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December 2021 
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Faculty : Science 

Microbially-induced calcite precipitation (MICP) refers to the biochemical process of 
precipitating calcium carbonate (CaCO3) induced by bacterial urease activity with a 
complex microbial biochemical reaction occurring within the environment for the 
purpose of stabilizing loose soils. A loose soil poses great concern worldwide leading to 
severe environmental hazards such as building collapse, destruction of roads and 
railways, landslides, loss of lives and properties, with an estimated US$6 billion spent 
annually to finance over 40,000 soil improvement projects worldwide. This study is 
limited to calcite precipitation and bio-cementing effect of indigenous soil urease 
producing bacteria. The aim of this study is to explore the potential of indigenous urease 
producing bacteria towards soil stabilization. Isolation using CaCO3 precipitation media 
within 7 d to target highly active urease producing bacteria has successful isolated eight 
isolates (O6w, O42, O5w, O3a, O6a, O41, S73 and S70) from farmland soil samples at 
Ladang 15, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia. 
Farmland soils of Ladang 15 are known to be urea rich soil due to utilization of synthetic 
urea and organic manure as fertilizer for crop cultivation. Thus, favours distribution and 
diversity of urease producing bacteria. Phenotypic analysis indicates all isolates are 
Gram-positive, rod-shaped and produced circular colonies. The pH profile and growth 
profile of the isolates were studied and urease activity was measured by phenol 
hypochlorite assay method (O.D 626 nm) at 24 h interval for 120 h. The experimental 
results showed that all the isolates were able to sustain a steady growth up to 96 h, which 
later had produced significant precipitation of CaCO3. Among the eight isolates 
evaluated, isolate O6w and isolate O3a were selected based on the highest urease activity 
at 665 U/mL and 620 U/mL, respectively and able to increase and sustain alkaline culture 
condition (pH 8.71 ± 0.01 and 8.55 ± 0.01) which is suitable for CaCO3 precipitation. 
The isolates were identified based on 16S ribosomal RNA sequencing to be Bacillus 
cereus (O6w) and Bacillus paramycoides (O3a). An amount of 943 ± 57 mg/L and 793 
± 51 mg/L CaCO3 had been precipitated by B. cereus and B. paramycoides, respectively 
after 96 h of incubation. Studies on characterization of the precipitated CaCO3 crystals 
by scanning electron microscope (SEM) microanalysis have shown CaCO3 crystals of 
various sizes (2.0 µm - 23.0 µm) with different morphologies such as agglomerated 
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rhomboids, cubic, flower-like and irregular shaped crystals. Confirmed by XRD 
indicated that precipitated CaCO3 is mostly calcite and a few aragonites. SEM 
micrographs on microstructural analysis of organic and sandy clay soils treated by both 
B. cereus and B. paramycoides have shown the formation of bio-precipitated CaCO3 

deposited on soil particles (bio-cementing soil grains). Overall, observed experimental 
results attributed CaCO3 formation as a bacterial-associated process. Hence, the dynamic 
process of MICP leading to precipitation of CaCO3 is not chemically induced, but a 
microbially induced biochemical process directly linked with urea hydrolysis via urease 
activity. This study suggests that indigenous soil ureolytic bacteria with high urease 
activity are potentially useful as agent for soil bio-stabilization. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Master Sains 

PEMENDAKAN KALSIT TERARUH MIKROB OLEH BAKTERIA 
UREOLITIK SEBAGAI AGEN BAGI KAEDAH BIO-PENSTABILAN TANAH 

Oleh 

DARDAU ABDULAZIZ ALIYU 

Disember 2021 

Pengerusi : Muskhazli Mustafa, PhD 
Fakulti : Sains 

Pemendakan kalsit teraruh oleh mikrob merujuk kepada proses biokimia pemendakan 
kalsium karbonat (CaCO3) yang diaruhkan menerusi aktiviti bakteria urease menerusi 
tindakbalas biokimia mikrob yang kompleks bagi tujuan penstabilan tanah longgar. 
Tanah longgar yang menimbulkan kebimbangan yang besar seperti runtuhan bangunan, 
kerosakan jalan raya dan jalan keretapi, runtuhan tanah, kehilangan nyawa dan harta 
benda dengan dianggarkan bernilai USD 6 bilion dibelanjakan setahun untuk membiayai 
lebih 40,000 projek penambahbaikan tanah di seluruh dunia.  Tujuan kajian ini ialah 
untuk menerokai potensi bakteria tempatan yang menghasilkan urease bagi tujuan 
penstabilan tanah.  Pemencilan menggunakan media pemendakan CaCO3 dalam tempoh 
7 hari yang menyasarkan bakteria penghasil urease yang aktif telah berjaya memencilkan 
lapan isolat (O6w, O42, O5w, O3a, O6a, O41, S73 dan S70) dari sampel tanah Ladang 
15, Fakulti Pertanian, Universiti Putra Malaysia, Selangor, Malaysia. Tanah di Ladang 
15 dikenali sebagai tanah yang kaya urea di sebabkan oleh penggunaan urea sintetik dan 
baja organik sebagai baja penanaman tanaman.  Oleh itu, ianya menyumbang kepada 
taburan dan kepelbagaian bakteria penghasil urease. Analisis finotipik menunjukkan 
semua isolat adalah Gram-positif, berbentuk rod dan menghasilkan spora bulat.  Profil 
pH dan pertumbuhan isolat telah dikaji dan aktiviti urease telah diukur menggunakan 
kaedah biocerakin fenol hipoklorit (OD 626 nm) pada sela masa 24 jam selama 120 jam. 
Keputusan kajian menunjukkan bahawa semua isolat berupaya mengekalkan 
pertumbuhan yang malar sehingga 96 jam, yang mana kemudiannya telah dapat 
menghasilkan pemendakan CaCO3 yang ketara.  Daripada lapan isolat yang dinilai, isolat 
O6w dan isolat O3a telah dipilih berdasarkan penghasilan aktiviti urease yang tertinggi 
dengan masing-masing pada 665 U/mL dan 620 U/mL, serta berupaya meningkatkan 
dan mengekalkan keadaan kultur beralkali (pH 8.71 ± 0.01 dan 8.55 ± 0.01) yang mana 
ianya sesuai untuk pemendakan CaCO3. Isolat telah dikenal pasti berdasarkan 
penjujukan 16S ribosomal RNA sebagai Bacillus cereus (O6w) dan B. paramycoides 
(O3a).  Sebanyak 943 ± 57mg/L dan 793 ± 51mg/L CaCO3 masing-masing telah 
dimendakkan oleh B. cereus (O6w) dan B. paramycoides (O3a) selepas 96 jam 
pengeraman. Kajian pencirian terhadap endapan kristal CaCO3 menggunakan analisis 
imbasan mikroskop elektron (SEM) menunjukkan berbagai saiz kristal CaCO3 (2.0 µm 
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- 23.0 µm) dengan morfologi yang berlainan seperti rhomboid bergumpal, kubik, 
berbentuk bunga dan kristal berbentuk tidak seragam.  Pengesahan menggunakan XRD 
menunjukkan bahawa kebanyakkan endapan CaCO3 adalah kalsit dan sedikit aragonit. 
Mikrograf SEM pada analisis mikro-struktur tanah organik dan tanah liat berpasir yang 
telah dirawat oleh kedua-dua B. cereus dan B. paramycoides memaparkan pembentukan 
bio-endapan CaCO3 pada zarah tanah (bio-simen butiran tanah).  Secara keseluruhan, 
hasil kajian yang diperhatikan telah dapat mengaitkan pembentukan CaCO3 sebagai 
proses yang berkait dengan bakteria. Oleh itu, proses dinamik tindakbalas biokimia 
mikrob yang kompleks ke arah pemendakan kasium karbonat bukanlah diaruh secara 
kimia, tetapi oleh proses biokimia bakteria teraruh yang berkait rapat dengan hidrolisis 
urea menerusi aktiviti urease.  Kajian ini mencadangkan bahawa bakteria ureolitik tanah 
tempatan dengan aktiviti urease yang tinggi adalah berpotensi sebagai agen penstabil bio 
tanah yang berguna. 
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CHAPTER 1 
 

1 INTRODUCTION 
 

1.1 Research background 
 

There is rapid population growth in both developing and developed nations across the 
globe and it is expected that the world human population would continue to record a 
rapid increase at an alarming rate (Sinha & Chattopadhyay, 2016). On the contrary, 
landmass available for various construction purposes continue to become relatively 
scarce (Bernardi et al., 2014). This fast growth enhances the high demand for land for 
civil infrastructure, particularly in urban areas. In response to meeting various human 
basic needs, necessitate infrastructural development on problematic soils (Chang et al., 
2016; Hiranya et al., 2018). These problematic and weak soils affect the safety and 
stability of structures constructed on them, due to over shear stress or limitation of shear 
strength applied during loading onto the soil, which consequently results in failure of the 
built structures. It is almost impossible or expensive to replace problematic soils such as 
soft marine clay commonly found at river banks and coastal areas, as they can extend to 
a great depth (Saad et al., 2019). This makes the improvement of soil mechanical 
properties crucial. An investigation carried out in 2008 reported that over USD 6 billion 
was spent annually to finance over 40,000 soil improvement projects worldwide 
(Kalantary & Kahani, 2015). In the Nilgiri district of India, an estimated 1150 landslides 
of various sizes destroy roads, houses, railway lines and claim the lives of about 80 
people within five days in November, 2009 (Suresh et al., 2019). Further, in the United 
Kingdom, erosion threatens 30,000 people with over 90,000 ha of agricultural lands 
within the Humber estuary flood plain due to destabilized sandy soil foreshores (Salifu 
et al., 2016). Meanwhile, for the last two decades, within the high areas of Malaysia, 
more than 400 landslides comprising of over 30 major landslides, involving both natural 
and cut slopes were reported to have destroyed properties worth of billions of ringgits 
and claim over 200 lives, due to high compressibility and low shear strength of 
Malaysian tropical peatland soils (Makinda et al., 2018).    
 

Although, for the past few years, several methods and materials were developed to 
improve the engineering characteristics of soils. However, they varied in terms of 
environmental impact, cost, penetration depth and treatment uniformity which portrays 
their merits and demerits (Wang et al., 2011; Khan et al., 2016; Duo et al., 2018). The 
application of chemical grouting for the purpose of soil improvement is limited to a short 
injection distance of usually 0.3 to 1.0 m and is rather expensive. Further, the chemicals 
used such as polyurethane, lignosulfonates and acrylamides are toxic and may have 
adverse impacts on the environment (Paassen et al., 2010) and has been prohibited by 
several countries due to their dangerous nature to humanity (Khaleghi & Rowshanzamir, 
2019).  
 

The use of mineral additives such as cement plays an important role for the construction 
industry. Concrete is produced from cement with an annual global demand of over 10 
billion tons and experts predicted this demand to increase to about 16 billion tons by 
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2050 (Castro-alonso & Montañez-hernandez, 2019). Although cement is required in high 
demand, but its industrial manufacturing process have economic and environmental 
concerns which include, high energy consumption and emission of huge amount of CO2 
that is as high as 7% of the world anthropogenic emissions (Hiranya et al., 2018; Nething 
et al., 2020). An alarming situation which results to climate change (Wong, 2015). In 
addition, cement treatment of fine soils is highly ineffective due to its high viscosity in 
suspension (Stabnikov et al., 2013). This draws the interest of researchers towards the 
idea of simulating nature for the improvement of loose soils through a microbial enzyme 
technology known as Microbially Induced Calcite Precipitation (MICP). 
 

MICP is a biomineralization technique involving a biochemical process of precipitating 
calcium carbonate (CaCO3) crystals induced by active bacterial activity such as 
Sporosarcina pasteurii due to chemical reactions occurring within the environment 
(Yang et al., 2020). There are various metabolic pathways leading to the biosynthesis of 
microbial precipitation of CaCO3 such as denitrification, photosynthesis, methane 
reduction, ammonification, sulphate reduction and ureolysis (Suresh et al., 2019). 
Among all, ureolysis has been reported to be more favourably utilized for various 
technical applications due to energy efficiency and capability of inducing high amount 
of CaCO3 in a short duration of time (Krajewska, 2018; Mukherjee et al., 2019).  
 

Ureolysis as a recent technology, utilizes eco-friendly features of urease producing 
bacteria in providing favourable conditions of hydrolysing urea in a series of complex 
biochemical reactions to generate ammonium and carbonate ions. The ammonium ions 
produced favours precipitation conditions by increasing the pH of the microenvironment 
(Terzis & Laloui, 2019; Filet et al., 2020). The bacteria cell surface has a net negative 
charge as negative zeta potential (Renner & Weibel, 2011), thus under sufficient super 
saturation conditions provide a binding site for the bonding of carbonate ions with 
available divalent calcium ions within the micro-environment, hence precipitate 
cementitious calcite crystals on the cell surface. These crystals further cement soil grains 
together, filling inter-particle voids and in turn improving soil strength and stiffness 
(Torres-aravena et al., 2018; Yan et al., 2019; Cui et al., 2020). The soil properties 
improve with high amount of calcite precipitation (Lutfian et al., 2020). Further, MICP 
technique is possible in different natural water conditions ranging from freshwater to 
100% seawater at various degrees of saturations, however a low degree of saturation 
gives better result (Oliveira et al., 2017). Noteworthy, the technique can also be applied 
to a variety of soil types ranging from coarse and well graded sands to finer soils. 
However, MICP technique is more effective when applied on coarse and well graded 
sands in comparison to finer soils (Mortensen et al., 2011).  
 

Research on MICP as an emerging discipline has been a continuous process with a 
diverse documented successful story of soil stabilization and measured as one of the most 
effective soil improvement technology (Ghosh et al., 2019; Ivanov et al., 2020). Previous 
literature presented encouraging and impressive results (Hoang et al., 2019; San Pabio 
et al., 2020; Miftah et al., 2020), thus proven its potential for addressing a wide range of 
geoenvironmental and geotechnical projects, including controlling erosion in rivers and 
coastal areas, enhancing the stability of non-piled and piled foundations, treating 
pavement surface, decreasing dust levels on exposed surfaces by binding together the 
dust particles, reinforcing soil for the enhancement of underground constructions (Wath 
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& Pusadkar, 2016). Bacteria suitable for MICP are alkali tolerant ureolytic bacteria, 
hence model strains are from genera Clostridium, Bacillus, Desulfotomaculum, 
Sporolactobacillus and Sporosarcina (Ivanov & Chu, 2008). However, S. pasteurii is 
widely utilised in most studies on MICP (Wen et al., 2018), due to its high urease 
activity, tolerance to high pH and precipitation of large amounts of calcite 
(Rowshanbakht et al., 2016; Minto et al., 2018; Ruan et al., 2019). An experiment carried 
out by Salifu et al., (2016) demonstrated the efficiency of MICP using S. pasteurii as a 
model strain for protection of foreshore slope sites against erosion. These bacteria 
cemented the sandy soil by precipitating up to 120 kg of calcite/m3 of the soil, filling 
9.9% of inter-particle voids and in turn cemented the sandy soil which withstood 
unconfined compressive stress of 470 kpa. This amount of precipitated calcite satisfies 
the range for several soil improvement projects.   
 

The success of MICP process is promoted primarily by in situ conditions such as particle 
size and distribution, temperature, water content and the conditions of treatment like 
cementation solution and concentrations of bacteria (Dadda et al., 2018). Bacteria 
constitute one of the successful ubiquitous forms of life within the natural environment 
(Dorost et al., 2018), adapting to varying environmental conditions both physiologically 
and genetically (Khaleghi & Rowshanzamir, 2019). Despite the numerous advances in 
MICP, this technique is associated with setback regarding reduction in the population of 
the introduced bacteria into the soil due to competition, predation and stress arising from 
abiotic factors like osmotic pressure, pH, availability of suitable nutrients and 
temperature (Burbank et al., 2011). These limitations may be overcome by the utilization 
or enrichment of indigenous soil ureolytic bacteria (Burbank et al., 2012). Further, main 
issue affecting this technique is bioclogging, which occur due to uneven distribution and 
uniformity of precipitated CaCO3 in treated samples (Rowshanbakht et al. 2016; 
Omoregie et al., 2018). This result in retention of the cementation solution and bacterial 
culture at the treatment injection point, thus affect the overall sand stiffness.  
 

1.2 Justification of the study 
 

In search for alternative soil improvement technology with minimal environmental 
consequences over conventional methods, and advances in material and geotechnical 
research, led to the development of an innovative, novel bio-mediated soil improvement 
technique termed Microbially Induced Calcite Precipitation (MICP). Previous studies 
have documented the application of MICP towards the improvement of soil as an 
effective, economically engineered natural occurring biotechnological process (Martinez 
et al., 2013; Ming-juan et al., 2016; Ming-juan et al., 2017; Junjie et al., 2020). However, 
most urease producing bacteria utilised for various MICP applications are commercially 
procured from culture collection centres, which contribute to cost (Zomorodian et al., 
2019), and only a few studies on indigenous ureolytic bacteria have been reported (Bibi 
et al., 2018). According to the present global market price, it cost approximately 
US$402.0 to procure the original patent strain of S. pasteurii ATCC 11859, which 
suggest the low-cost advantage of utilizing indigenous ureolytic bacteria for various 
MICP applications (Ezzat & Ewida, 2021). Further, the procured microorganisms are 
often associated with drawback, regarding reduction in the population of the introduced 
microorganism into the soil due to competition, mechanical stress and predation arising 
from non-adaptability of the organisms to the local environment (Burbank et al., 2011). 
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In addition, the introduced bacteria can negatively influence the soil microbial 
communities by affecting the ubiquitous interactions among the soil microoorganisms 
and alter the traits expressed by these microbial communities (Badiee et al., 2019). 
However, in situ ureolytic microorganisms have the least effect on the soil microbial 
flora (Badiee et al., 2019). Further, it is important to note that ureolytic bacterial strains 
are not abundant due to complex biochemical reactions and specific environmental 
conditions (Zhu & Dittrich, 2016a). Thus, research on the utilization of alternative 
indigenous ureolytic bacteria with high urease activity towards soil improvement become 
paramount and still a budding line of research.  
 

1.3 Significance of the study 
 

The loss of lives, economic and social infrastructural assets caused by problematic soils 
and the adverse effect of utilizing cement and chemical grouting in problematic soils 
treatment could be tackled, by the development and utilization of the MICP 
biotechnology as a natural self-biotreatment process. In support of earlier successful 
studies carried out on MICP, this current study may provide additional knowledge on the 
potential of in situ ureolytic bacteria to precipitate CaCO3 as a raw material for soil 
improvement. This technology converts urea (metabolic waste) to biocement (calcium 
carbonate crystals). Additionally, the idea of utilizing in situ ureolytic bacteria will save 
cost and enhance the MICP process by eliminating the setback regarding reduction in the 
population of the introduced bacteria into the soil due to competition and predation 
because of the adaptation of the in situ ureolytic bacteria to the soil environment. The 
outcome of this study is expected to be seen as a basis for the establishment of reference 
on an improved, straightforward, environmentally friendly and natural bio-mediated 
technique of soil improvement method via the precipitation of CaCO3 by in situ soil 
ureolytic bacteria with high urease activity.  
 

1.4 Hypothesis of the study 
 

Null hypothesis: Indigenous ureolytic bacteria cannot hydrolyse urea to induce 
precipitation of calcium carbonate crystals for soil stabilization method.  
 

Alternate hypothesis: Indigenous ureolytic bacteria can hydrolyse urea to induce 
precipitation of calcium carbonate crystals for soil stabilization method. 
   

1.5   Objective of the study 
 

Therefore, the objectives were set as follows: 
 

i. To screen for in situ soil ureolytic bacteria with active urease activity from 
farmland soils of Ladang 15, Faculty of Agriculture, Universiti Putra Malaysia.    
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ii. To characterize the selected ureolytic bacteria with the potential of sustaining 
the culture conditions optimum for calcite precipitation activity. 

iii. To analyze the precipitated calcium carbonate crystals produced in the 
biocementation of potential ureolytic bacteria using Scanning Electron 
Microscope (SEM) and X-Ray Diffraction (XRD) technique.  
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