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Zinc oxide nanoparticles (ZnO NPs) are widely applied in various industrial products such 

as cosmetics, pharmaceutical, and rubber production. However, this nanoparticle is 

classified as extremely toxic for the aquatic environment, particularly fish. Moreover, to 

date, there have been no systematic studies of the toxicity of ZnO NPs to the same species 

of organism in saltwater versus freshwater conditions, or during graded salinity changes. 

The objectives of this study are 1) to determine the median lethal concentration (LC50) of 

ZnO NPs for the embryos of Javanese medaka (Oryzias javanicus) in different types of 

water (ultra-pure, deionized and dechlorinated tap water), 2) to evaluate developmental 

toxicity of ZnO NPs by chronic exposure on the embryo of Javanese medaka, and 3) to 

assess the interactive effects of salinity and ZnO NPs by chronic exposure on the embryo 

of Javanese medaka. The experiments were conducted in a completely randomized design 

with three replicates for each concentration. The acute toxicity tests were conducted to 

determine the 96 h median concentration (LC50) of ZnO NPs for Javanese medaka 

embryos in different types of water. Results demonstrated the 96 h LC50 of ZnO NPs for 

Javanese medaka embryos were determined 0.6438 mg/L, 1.333 mg/L, and 2.251 mg/L 

in ultra-pure, deionize, and dechlorinated tap water, respectively. Chronic exposure of 

ZnO NPs on Javanese medaka’s embryos at concentration of 0-25 µg/L was also 

conducted for 21 days. The heart rate of exposed Javanese medaka embryos increased as 

the concentration of ZnO NPs increased and showed significantly higher heart rate when 

it compared with control at 5, 8 and 11 dpe. In general, the mortality of embryos increased 

and the hatching rates were decreased as the concentration of ZnO NPs were increased. 

Also, series of abnormalities such as low pigmentation, fin rot, spinal deformities, cranial 

oedema, yolk sac oedema, precordial oedema, and cranial facial were observed in 

treatment groups. Javanese medaka embryos were also exposed to 25, 50, and 100 µg/L 

of ZnO NPs in two different salinity levels (5 and 18 ppt) in this study. The results showed 

that the toxicity of ZnO NPs on Javanese medaka embryos decreased as salinity of 
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suspension increased. For instance, in contrast to control, exposed embryos to ZnO NPs 

at 5 ppt showed significantly higher heart rates to 25, 50 and 100 µg/L of ZnO NPS at 5, 

8, and 11 dpe. However, at 18 ppt significantly lower heart rate to 25, 50 and 100 µg/L of 

ZnO NPs were only observed at 5 dpe. In addition, mortality of exposed Javanese medaka 

embryos were increased by increasing concentration of ZnO NPs at both salinity level but 

in contrast to control, significantly higher mortality were observed at 5 ppt at the end of 

the experiment. Moreover, hatching of exposed embryos decreased as the concentration 

of ZnO NPs increased at both salinity level. Although, only significantly lower hatching 

rate were observed at 5 ppt when it compared to control. Furthermore, abnormalities such 

as low pigmentation, oedema, and tail malformation were observed in treatment groups 

at both salinity levels throughout the experiment, but abnormalities were more obvious at 

5 ppt compared to 18 ppt. This study has revealed that ZnO NPs were extremely toxic to 

the embryo of Javanese medaka in different types of water, and there was a strong 

correlation between toxicity of ZnO NPs and salinity of suspension. The finding of this 

study can strengthen the creation of Javanese medaka as a model organism for tropical 

areas in aquatic nanoecotoxicological studies. Furthermore, the LC50 value is a valuable 

criterion for nanoecotoxicity; it is not a representative concentration of contaminants in 

aquatic environments, but it is essential for indicating the toxicity of certain pollutants. 

Although the concentrations of ZnO NPs in Malaysia aquatic ecosystem is not yet 

reported, the result of this showed that this hazardous chemical has the potential to have 

significant impacts on aquatic ecosystems and its living organisms even at environmental 

relevant concentration.  
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Nanopartikel zink oksida (ZnO NP) telah digunakan secara meluas dalam pelbagai 

produk perindustrian seperti pengeluaran produk kosmetik, farmaseutikal dan getah. 

Walau bagaimanapun, nanopartikel ini telah diklasifikasikan sebagai  sangat toksik pada 

persekitaran akuatik, terutamanya kepada ikan. Selain itu, sehingga kini, masih belum ada 

kajian sistematik mengenai ketoksikan ZnO NP terhadap spesies organisma yang sama 

dalam keadaan air masin berbanding air tawar, atau semasa perubahan perbezaan 

kemasinan secara berperingkat. Objektif kajian ini adalah 1) untuk menentukan median 

kepekatan kematian (LC50) bagi ZnO NP terhadap embrio Jawa medaka (Oryzias 

javanicus) dalam jenis air berbeza (ultra-tulen, ternyahion dan air paip ternyahklorin), 2) 

untuk menilai ketoksikan pengembangan ZnO NP melalui pendedahan kronik terhadap 

embrio Jawa medaka, dan 3) untuk menilai kesan interaktif kemasinan dan ZnO NP 

melalui pendedahan kronik terhadap Jawa embrio medaka. Eksperimen telah dijalankan 

dalam reka bentuk rawak dengan tiga ulangan untuk setiap kepekatan. Ujian ketoksikan 

akut dilakukan untuk menentukan kepekatan median kematian (LC50) 96 jam ZnO NP 

pada embrio Jawa medaka dalam pelbagai jenis air berbeza. Keputusan menunjukkan 96 

jam LC50 ZnO NP pada embrio Jawa medaka ditentukan masing-masing pada 0.6438 

mg/L, 1.333 mg/L dan 2.251 mg/L dalam air ultratulen, air ternyahion, dan air paip 

ternyahklorin. Pendedahan kronik ZnO NP pada embrio Jawa medaka pada kepekatan 0-

25 µg/L juga dijalankan selama 21 hari. Kelajuan jantung embrio ikan medaka Jawa telah 

meningkat apabila kepekatan ZnO NPs meningkat dan keputusan telah menunjukkan 

peningkatan kelajuan jantung yang signifikan apabila dibandingkan dengan kawalan pada 

5, 8 dan 11 hari selepas pendedahan (dpe). Secara amnya, kematian embrio meningkat 

dan kadar penetasan menurun apabila kepekatan NP ZnO meningkat. Selain itu, siri 

keabnormalan seperti pigmentasi rendah, reput sirip, kecacatan tulang belakang, edema 

tengkorak, edema kantung kuning telur, edema prekordial dan kranial diperhatikan dalam 

kumpulan rawatan. Embrio Jawa medaka juga didedahkan kepada 25, 50, dan 100 µg/L 

NP ZnO dalam dua tahap kemasinan yang berbeza (5 dan 18 ppt) dalam kajian ini. 

Keputusan menunjukkan ketoksikan ZnO NPs pada embrio Jawa medaka menurun 
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apabila kemasinan meningkat. Sebagai contoh, berbanding dengan kawalan, embrio yang 

terdedah kepada ZnO NPs pada 5 ppt menunjukkan kadar denyutan jantung yang jauh 

lebih tinggi kepada 25, 50 dan 100 µg/L ZnO NPS pada 5, 8, dan 11 hari selepas 

pendedahan. Walau bagaimanapun, pada 18 ppt, kadar denyutan jantung yang lebih 

rendah dengan ketara kepada 25, 50 dan 100 µg/L NP ZnO hanya diperhatikan pada 5 

hari selepas pendedahan. Di samping itu, kematian embrio Jawa medaka yang terdedah 

telah meningkat dengan meningkatkan kepekatan ZnO NP pada kedua-dua tahap 

kemasinan tetapi berbeza dengan kawalan, kadar kematian yang jauh lebih tinggi 

diperhatikan pada 5 ppt pada akhir eksperimen. Selain itu, penetasan embrio terdedah 

menurun apabila kepekatan ZnO NP meningkat pada kedua-dua tahap kemasinan. 

Namun, hanya kadar penetasan yang jauh lebih rendah diperhatikan pada 5 ppt apabila 

dibandingkan dengan kawalan. Tambahan pula, keabnormalan seperti pigmentasi rendah, 

edema dan kecacatan ekor diperhatikan dalam kumpulan rawatan pada kedua-dua tahap 

kemasinan sepanjang eksperimen, tetapi keabnormalan lebih jelas pada 5 ppt berbanding 

18 ppt. Kajian ini telah mendedahkan bahawa ZnO NP adalah sangat toksik kepada 

embrio Jawa medaka dalam pelbagai jenis air, dan terdapat korelasi yang kuat antara 

ketoksikan ZnO NP dan kemasinan. Dapatan kajian ini dapat membuktikan Jawa medaka 

sebagai model organisma untuk kawasan tropika dalam kajian nanoekotoksokologi 

akuatik. Tambahan pula, nilai LC50 adalah kriteria yang bernilai untuk 

nanoekotoksikologi; ia bukanlah kepekatan wakil pencemar dalam persekitaran akuatik, 

tetapi ia adalah penting untuk menunjukkan ketoksikan bahan pencemar tertentu. 

Walaupun kepekatan NP ZnO di ekosistem akuatik Malaysia masih belum dilaporkan 

secara terperinci, keputusan ini menunjukkan bahawa bahan kimia berbahaya ini 

mempunyai potensi untuk memberi kesan yang ketara ke atas ekosistem akuatik dan 

organisma hidupnya walaupun pada kepekatan yang berkaitan dengan persekitarannya. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

1.1 General introduction 

 

 

Currently, several dangerous chemicals are considered a global threat to humans, other 

organisms and also the environment itself. Nevertheless, from time to time, the world is 

constantly generating and introducing large amounts of chemical substances into the 

environment. At the same time, the effects on organisms and the environment of these 

substances are not well known. Among evolving chemicals, nanoparticles (NPs) are one 

of those which are described as a particle with at least one dimension between 1 and 100 

nm with different characteristics from bulk materials (Miao et al., 2010), and 

nanotechnology is known as the use of these materials (Patibandla et al., 2018). In 

scientific writing, the word nano, comes from the Greek nanos, which means dwarf, is 

becoming more prevalent. Nano is also commonly used as an adjective to denote objects, 

systems, or phenomena that have properties resulting from nano-meter size (one-

billionthe of a meter or 10-9) structure (Buzea et al., 2007). Nanotechnology has recently 

developed as a rapidly growing market with efficient effects on major economic sectors 

with novel and unique properties that have been used in a diverse group of consumer 

goods such as agriculture, cosmetics, electronics, textiles, and pharmaceuticals (Kahru et 

al., 2010; Li et al., 2013; Rajput 2018). Based on the core material, NPs can categorize 

through inorganic, organic, carbon based and composite based NPs (Rajput et l., 2018).  

In recent years, the production and distribution of NPs have gradually increased. 

According to BCC Research (2019), commercial production of NPs is estimated to 

increase unitary from approximately 223,060 metric tons in 2014 to approximately 

584,984 metric tons in 2019, with a compound annual growth rate of 21.1% from 2014 to 

2019. Meanwhile, in 2017 the global market for nanoparticles was $2.0 billion and is 

expected to raise $7.3 billion by 2022. One of the important groups of these new materials 

are metallic NPs (Shaw et al., 2011), and have been widely implemented and monitored 

for their toxic effects on the activity, abundance, and diversity of living organisms and 

due to their antimicrobial activity they have been used as biocides to inhibit or limit the 

growth of microorganisms (Rajput et al., 2018). Besides metallic NPs, metal oxide NPs 

(MeO-NPs) are also widely used and implemented in commercial and industrial materials. 

Although bulk metal oxide products also produce massively in a wide range of 

commercial and industrial products.  

 

 

Among several NPs, zinc oxide nanoparticles (ZnO NPs) are known as one of the most 

efficiently used in the nano-scale range with a wide bandgap and large excitonic binding 

energy (Sabir et al., 2014), high stability, anticorrosion and photo-catalytic properties 

(Hao et al., 2013), non-migratory, fluorescent, piezoelectric, absorptive, and scatters 

ultraviolet light (Li et al., 2018), diverse nanostructures (Bai et al., 2010), and 

antimicrobial activity (Pereira et al., 2019). Zinc oxide NPs are already extensively 

implemented in consumer goods such as paints, UV filters, biosensors, paper, plastics, 

ceramics, building materials, rubber, power electronics, coatings, feed, photocatalytic, 
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degradation of textiles, and printed matter (Brun et al., 2014; Wong et al., 2014). ZnO 

NPs, which are the third most widely applied metal-based NPs with an approximate 

world-wide total production of 550 to 33,400 tons (Rajput et al., 2018), can reach the 

environment, particularly the aquatic environment by (1) wastewater which contains the 

highest amount of ZnO NPs (0.3–0.4 μg/L), (2) direct use and (3) deposition from the air 

compartment (Vale et al., 2016; Poynton et al., 2019).  

 

 

Since ZnO NPs are already introduced directly or indirectly into the environment, 

particularly the aquatic environment, they may constitute a threat to the aquatic 

environment (Li et al., 2018). They can be extremely toxic and as an aquatic 

environmental risk due to their negative impacts on different aquatic living things, 

including bacteria, algae, crustaceans, ciliates, and fishes (Cong et al., 2017). Meanwhile, 

studies related to ZnO NPs toxicity on aquatic vertebrate organisms have concentrated 

largely on fish, in particular zebrafish. Several reports have shown that ZnO NPs can be 

highly toxic to zebrafish, particularly in the early developmental stages, the key emphasis 

of those studies has been on acute toxicity studies of aquatic species. At the same time, 

the chronic toxicity studies of ZnO NPs were surprisingly scarce (Xiong et al., 2011; Zhao 

et al., 2013). Furthermore, serious threats and higher toxicity compared to other NPs in 

aquatic environments have been reported in recent studies for ZnO NPs. For instance, Zhu 

et al. (2008) reported that ZnO NPs showed higher toxicity compared to TiO2 NPs and 

Al2O3 NPs on the early life stage of zebrafish. Another study that has shown ZnO NPs are 

more toxic than TiO2 NPs is the study of Bhuvaneshwari et al. (2017), who reported 27.62 

and 71.63 mg/L for ZnO NPs and 117 and 120.9 mg/L for TiO2 NPs as 48 h LC50 on 

Artemia salina under pre-UV-A and visible light conditions.  

 

 

Oryzias javanicus (Javanese medaka) belongs to the Adrianichthyidae family (Magtoon 

& Termvidchakorn, 2009). This species is widely distributed in Asian countries and 

highly adaptable to fresh, brackish, and saltwater (Inoue & Takei, 2002). The sensitivity 

of the species belonging to this family makes it an ideal test organism for toxicology and 

ecotoxicology studies. Recent studies have indeed used Javanese medaka as the test 

organism because of their high adaptability to both freshwater and saltwater, broad 

geographical range and availability throughout the year (Ismail & Yusof, 2011; Yusof et 

al., 2012; Woo et al., 2012), short life span and life cycle, fast development (Salleh et al., 

2017; Yusuff et al., 2018), hardy, easy to identify and cultivate, short spawning period <1 

min, and their transparent eggs (Ibrahim et al., 2020). These properties make it a suitable 

choice for studies, especially studies that involve early life stages. 

 

 

They are several significant sources of information on ZnO NPs that can induce mortality 

at high concentration, while surprisingly data for environment relevant concentration that 

can caused adverse effects of the whole-body system in a long period are not reported yet. 

The endpoint of this study is to observe the impairment and abnormalities in the embryo 

and larva of Javanese medaka. The chosen endpoints provide ecological importance, as 

the low concentration of ZnO NPs has an environment relevant. Meanwhile, the idea that 

water chemistry can affect the fate and behavior of chemicals, and their subsequent 

bioavailability to fishes, is well established but, to date, there have been no systematic 

studies of the toxicity of NPs to the same species of organism in saltwater versus 
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freshwater, or during graded salinity changes. Moreover, the selected endpoints of ZnO 

NPs exposure in Javanese medaka have not been studied recently and to date. 

 

 

1.2 Objectives  

 

 

The objectives of this study are: 

 

i. To determine the lethal concentration (LC50) value of ZnO NPs by acute exposure on 

the embryo of Javanese medaka in different types of water (ultra-pure, deionized, and 

dechlorinated tap water). 

ii. To determine the developmental toxicity of ZnO NPs by chronic exposure on the 

embryo of Javanese medaka. 

iii. To evaluate the interactive effects of salinity and ZnO NPs by chronic exposure on 

the embryo of Javanese medaka. 
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