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Breast cancer has been known as the most prevalent and common cause 
of death among Malaysian woman especially over the age of 40. Breast 
cancer can usually be identified as either benign or malignant with 
invasive biopsy procedure. The treatment protocol is allocated based on 
the whether the mass is benign or malignant. Fortunately, breast cancer 
like many other cancer types are curable and patient survival can be 
improved, subject to early diagnosis. Radiograph images lies numbers 
of features that useful for computer aided diagnosis. In this thesis, the 
work is divided into two main phases; 1) evaluating the reproducibility 
of radiomics features derived from manual delineation and 
semiautomatic segmentation after two different contrast enhancement 
techniques on masses in two-dimensional (2D) mammography images 
and 2) to implement the Automated Machine Learning (AutoML) in 
classifying types of mass in mammogram images. With introduction of 
ML techniques, breast cancer can be diagnosed in early stage without 
any invasive and risky procedure. The methodology presented in this 
research consist of several stages including, image acquisition, image 
segmentation, feature extraction/selection and, classification using 
AutoML. The first phase determines the reproducibility between 
Contrast Limited Adaptive Histogram Equalization (CLAHE) and 
Adaptive Histogram Equalization (AHE) techniques. The 
semiautomatic segmentation techniques used in the first phase is Active 
Contour Method (ACM) with 100 iterations. Three types of radiomics 
features were extracted including first order, second order and shape 
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features. 37 features were extracted from each tumor in three different 
techniques mentioned: 9 of these were shape-based features, while 28 
were texture-based features. Notably the CLAHE group (ICC = 0.890 ± 
0.554, p < 0.05) had the highest reproducibility compared to the 
features extracted from the AHE group (ICC = 0.850 ± 0.933, p < 0.05) 
and manual delineation (ICC = 0.673 ± 0.807, p > 0.05). Therefore, the 
segmentation techniques used in the second phase are based on CLAHE 
and ACM method. The Principal Component Analysis (PCA) Random 
Forest (RF) classification has proved to be the most reliable pipelines 
with the lowest complexity in this research with 92% of accuracy, 83% 
of precision, 100% of sensitivity, 94% of ROC.
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Kanser payudara telah dikenali sebagai penyebab kematian yang paling 
lazim dan biasa di kalangan wanita Malaysia terutamanya yang berusia 
lebih dari 40 tahun. Kanser payudara biasanya dapat dikenal pasti 
sebagai benigna atau malignan dengan prosedur biopsi yang invasif. 
Protokol rawatan diperuntukkan berdasarkan sama ada ketulan itu 
merupakan benigna atau malignan. Namun begitu, kanser payudara 
seperti jenis barah lain dapat disembuhkan dan kelangsungan hidup 
pesakit dapat ditingkatkan, bergantung pada diagnosis awal. Imej 
radiograf mengandungi sebilangan besar ciri yang berguna untuk 
diagnosis berbantukan komputer. Dalam tesis ini, kajian terbahagi 
kepada dua fasa utama; 1) menilai kebolehulangan ciri radiomik yang 
berasal dari persempadanan manual dan segmentasi semiautomatik 
setelah dua teknik peningkatan kontras yang berbeza pada ketulan dalam 
imej mamografi dua dimensi (2D) dan 2) untuk menerapkan 
Pembelajaran Mesin Automatik (AutoML) dalam mengklasifikasikan 
jenis ketulan dalam imej mamogram.Dengan pengenalan teknik ML, 
barah payudara dapat didiagnosis pada peringkat awal tanpa prosedur 
invasif dan berisiko. Metodologi yang dikemukakan dalam 
penyelidikan ini terdiri dari beberapa tahap termasuk, pemerolehan 
gambar, segmentasi gambar, pengekstrakan / pemilihan tapisan dan, 
klasifikasi menggunakan AutoML. Fasa pertama menentukan 
kebolehulangan antara teknik Contrast Limited Adaptive Histogram 
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Equalization (CLAHE) dan Adaptive Histogram Equalization (AHE). 
Teknik segmentasi semiautomatik yang digunakan pada fasa pertama 
adalah Kaedah Kontur Aktif (ACM) dengan 100 lelaran. Tiga jenis ciri 
radiomik diekstraksi termasuk urutan pertama, susunan kedua dan ciri 
bentuk. 37 ciri diekstrak dari setiap tumor dalam tiga teknik berbeza 
yang disebutkan: 9 daripadanya adalah ciri berdasarkan bentuk, 
sementara 28 daripadanya adalah ciri berasaskan tekstur. Terutama 
kumpulan CLAHE (ICC = 0.890 ± 0.554, p <0.05) mempunyai 
kebolehulangan tertinggi berbanding dengan ciri yang diekstrak dari 
kumpulan AHE (ICC = 0.850 ± 0.933, p <0.05) dan penerapan teknik 
manual (ICC = 0.673 ± 0.807, p > 0.05). Oleh itu, teknik segmentasi 
yang digunakan pada fasa kedua adalah berdasarkan kaedah CLAHE dan 
ACM. Klasifikasi Analisis Komponen Utama (PCA) Ekstra Pokok (ET) 
telah terbukti sebagai saluran paip yang paling dipercayai dengan 
kerumitan terendah dalam penyelidikan ini dengan 92% ketepatan, 
83% ketepatan, 100% kepekaan , 94% ROC. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1  Research Background 
 
 

Breast cancer has been acknowledged as the most prevalent and common 
cause of death among Malaysian woman over the age of 40 (Azizah et 
al., 2019). Several studies emphasize the need and urgency for early 
detection in reducing breast cancer morbidity and mortality (Eddy et al., 
1988; Seely et al., 2018; Lambin et al., 2012). 
Medical imaging techniques, such as mammography, play an important 
role in non-invasively assessing breast tissues for detection, diagnostic, 
staging, and management purposes (Seely et al., 2018). In an attempt to 
improve the mortality rate among the population, a mammography 
screening program is proven to be the most cost-effective program for 
providing useful details about the presence of abnormal mass or tumor 
(Seely et al., 2018). 

 
 

According to Malaysia National Cancer Registry (MNCR) Report, 
release a report about breast cancer every 5 years. For 2007 to 2011, 
18206 cases of female breast cancer were recorded. However the number 
of cases increased to 21634 from 2012 until 2016 compared to previous 
report. The next edition is yet to be published which covers the report 
from 2017 to 2021. Breast cancer accounted for 34.1% of all cancer 
among females in Malaysia .Over 47% cases were detected at later stage; 
stage 3 and stage 4. In 2007-2011 report, the percentage of cases detected 
at later stage was higher compared to 43.2% (Azizah et al., 2019). This is 
due to the density of breast tissue in younger women, which enable 
mammogram to detect the lesion accurately 
 
 
Study shows that higher breast density on mammography is strongly 
associated with an increased risk of breast cancer, this occurs especially 
in younger women Vachon et al., 2007; Pinsky et al., 2010; Boyd et al., 
2007). 
 
 
Table 1.1 below summarized the incidence of breast cancer by year 
among female in Malaysia. Cumulative Risk (CR), Age Standardized 
Rate (ASR) and Cumulative Rate (CumR) were included in the table for 
each residents. 
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Table 1.1: Female Breast: Cancer incidence summary by year, 
Malaysia (Azizah et al., 2019) 

 
 
All residents 

 
No. of 
cases 

Age Standardized 
Rate (ASR) 

Cumulative Rate 
(CumR) 

2007-2011 18206 31.1 3.4 
2012-2016 21634 34.1 3.7 
2012 4266 33.5 3.6 
2013 4076 31.0 3.4 
2014 4150 31.7 3.5 
2015 4518 33.4 3.6 
2016 4624 34.4 3.8 

 
 

Figure 1.1 illustrates the graph of the comparison of age-specific 
incidence rate by year from birth to over 75 years old in Malaysia. 

 
Figure 1.1: Female Breast: Comparison of age- specific incidence rate 
by year in Malaysia (Azizah et al., 2019) 

 
 

The age-specific incidence rate by year for 2012-2016 recorded an 
increment compared to 2007-2011. The increment involving false-
positive rates is a huge threat in cancer diagnosis (Nelson et al., 2016) 
that usually confirmed through various ways such as biopsy techniques.  
Only 4% to 5% of positive mammograms recalled for further 
evaluation ultimately lead to a cancer diagnosis (Lehman et al., 2017). 
Hence, diagnosing early stage of breast cancer accurately is very crucial 
since early treatment can be given to the patient. 
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Radiomics is a term increasingly used in oncological radiotherapy in order 
to better appreciate the region or volume of interest (target volumes and 
critical organs) but also to assess the somatic or constitutional biological 
component. Radiomics a high-performance qualitative and quantitative 
analysis, consisting in the high-speed extraction of digital medical imaging 
data to obtain predictive and prognostic information concerning patients 
treated for a cancerous pathology. Via the principle of image recognition 
and Machine Learning (ML), computerized systems provide the 
opportunity to acquire knowledge about the issue in a manner that is 
impossible for a human being to obtain. In other words, this information 
could sometimes be indistinguishable by human vision (Fabijańska et al., 
2009). 
Medical images are a powerful tool to diagnose and analyze many 
diseases such as breast, chest, abdominal illnesses, and blood disorder. 
The digital format of the medical images offers incentive for further 
analysis that may help to improve the accuracy of breast cancer diagnosis 
and hence, help to optimize the management of patient. Major 
contribution of image processing and machine learning techniques in the 
medicine field are through the digitized medical images where they can 
be explored without human limitation.  
 
 
1.2  Problem Statement 

 
 

The main markers for breast cancer in mammograms are masses and 
microcalcification. Mass is defined as a space-occupying lesion, visible 
in two different projections, characteristic by its shape and contour 
(Berment et al., 2014) while microcalcification is defined as deposits of 
calcium in the breast tissue and appear as small bright spots on 
mammograms (Azam et al., 2021). Interpretation of these anomalies is a 
challenge due to their low mortalities (Birdwell et al., 2009). The 
enormous volume of mammogram generated by widespread screening 
often overwhelmed radiologists (Rangayyan et al., 2007), and even 
experienced radiologists have significant inter-observer and intra-
observer variability in their mammograms interpretation (Skaane et al., 
1997). It is even harder to identify mammographic masses than 
microcalcification, because masses differ greatly in shape, margin, size 
and typically have obscure boundaries. (Azam et al., 2021). 
Subsequently, radiologists miss a large portion of retrospectively 
observable masses (Birdwell et al., 2001), and biopsies are often 
performed on normal tissues and benign lesions (Hubbard et al., 2011). 
It is commonly agreed that by double reading, the sensitivity can be 
improved without increasing recall rates (Blanks et al., 1998), but it could 
be expensive due to increase in manpower. Therefore, ML method used 
have been developed for breast cancer detection and classification. This 
method is to facilitate interpretation and analysis, the preprocessing of 
mammography films helps improve the visibility of peripheral areas and 
intensity distribution. 
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1.3 Research Objectives 
 
 

This study embarks on the following objectives: 
 

1. To quantify and extract the radiomics feature from the 
segmentation of the masses in breast of 2D breast mammogram. 

2. To compare the performance of semiautomatic and manual 
segmentation techniques of masses. 

3. To evaluate Automated Machine Learning (AutoML) and Grid 
Search (GS) algorithm for selection of optimum features extracted 
from the images in order to correctly classify mass into benign or 
malignant. 

4. To determine the performance of Automated Machine Learning 
(AutoML) and Grid Search algorithm based on performance metrics. 

 
 

1.4  Significance of Study 
 
 

The findings of this study can contribute to a real-life scenario case. A 
radiologists observe mammogram to detect the mass in breast. In many 
cases, even experienced radiologists, might have difficulties to precisely 
determine the region-of-interest (ROI) in a mass; benign or malignant and 
often have different opinion on the location of the mass. Moreover, the 
radiologists still misinterpret between 10% and 30% of cancer (Ekpo et 
al., 2018) 

 
 

The goal of this work is to utilize image processing and ML techniques 
in order to increase the accuracy of diagnosing breast cancer. Therefore, 
to achieve the intended goal, the research is carried out in four main 
stages, namely, 1. image acquisition, 2. image segmentation, 3. feature 
extraction and selection, and finally 4. classification. 
 
 
These form the four main modules of a typical architecture of a 
Computer-Aided Diagnosis (CAD) system. 

 
 

This research makes several key contributions as follows: 
 

 Improvement of intra and inter-observer variability by observing the 
stability of extracted features using semi-automatic segmentation 
compared to manual segmentation.

 Comparative study with two optimization methods, Tree-Based 
Pipelines Optimization Tools (TPOT) algorithm and Grid Search 
(GS) algorithm in achieving high accuracy, sensitivity and 
specificity.

 The proposed approach achieves remarkable results of 92% accuracy 
in classifying masses in breast cancer with limited effort and time.
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1.5 Scope of Thesis 
 
 

The scope of study involves evaluating and extracting radiomics features 
as well as comparing accuracy in detecting masses in breast cancer using 
two optimization techniques which are Tree Based Pipeline Optimization 
Tools (TPOT) and GS Algorithm in order to achieve higher accuracy in 
less complex pipeline. To achieve this, the study was divided into two 
parts; 
 
1. Part I: The updated version of Digital Database for Screening 

Mammography (DDSM), Curated Breast Imaging Subset of DDSM 
(CBIS-DDSM) data from The Cancer Imaging Archive (TCIA) 
open source was adopted in this research. 
30 benign mammogram images medioliteral Oblique (MLO) views 
were enhanced by using two techniques of contrast enhancement, 
Contrast Limited Adaptive Histogram Equalization (CLAHE) and 
Adaptive Histogram Equalization (AHE). The ROI were segmented 
using two techniques; semiautomatic segmentation and manual 
delineation. The intra and inter-observer variability was compared 
between ROI in mammogram images with and without contrast 
enhancement using semiautomatic segmentation and manual 
delineation respectively. 

 
 

2. Part II: By using techniques for contrast enhancement and 
segmentation that result in lower intra and inter-observer variability, 
378 mammographic image, with 147 image labeled as benign and 
another 231 labeled as malignant. Two techniques of optimization 
were adopted; TPOT and Grid Search Algorithm that include 3 types 
of classifier; Support Vector Machine (SVM), Naive Bayes (NB), and 
Multi-Layer Perceptron-Artificial Neural Network (MLP-ANN). 

 
 

1.6 Thesis Outline 
 
 

This thesis consists of five chapters which will cover from Chapter 1 to 
Chapter 5. Chapter 1 contains research background. This includes 
problem statement, significance of study and objectives of study. 

 
 

Chapter 2 includes literature review which provides the background 
information regarding breast cancer. It addresses the two main types of 
breast cancer, including benign and malignant. Throughout this chapter, 
the key techniques and algorithms that are used in this research to develop 
the computer-aided diagnostic system are highlighted and explained. This 
chapter also presents a survey of existing studies on computer-based 
diagnostic systems for breast cancer detection. These studies coveR all 
main components of such systems such as segmentation, feature 
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extraction, feature selection and classification. 
 
 

Chapter 3 describes the design of breast cancer diagnosis using two 
optimization techniques, TPOT and Grid Search algorithm. First, the 
design of a proposed approach is introduced. The requirements of image 
acquisition are then explained. The requirements of image processing and 
image segmentation are also discussed, followed by the feature extraction 
and feature selection processes. The chapter further elaborates on the 
requirements for classification of breast cancer. Finally, the performance 
of measurements used to evaluate two optimization techniques, TPOT 
and GS algorithm. 

 
 

Chapter 4 This chapter presents the discussion and the results of the 
experiments carried out. The chapter demonstrates how the results of the 
proposed approach resolve the problems mentioned in the problem 
statements. 

 
 

Chapter 5 concludes and summarizes the research contributions made. 
The achievements and objectives of the research with respect to the 
experimental results obtained are highlighted along with the key findings 
and significance of the research.
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