on relevant physical-mechanical properties on SiO₂-Na₂O-CaO-P₂O₅ biological glasses. *Biomaterials*, 23(21), 4263-4275.
- Rajendran, V., Palanivelu, N., Modak, D. K., & Chaudhuri, B. K. (2000). Ultrasonic investigation on ferroelectric BaTiO₃ Doped 80V₂O₅—20PbO oxide glasses. *Physica Status Solidi* (a), 180(2), 467-477.
- Rajesh, D., Ratnakaram, Y. C., & Balakrishna, A. (2013). Er3+-doped strontium lithium bismuth borate glasses for broadband 1.5 µm emission–Structural and optical properties. *Journal of Alloys and Compounds*, 563, 22-27.
- Rajyasree, C., & Rao, D. K. (2011). Spectroscopic investigations on alkali earth bismuth borate glasses doped with CuO. *Journal of Non-Crystalline Solids*, 357(3), 836-841.
- Rani, P. S., & Singh, R. (2013). Electron spin resonance and magnetization studies of ZnO–TeO₂–Fe₂O₃ glasses. *Journal of Physics and Chemistry of Solids*, 74(2), 338-343.
- Rasool, S. N., Jamalaiah, B. C., Suresh, K., Moorthy, L. R., & Jayasankar, C. K. (2017). Spectroscopic properties of Er3+-doped phosphate based glasses for broadband 1.54 µm emission. *Journal of Molecular Structure*, 1130, 837-843.
- Ravi, O., Dhoble, S. J., Ramesh, B., Devarajulu, G., Reddy, C. M., Linganna, K., & Raju, B. D. P. (2015). NIR fluorescence spectroscopic investigations of Er³⁺ions doped borate based tellurium calcium zinc niobium oxide glasses. *Journal of Luminescence*, 164, 154-159.
- Reddy, B. S., & Buddhudu, S. (2008). Optical Characterization of Nd ³⁺: Fluoro-Phospho-Borate Glasses. *Indian Journal of Physics*, 81, 871-883.
- Reddy, C. N., Viswanatha, R., Chethana, B. K., Gowda, V. V., & Rao, K. J. (2015).
 Fragility correlates thermodynamic and kinetic properties of glass forming liquids. *Materials Research Bulletin*, 63, 231-238.
- Redman, M. J., & Chen, J. H. (1967). Zinc tellurite glasses. *Journal of the American Ceramic Society*, 50(10), 523-525.
- Rivera-López, F., Babu, P., Jyothi, L., Rodríguez-Mendoza, U. R., Martín, I. R., Jayasankar, C. K., & Lavín, V. (2012). Er³⁺–Yb³⁺ codoped phosphate glasses used for an efficient 1.5 μm broadband gain medium. *Optical Materials*, *34*(8), 1235-1240.

- Rocherulle, J., Ecolivet, C., Poulain, M., Verdier, P., & Laurent, Y. (1989). Elastic moduli of oxynitride glasses: extension of Makishima and Mackenzie's theory. *Journal of Non-Crystalline Solids*, 108(2), 187-193.
- Rolli, R., Montagna, M., Chaussedent, S., Monteil, A., Tikhomirov, V. K., & Ferrari, M. (2003). Erbium-doped tellurite glasses with high quantum efficiency and broadband stimulated emission cross section at 1.5 μm. *Optical Materials*, 21(4), 743-748.
- Rose Leena, T., & Sheenu, T. (2013). Synthesis and characterization of Tellurium oxide glasses for photonic applications (Doctoral dissertation, Cochin University of Science and Technology).
- Rosmawati, S., Sidek, H. A. A., Zainal, A. T., & Zobir, H. M. (2008). Effect of zinc on the physical properties of tellurite glass. J. Appl. Sci, 8, 1956-1961.
- Rowell, N. L., Lockwood, D. J., Karmous, A., Szkutnik, P. D., Berbezier, I., & Ronda, A. (2008). Photoluminescence of Ge nanocrystals self-assembled on SiO₂. Superlattices and Microstructures, 44(4-5), 305-314.
- Saddeek, Y. B. (2004). Ultrasonic study and physical properties of some borate glasses. *Materials Chemistry and Physics*, 83(2-3), 222-228.
- Saddeek, Y. B. (2005). Elastic properties of Gd³⁺-doped tellurovanadate glasses using pulse-echo technique. *Materials Chemistry and Physics*, 91(1), 146-153.
- Saddeek, Y. B. (2012). Correlation between the dimensionality and the constants of elasticity of rare-earth doped borate glasses. *Glass Physics and Chemistry*, 38(4), 373-378.
- Saddeek, Y. B., & El Latif, L. A. (2004). Effect of TeO₂ on the elastic moduli of sodium borate glasses. *Physica B: Condensed Matter*, *348*(1-4), 475-484.
- Saddeek, Y. B., Aly, K. A., & Bashier, S. A. (2010). Optical study of lead borosilicate glasses. *Physica B: Condensed Matter*, 405(10), 2407-2412.
- Saddeek, Y. B., Azooz, M. A., & Saddek, A. B. (2015). Ultrasonic investigations of some bismuth borate glasses doped with Al ₂ O ₃. *Bulletin of Materials Science*, *38*(1), 241-246.
- Saddeek, Y. B., El-Maaref, A. A., Moustafa, M. G., El-Okr, M. M., & Showahy, A. A. (2018). A comprehensive study of electrical and optical properties of phosphate oxide-based glasses doped with Er 2 O 3. *Journal of Materials Science: Materials in Electronics*, 29(12), 9994-10007.
- Saddeek, Y. B., Shaaban, E. R., & Moustafa, H. M. (2008). Spectroscopic properties, electronic polarizability, and optical basicity of Bi₂O₃–Li₂O–B₂O₃ glasses. *Physica B: Condensed Matter*, 403(13-16), 2399-2407.

- Sahar, M. R., Sulhadi, K., & Rohani, M. S. (2008). The preparation and structural studies in the (80- x) TeO₂-20ZnO-(x) Er₂O₃ glass system. *Journal of Non-Crystalline Solids*, *354*(12-13), 1179-1181.
- Sakida, S., Hayakawa, S., & Yoko, T. (1999a). Part 1. 125Te NMR study of tellurite crystals. *Journal of Non-Crystalline Solids*, 243(1), 1-12.
- Sakida, S., Hayakawa, S., & Yoko, T. (1999b). Part 2.125 Te NMR study of M₂O–TeO₂ (M=Li, Na, K, Rb and Cs) glasses. *Journal of Non-Crystalline Solids*, 243(1), 13-25.
- Sasikala, T., Moorthy, L. R., Pavani, K., & Chengaiah, T. (2012). Spectroscopic properties of Er³⁺ and Ce³⁺ co-doped tellurite glasses. *Journal of Alloys and Compounds*, 542, 271-275.
- Sasmal, N., Garai, M., Molla, A. R., Tarafder, A., Singh, S. P., & Karmakar, B. (2014). Effects of lanthanum oxide on the properties of barium-free alkaline-earth borosilicate sealant glass. *Journal of non-crystalline solids*, 387, 62-70.
- Savikin, A. P., Grishin, I. A., Sharkov, V. V., & Budruev, A. V. (2013). Luminescence of erbium ions in tellurite glasses. *Journal of Solid State Chemistry*, 207, 80-86.
- Sekiya, T., Mochida, N., Ohtsuka, A., & Tonokawa, M. (1992). Raman spectra of MO_{1/2}TeO₂ (M= Li, Na, K, Rb, Cs and Tl) glasses. *Journal of Non-Crystalline Solids*, 144, 128-144.
- Sennaroglu, A., Kabalci, I., Kurt, A., Demirbas, U., & Ozen, G. (2006). Spectroscopic properties of Tm³⁺: TeO₂–PbF₂ glasses. *Journal of luminescence*, *116*(1-2), 79-86.
- Šesták, J., Queiroz, C. A., Mareš, J. J., & Holeček, M. (2011). Some Aspects of Vitrification, Amorphisation and Disordering and the Generated Extent of Nano-Crystallinity. In *Glassy, Amorphous and Nano-Crystalline Materials* (pp. 59-75). Springer, Dordrecht.
- Shelby, J. E. (2005). *Introduction to glass science and technology*. Royal Society of Chemistry.
- Shi, Y., Luo, J., Yuan, F., & Huang, L. (2014). Intrinsic ductility of glassy solids. *Journal of Applied Physics*, 115(4), 043528.
- Sidebottom, D. L., Hruschka, M. A., Potter, B. G., & Brow, R. K. (1997). Structure and optical properties of rare earth-doped zinc oxyhalide tellurite glasses. *Journal of Non-Crystalline Solids*, 222, 282-289.
- Sidek, H. A. A., Rosmawati, S., Azmi, B. Z., & Shaari, A. H. (2013). Effect of ZnO on the thermal properties of tellurite glass. *Advances in Condensed Matter Physics*, 2013.

- Sidek, H. A. A., Rosmawati, S., Talib, Z. A., Halimah, M. K., & Daud, W. M. (2009). Synthesis and optical properties of ZnO-TeO 2 glass system. *American Journal of Applied Sciences*, 6(8), 1489.
- Sidhu, R., Duan, N., Campbell, J. C., & Holmes, A. L. (2005). A long-wavelength photodiode on InP using lattice-matched GaInAs-GaAsSb type-II quantum wells. *IEEE Photonics Technology Letters*, 17(12), 2715-2717.
- Sidkey, M. A., El Mallawany, R. A., Abousehly, A. A., & Saddeek, Y. B. (2002). Relaxation of longitudinal ultrasonic waves in some tellurite glasses. *Materials Chemistry and Physics*, 74(2), 222-229.
- Sidkey, M. A., El Mallawany, R., Nakhla, R. I., & El-Moneim, A. A. (1997). Ultrasonic studies of (TeO₂) 1-x-(V₂O₅) x glasses. *Journal of non-crystalline solids*, 215(1), 75-82.
- Sidkey, M. A., El-Mallawany, R., Nakhla, R. I., & Abd El-Moneim, A. (1997). Ultrasonic attenuation at low temperature of TeO₂-V₂O₅ glasses. *Physica status* solidi (a), 159(2), 397-404.
- Silins, A. R. (1995). Defects in glasses. *Radiation effects and defects in solids*, 134(1-4), 7-10.
- Singh, G. P., & Singh, D. P. (2011). Spectroscopic study of ZnO doped CeO₂–PbO– B₂O₃ glasses. *Physica B: Condensed Matter*, 406(18), 3402-3405.
- Singh, S., Kalia, G., & Singh, K. (2015). Effect of intermediate oxide (Y₂O₃) on thermal, structural and optical properties of lithium borosilicate glasses. *Journal of Molecular Structure*, 1086, 239-245.
- Soliman, A. (2008). XRD, DTA and density studies lithium borate glasses containing copper. *Armenian Journal of Physics*, 1(3), 188-197.
- Soltani, I., Hraiech, S., Horchani-Naifer, K., Elhouichet, H., & Férid, M. (2015). Effect of silver nanoparticles on spectroscopic properties of Er³⁺ doped phosphate glass. *Optical Materials*, *46*, 454-460.
- Soltani, I., Hraiech, S., Horchani-Naifer, K., Elhouichet, H., Gelloz, B., & Férid, M. (2016). Growth of silver nanoparticles stimulate spectroscopic properties of Er³⁺ doped phosphate glasses: Heat treatment effect. *Journal of Alloys and Compounds*, 686, 556-563.
- Souri, D. (2010). Small polaron hopping conduction in tellurium based glasses containing vanadium and antimony. *Journal of Non-Crystalline Solids*, 356(41-42), 2181-2184.
- Souri, D., & Salehizadeh, S. A. (2009). Effect of NiO content on the optical band gap, refractive index, and density of TeO₂–V₂O₅–NiO glasses. *Journal of Materials Science*, 44(21), 5800-5805.

- Sreekanth Chakradhar, R. P., Lakshmana Rao, J., Sivaramaiah, G., & Gopal, N. O. (2005). Chromium ions in alkali lead borotellurite glasses–An EPR and optical study. *Physica status solidi* (b), 242(14), 2919-2929.
- Sreenivasulu, V., Upender, G., Mouli, V. C., & Prasad, M. (2015). Structural, thermal and optical properties of TeO2–ZnO–CdO–BaO glasses doped with VO²⁺. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 148, 215-222.
- Srivastava, A. K., & Pyare, R. (2012). Characterization of CuO substituted 45S5 bioactive glasses and glass-ceramics. *International Journal of Scientific & Technology Research*, 1(2), 28-41.
- Stachurski, Z. H. (2011). On structure and properties of amorphous materials. *Materials*, 4(9), 1564-1598.
- Subramanian, A. Z., Murugan, G. S., Zervas, M. N., & Wilkinson, J. S. (2012). Spectroscopy, Modeling, and Performance of Erbium-Doped Ta₂O₅ Waveguide Amplifiers. *Journal of Lightwave Technology*, 30(10), 1455-1462.
- Sumalatha, B., Omkaram, I., Rao, T. R., & Raju, C. L. (2013). The structural, optical and magnetic parameter of manganese doped strontium zinc borate glasses. *Physica B: Condensed Matter*, 411, 99-105.
- Sun, J., Nie, Q., Wang, X., Dai, S., Xu, T., & Wang, G. (2011). Glass formation and properties of Ge–Te–Bil₃ far infrared transmitting chalcohalide glasses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5), 904-908.
- Sun, Y., Sulhoff, J. W., Srivastava, A. K., Zyskind, J. L., Wolf, C., Strasser, T. A., & Zhou, J. (1997, July). Ultra wide band erbium-doped silica fiber amplifier with 80 nm of bandwidth. In *Optical Amplifiers and Their Applications* (p. FAW20). Optical Society of America.
- Suthanthirakumar, P., Karthikeyan, P., Manimozhi, P. K., & Marimuthu, K. (2015). Structural and spectroscopic behavior of Er³⁺/Yb³⁺ co-doped boro-tellurite glasses. *Journal of Non-Crystalline Solids*, *410*, 26-34.
- Tanabe, S., Ohyagi, T., Soga, N., & Hanada, T. (1992). Compositional dependence of Judd-Ofelt parameters of Er ³⁺ ions in alkali-metal borate glasses. *Physical Review B*, 46(6), 3305.
- Tanaka, K., Yoko, T., Kamiya, K., Yamada, H., & Sakka, S. (1991). Properties of oxybromide tellurite glasses in the system LiBr; Li₂O; TeO₂. Journal of noncrystalline solids, 135(2-3), 211-218.

Tauc, J., & Abeles, F. Optical Properties of Solids. 1972. North-Holland, Amsterdam.

Tauc, J., & Menth, A. (1972). States in the gap. Journal of non-crystalline solids, 8, 569-585.

- Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical properties and electronic structure of amorphous germanium. *Physica status solidi* (b), 15(2), 627-637.
- Ter-Mikirtychev, V. V. (2014). Fundamentals of fiber lasers and fiber amplifiers. Springer.
- Ter-Mikirtychev, V., & Ter-Mikirtychev, V. (2014). Optical properties and optical spectroscopy of rare earth ions in solids. *Fundamentals of Fiber Lasers and Fiber Amplifiers*, 7-26.
- Thorbahn, J. G., & Zwanziger, J. W. (2013). Compositional dependence of the stressoptic response in zinc tellurite glasses. *Journal of Non-Crystalline Solids*, 381, 48-53.
- Tian, Y., Li, B., Chen, R., Xia, J., Jing, X., Zhang, J., & Xu, S. (2016). Thermal stability and 2.7 μm spectroscopic properties in Er³⁺ doped tellurite glasses. *Solid State Sciences*, 60, 17-22.
- Umair, M. M., & Yahya, A. K. (2013). Elastic and structural changes of xNa₂O-(35- x) V₂O₅-65TeO₂ glass system with increasing sodium. *Materials Chemistry and Physics*, 142(2-3), 549-555.
- Upender, G., Ramesh, S., Prasad, M., Sathe, V. G., & Mouli, V. C. (2010). Optical band gap, glass transition temperature and structural studies of (100– 2x) TeO₂– xAg₂O–xWO₃ glass system. *Journal of Alloys and Compounds*, 504(2), 468-474.
- Usman, A., Halimah, M. K., Latif, A. A., Muhammad, F. D., & Abubakar, A. I. (2018). Influence of Ho³⁺ ions on structural and optical properties of zinc borotellurite glass system. *Journal of Non-Crystalline Solids*, 483, 18-25.
- Varshneya, A. K. (1994). Fundamentals of inorganic glasses, Acad. Press, New York.
- Venkateswarlu, M., Mahamuda, S., Swapna, K., Prasad, M. V. V. K. S., Rao, A. S., Babu, A. M., & Prakash, G. V. (2015). Spectroscopic studies of Nd³⁺ doped lead tungsten tellurite glasses for the NIR emission at 1062 nm. *Optical Materials*, 39, 8-15.
- Vilgis, T. A. (1993). Strong and fragile glasses: A powerful classification and its consequences. *Physical Review B*, 47(5), 2882.
- Vogel, W., Kreidl, N. J., & Lense, E. (1985). Chemistry of glass.
- Walter, G., Hoppe, U., Vogel, J., Carl, G., & Hartmann, P. (2004). The structure of zinc polyphosphate glass studied by diffraction methods and 31P NMR. *Journal of Non-Crystalline Solids*, 333(3), 252-262.
- Wang, J. S., Vogel, E. M., Snitzer, E., Jackel, J. L., Da Silva, V. L., & Silberberg, Y. (1994). 1.3 µm emission of neodymium and praseodymium in tellurite-based glasses. *Journal of Non-Crystalline Solids*, *178*, 109-113.

- Wang, Y., Dai, S., Chen, F., Xu, T., & Nie, Q. (2009). Physical properties and optical band gap of new tellurite glasses within the TeO₂–Nb₂O₅–Bi₂O₃ system. *Materials Chemistry and Physics*, 113(1), 407-411.
- Xu, S., Yang, Z., Dai, S., Yang, J., Hu, L., & Jiang, Z. (2003). Spectral properties and thermal stability of Er³⁺-doped oxyfluoride silicate glasses for broadband optical amplifier. *Journal of Alloys and Compounds*, 361(1-2), 313-319.
- Xu, T., Zhang, X., Dai, S., Nie, Q., Shen, X., & Zhang, X. (2007). Effect of SiO2 content on the thermal stability and spectroscopic properties of Er³⁺/Yb³⁺ co-doped tellurite borate glasses. *Physica B: Condensed Matter*, 389(2), 242-247.
- Yakhkind, A. K. (1966). Tellurite glasses. Journal of the American Ceramic society, 49(12), 670-675.
- Yamane, M., & Asahara, Y. (2000). Glasses for photonics. Cambridge University Press.
- Yin, D., Qi, Y., Peng, S., Zheng, S., Chen, F., Yang, G. & Zhou, Y. (2014). Er³⁺/Tm³⁺ codoped tellurite glass for blue upconversion—Structure, thermal stability and spectroscopic properties. *Journal of Luminescence*, 146, 141-149.
- Yousef, B. A., Elsheikh, M. H., Sabri, M. F., Aljibori, H. S., & Said, S. M. (2012). Effect of Buckling on Glass Fiber/Epoxy Plate. *International Journal of Engineering Research and Development*, 5(5), 60-68.
- Yousef, E. S. (2013). Er³⁺ ions doped tellurite glasses with high thermal stability, elasticity, absorption intensity, emission cross section and their optical application. *Journal of Alloys and Compounds*, *561*, 234-240.
- Zachariasen, W. H. (1932). The atomic arrangement in glass. *Journal of the American Chemical Society*, 54(10), 3841-3851.
- Zaid, M. H. M., Matori, K. A., Quah, H. J., Lim, W. F., Sidek, H. A. A., Halimah, M. K., & Wahab, Z. A. (2015). Investigation on structural and optical properties of SLS–ZnO glasses prepared using a conventional melt quenching technique. *Journal of Materials Science: Materials in Electronics*, 26(6), 3722-3729.
- Zaitizila, I., Halimah, M. K., Muhammad, F. D., & Nurisya, M. S. (2018). Influence of manganese doping on elastic and structural properties of silica borotellurite glass. *Journal of Non-Crystalline Solids*, 492, 50-55.
- Zamyatin, O. A., Plotnichenko, V. G., Churbanov, M. F., Zamyatina, E. V., & Karzanov, V. V. (2018). Optical properties of zinc tellurite glasses doped with Cu²⁺ ions. *Journal of Non-Crystalline Solids*, 480, 81-89.
- Zhang, D. L., Qi, L., Hua, P. R., Yu, D. Y., Vallés, J. A., & Pun, E. Y. B. (2011). Emission and absorption cross section spectra of Er ³⁺ in LiNbO 3 crystak codoped with indium. *Journal of Materials Research*, 26(10), 1316-1325.

- Zhang, L., Peng, M., Dong, G., & Qiu, J. (2012). An investigation of the optical properties of Tb³⁺-doped phosphate glasses for green fiber laser. *Optical Materials*, 34(7), 1202-1207.
- Zhang, Z., Wang, R. J., Xia, L., Wei, B. C., Pan, M. X., & Wang, W. H. (2003). Elastic behaviour and microstructural characteristics of Nd₆₀Al₁₀Fe₂₀Co₁₀ bulk metallic glass investigated by ultrasonic measurement under pressure. *Journal of Physics: Condensed Matter*, 15(25), 4503.
- Zhao, X., Wang, X., Lin, H., & Wang, Z. (2007). Correlation among electronic polarizability, optical basicity and interaction parameter of Bi₂O₃-B₂O₃ glasses. *Physica B: Condensed Matter*, 390(1-2), 293-300.
- Zhao, Z. F., Wen, P., Shek, C. H., & Wang, W. H. (2007). Measurements of slow β-relaxations in metallic glasses and supercooled liquids. *Physical Review B*, 75(17), 174201.