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By 
 

NUR DIYANA BINTI HALIM 
 

November 2021 
 

Chairman : Mazliana Binti Ahmad Kamarudin, PhD  
Faculty  : Science 
  

The optical properties of colloidal quantum dots (QDs) are affected by the size 
of QDs, material used and the capping agents. This thesis explores on the study 
of PbS/MnTe core/shell QDs where PbS acts as the core and MnTe is the shell. 
The QDs had been synthesized at ambient temperature by using aqueous 
synthesis approach. The PbS/MnTe core/shell QDs with different shell thickness 
(0.3, 0.6 and 0.9 monolayer (ML)) were effectively fabricated in this study.  
 

The structural and optical characteristics of PbS QDs and PbS/MnTe core/shell 
QDs are also studied in this study. High-Resolution Transmission Electron 
Microscopy (HRTEM) and Energy Dispersive X-ray Microscopy (EDX) have 
been used to investigate the structural characteristics of QDs sample. According 
to HRTEM analysis, the average size of the PbS QDs was 4.46 ± 0.82 nm, with 
a spherical form. The average size of PbS/MnTe core shell QDs was increased 
to 4.80 ± 0.73 nm for PbS/MnTe 0.3 ML, 5.16 ± 0.80 nm for PbS/MnTe 0.6 ML 
and 5.53 ± 0.84 nm for PbS/MnTe 0.9 ML, respectively. The size core/shell QDs 
was enhanced because of the growth of MnTe shell on PbS core. Aside from 
that, the analysis of EDX has been performed on the samples of PbS and 
PbS/MnTe core/shell QDs to prove the existence of MnTe elements. The peak 
in EDX spectrum related with Mn and Te was identified at 5.9 keV and 3.7 keV. 
  

Photoluminescence (PL) spectroscopy was used to explore the optical 
characteristics and behaviour of charge carriers within PbS and PbS/MnTe QDs 
at various temperatures (10-300 K). The PL peak energies of PbS/MnTe core 
shell QDs at room temperature were blue-shifted as the shell thickness 
increased due to the strong confinement effect caused by presence of MnTe 
shell. The effect of temperature on the PL peak energy, full width half maximum 
(FWHM), and PL intensity can be observed in the temperature dependent PL. In 
general, the PL peak energy and FWHM increase monotonically as temperature 



© C
OPYRIG

HT U
PM

ii 
 

increased, owing to the interaction of charge carriers with phonons. In contrast, 
as the temperature increased, the PL peak intensities decreased, which was 
related with the excitation of carriers out of the QDs into non-radiative 
recombination centres. The research and production PbS/MnTe core/shell QDs 
would be valuable in the coming decades particularly in the application of 
photovoltaic devices. 
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SIFAT STRUKTUR DAN OPTIK TERAS DALAMAN KUANTUM DOTS PbS 
DAN PbS/MnTe 

 

By 
 

NUR DIYANA BINTI HALIM 
 

November 2021 
 

Pengerusi : Mazliana Binti Ahmad Kamarudin, PhD  
Fakulti  : Sains  
 

Sifat optik titik kuantum koloid dipengaruhi oleh ukuran saiz titik, bahan yang 
digunakan dan molekul penutup. Tesis ini meneroka kajian mengenai teras 
dalaman-luaran titik kuantum PbS/MnTe di mana PbS bertindak sebagai teras 
dan MnTe adalah lapisan luaran. Titik kuantum koloid telah disintesis pada suhu 
persekitaran bilik dengan menggunakan pendekatan sintesis akua. Teras 
dalaman-luaran titik kuantum PbS/MnTe dengan ketebalan lapisan MnTe yang 
berbeza (0.3, 0.6 dan 0.9 lapisan mono (ML)) telah dihasilkan secara berkesan 
dalam kajian ini. 
 

Ciri struktur dan pencirian optik titik kuantum koloid PbS dan PbS/MnTe juga 
dikaji dalam penyelidikan ini. Mikroskopi elektron transmisi resolusi tinggi 
(HRTEM) dan mikroskopi penyebaran tenaga X-ray (EDX) telah digunakan 
untuk menyiasat ciri struktur semua sampel titik kuantum. Berdasarkan analisis 
HRTEM, ukuran purata saiz titik kuantum koloid PbS adalah 4.46 ± 0.82 nm, 
serta berbentuk sfera. Saiz purata teras dalaman-luaran titik kuantum PbS/MnTe 
bertambah kenaikannya menjadi 4.80 ± 0.73 nm untuk PbS/MnTe 0.3 ML, 5.16 
± 0.80 nm untuk PbS / MnTe 0.6 ML dan 5.53 ± 0.84 nm untuk PbS / MnTe 0.9 
ML masing-masing. Purata saiz teras dalaman-luaran titik kuantum meningkat 
kerana pertumbuhan lapisan MnTe pada teras PbS. Selain itu, analisis EDX 
telah dilakukan pada sampel PbS dan PbS/MnTe untuk membuktikan 
kewujudan komposisi MnTe. Puncak dalam spektrum EDX yang berkaitan 
dengan komposisi Mn dan Te dikenal pasti pada 5.9 keV dan 3.7 keV. 
 

Spektroskopi fotoluminesens (PL) digunakan untuk meneroka ciri optik dan 
tingkah laku pembawa cas dalam PbS dan PbS/MnTe pada pelbagai suhu (10-
300 K). Tenaga puncak PL titik kuantum teras-dalaman PbS/MnTe pada suhu 
bilik bertukar biru kerana ketebalan lapisan meningkat disebabkan oleh kesan 
pengurungan yang kuat disebabkan oleh kehadiran lapisan MnTe. Kesan suhu 
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pada tenaga puncak PL, lebar penuh ketinggian maksimum (FWHM), dan 
keamatan PL dapat diperhatikan pada PL yang bergantung pada suhu. Secara 
umum, tenaga puncak PL dan FWHM meningkat secara berkala ketika suhu 
meningkat, disebabkan oleh interaksi pembawa cas dengan fonon. Sebaliknya, 
ketika suhu meningkat, keamatan puncak PL menurun, yang terkait dengan 
pengujaan pembawa yang keluar dari titik kuantum kepada pusat 
penggabungan bukan radiasi. Penyelidikan dan pengeluaran titik kuantum teras-
dalaman PbS/MnTe akan sangat berharga dalam beberapa dekad yang akan 
datang terutamanya dalam penggunaan peranti fotovoltaik. 
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CHAPTER 1 
 

INTRODUCTION 
 

  Background of study 
 

Nanomaterials are substances of a small size, ranging from 1 to 1000 
nanometres. Nanomaterials have a major impact on the world because their size 
at the nanoscale can modify the optical, electrical and mechanical properties 
(Zhang et al.,2016; Ogaili et al., 2020). The size and structure of nanomaterials 
have a significant impact on their physical and chemical characteristics. 
Nanomaterials contain a higher fraction of surface atoms than bulk materials, 
which affects their characteristics. Shape-dependent features of nanomaterials 
are beneficial in applications such as catalysis, data storage, and optics. Shape-
dependent characteristics are a difficult subject to research. The conductivity, 
melting point, optical, electrical, and mechanical properties are all affected when 
the size of substances is reduced. 
 

For example, the spatial quantum confinement effect affects the optical 
characteristics of semiconductor nanoparticles significantly (Chen et al., 2013). 
Similarly, the high surface-to-volume ratio has a significant impact on their optical 
and surface characteristics. As a result, semiconductor nanomaterials have 
gotten a lot of interest in terms of research and applications in fields including 
energy conversion, sensing, electronics, photonics, and biomedicine. Sarojini et 
al. (Sarojini et al., 2013) conducted a major study on the electrical conductivity 
of nanofluids comprising metallic or oxide nanoparticles (Cu, Al2O3, and CuO) 
of various low-volume fractions and particle sizes. The electrical conductivity 
improves with increasing particle concentration and decreases with decreasing 
particle size, according to the authors. 
 

Many researchers have created a large number of nanomaterials such as zinc 
sulphide (ZnS) nanowires (Hu et al., 2015), gallium arsenide (GaAs) quantum 
wells (Haldar et al., 2017) and lead sulphide (PbS) quantum dots (Su et al., 2017) 
in order to address a wide range of nanotechnology applications in recent 
decades. Quantum light emitting diodes (QLED) smart televisions, which have 
become commercially available, are an example of display technology that 
employs quantum dots as a nanomaterial. 
 

Nanomaterials are classified as two-dimensional (2D), one-dimensional (1D) or 
zero-dimensional (0D) systems. It was classified based on free carrier motion 
which is limited to one, two and zero spatial dimension. Understanding the 
density of states (DOS) idea might help to identify how nanostructures form 
(Knott, 2013). DOS is referred to the number of electronic states allowed to be 
occupied per duration of energy (Imai et al., 2001). 
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In the last decades, the fabrication of low-dimensional semiconductor structures 
has made progress to reduce the effective dimension from 3D to 2D, 1D, and 
0D. The progress can be observed from the derivation of density of state (DOS) 
and quantum confinement effect of the quantum dimensions (3D, 2D, 1D and 
0D). 
 

Bulk materials are used to classify as 3D systems. The parabolic energy 
dispersion for the DOS per unit volume in 3D is given by equation (1.1): 
 

𝐷(𝐸) =
1

2𝜋2
(

2𝑚∗

ℏ2
)

3
2

√𝐸𝑔 − 𝐸 (1.1) 

 

where  𝑚∗ is the electron mass,  𝐸 is the energy and ℏ is the Planck's constant. 

Because DOS is proportional to 𝐸1/2, the electron can be occupied at the 
continuous energy level, as shown in Table 1.1.  
 

In the 2D system, the electron can move freely in two directions but is only 

confined in one. The DOS of this system can be shown by equation (1.2): 

 

𝐷(𝐸) =
𝑚𝑒

∗

𝜋ℏ2
𝜎(𝐸𝑔 − 𝐸) (1.2) 

 

A quantum well is a 2D system in which the electron is free to move in the x-y 
direction but quantized in the z direction. As seen in Table 1.1, this results in a 
sequence of 2D energy subbands and a step-like dependence of the DOS. 
 

In contrast to quantum wells, electrons in 1D systems are limited in two directions 
and only allowed to travel freely in one direction. Thus, the 1D system's sub band 
was identical to those described in the 2D system, with a sequence of spikes as 
seen in Table 1.1. The DOS for 1D system is stated by equation (1.3): 
 

𝐷(𝐸) =
𝑚∗

𝜋ℏ
√

𝑚∗

2(𝐸𝑔 − 𝐸)
 (1.3) 

 

Quantum dots (QDs) are classified as a 0D system, meaning that carriers are 
confined in three different directions. At all states, the energies are discrete, as 
seen in Table 1.1. QDs have zero dimensional and the charge carriers confined 
in three dimensions be a prominently factor why it is being chosen in this study 
besides their unique properties in electrical and optical. Furthermore, QDs has 
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expanded its usage on a lot of things in this world. For example, QDs LED which 
is used to produce inexpensive, industrial quality white light. It has made an 
improvement over traditional LED which is phosphor integration with quantum 
dot’s ability to absorb and emit at any desired wavelength. The QDs LED will 
produce white light by intermixing red, green, and blue emitting dots 
homogeneously within the phosphor, difficult to accomplish with the traditional 
LED-phosphor set up. Figure 1.1 shows the example of QDs solution with 
different colour of emission. 
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Table 1.1: Nanomaterials are classified as 3D, 2D, 1D and 0D which 
according to their density of state and quantum confinement. 

Type of 
nanomaterial 

Density of State (DOS) 
Quantum 

confinement 

3 dimensional (3D) 

 

The charge carriers 
are not confined in 
any dimension. 

2 dimensional (2D) 

 

The charge carriers 
confined in one 
dimension. 

1 dimensional (1D) 

 

The charge carriers 
confined in two 
dimensions. 

0 dimensional (0D) 

 

The charge carriers 
confined in all three 
dimensions. 

Source: Roduner et al., 2006 
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Other than that, the QDs solar cell is the one of the QDs applications. Nowadays, 
solar cells are made of semiconductors and the materials to produce it are costly. 
The QDs solar cell is the solar cell pattern that uses QDs as the photovoltaic 
layer. QDs have a tunable bandgap beyond a wide energy level by adjustment 
of the QDs size. This benefit of QDs makes it interesting in making the multi 
junction solar cell.  
 

In recent years, many reported workers had prepared QDs with different 
semiconductors such as zinc tellurite (ZnTe) (Cheng et al., 2015), cadmium 
selenide (CdSe) (Selvan et al., 2005) and indium arsenide (InAs) (Tossoun et 
al., 2019). (Yuwen et al., 2013) had claimed that the different emission of QDs 
can be synthesized if choosing the suitable composition and tuning the size of 
QDs. The difference of emission in near-infrared (NIR) with tunable size is one 
the reason why PbS QDs from the IV-VI semiconductor nanocrystal had been 
selected in this research (Wang et al., 2012). 
 

Meanwhile the technology and applications of QDs grow faster in the past few 
years, the demand to produce more sufficient QDs to achieve the application 
requirement is important to the research field all around the world. So, to produce 
the sufficient QDs, many researchers had altered the QDs properties by capping 
the QDs with organic/inorganic material to form core/shell QDs for improving the 
QDs properties to encounter the need of applications. Figure 1.2 shows the 
illustration of core/shell QDs. 

Figure 1.1: QDs emit at colour in the region of visible wavelength. (Han et 
al., 2014) 
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Many recent works had made an effort to synthesis core/shell quantum dots with 
different types of core shell such as type-I core/shell QDs CdSe/ZnS (Zhu et al., 
2010), type-II core/shell QDs CdTe/CdSe (Kim et al., 2003) and reverse type-I 
core/shell QDs InAs/GaAs (Hospodková et al., 2011). The optical properties of 
core QDs can be improved by passivating the core with the shell material that 
has a larger band gap than core which is these properties fits to type-I core/shell 
QDs (Reiss et al., 2009).  
 

Manganese (Mn) chalcogenides like manganese telluride (MnTe) were chosen 
as the material to encapsulate the PbS core QDs in this experiment. Mn-
chalcogenides take an interest in this topic due to their exciting electronic and 
magneto-optoelectronic properties besides their usefulness in less toxicity of the 
metal cores (Aplesnin et al., 2007). Moreover, MnTe also play an important role 
in this research due to their interesting characteristics in quantum confinement 
and size-dependent photoemission (Li et al., 2020). 
 

In this thesis, we had reported how to synthesize and PbS QDs capped with 
MnTe shell and characterize their structural and optical properties. 
 

  Problem Statement 
 

In past decades, numerous researchers have focused to improve efficiency and 
produce optical properties of devices by the synthesized QDs capped with 
organic ligands. Nevertheless, the fluorescence quantum yields of QDs that 
capped with organic ligands was low due to the surface defects and surface trap 
state (Samuel et al., 2018). This challenge can be handled by producing core 
shell QDs by building a semiconductor shell layer around the core of QDs. The 
shell will protect the core's surface from oxidation while also providing stability to 
improve the luminescence qualities. This is because smoothing of core-surface 
defects causes defect saturation and dangling bonds, which can lead to non-
radiative electron-hole pair recombination.  

Figure 1.2: The figure shows the cross-sectional image of core/shell QDs. 
(Neo et al., 2010) 
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Core/shell QDs have been synthesised using a variety of techniques, including 
organometallic and electrochemical approaches (Reilly et al., 2014; 
Gopalakrishnan et al., 2015). On the other hand, these approaches required long 
and complex synthetic procedures as well as create low-quality structures. 
Organometallic method is often utilized to fabricate core/shell QDs, which 
requires a high temperature and a long procedure. However, high-temperature 
synthesis which is controlled by solvent boiling points, results in a produce high 
defect density. 
 

Electrochemical synthesis has been extensively employed to synthesis 
core/shell QDs because of their benefits which include the use of an aqueous 
solvent, deposition at ambient temperature, and low cost. Regrettably, using an 
electrochemical approach to generate core/shell QDs was problematic due to 
the complexity of generating electrically addressable nanoparticle arrays. This 
inspires us to use a different strategy to make core shell QDs: an aqueous 
synthesis process that is both easy and successful. 
 

This aqueous synthesis approach uses low cost of production because this 
method utilised water as a solvent. This technique also applicable for lead 
chalcogenide. PbS core QDs were synthesised as a control sample in this 
example. By introducing MnTe precursor and form MnTe shell. As a result, 
significant attention has been focused to synthesizing core/shell QDs by layering 
a MnTe shell over a PbS core in order to analyze the effect of the MnTe shell on 
structural and optical properties. 
 

PbS was chosen in this research because of its large exciton Bohr radius. PbS 
has an exciton Bohr radius of 18 nm (Fu et al., 2011), which is relatively big 
compared to other semiconductors as CdS and CdTe QDs, which have Bohr 
radius of 5.8 nm and 7.3 nm (Arellano et al., 2013; Khatei et al., 2012). However, 
the quality of luminescence of core PbS QDs was very low due to oxidation on 
the surface of the core.  
 

MnTe was chosen as the capping material to prevent oxidation on the surface of 
the PbS core due to its unique properties in structural and optical. Beside that, 
the wide band gap MnTe shell that capped PbS core QDs will yield type-I 
core/shell QDs. In past decades, type-I core/shell QDs which is has wide band 
gap shell like PbS/CdS (Lai et al., 2014) and PbS/MnS (Zaini et al., 2020) had 
been produced by other researchers. These wide band gap shells improve the 
light harvesting properties of visible light when used as Quantum Dots Solar Cell 
(QDSC) (Aissat et al., 2017) 
 

In order to verify the growth of the MnTe shell on PbS core in core/shell samples, 
HRTEM and EDX analysis can be performed to characterize the size of particles 
and the elemental composition. In order to understand the effects of temperature 
on PbS QDs and PbS/MnTe core shell QDs, the temperature dependence of PL 
emission of PbS QDs and PbS/MnTe core shell QDs was investigated. Although 
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all electrical devices are designed to work ideally at ambient temperature, their 
capacity to work well at any temperature is still developing. The dominant carrier 
recombination in PbS QDs and PbS/MnTe core core QDs can be investigated 
by varying the temperature in PL emission. Furthermore, the information about 
low energy state of the QDs can be studied by conducting PL measurements at 
low temperature (Valerini et al., 2005) 
 

  Research Objectives 
 

The goals of this research are as follows: 

i. to synthesize PbS QDs capping with MnTe with different shell 

thickness by using aqueous method. 

ii. to study the morphology and PL properties of PbS/MnTe 

core/shell QDs. 

iii. to assess the effect of electron-phonon interaction towards 

bandgap modulation via PL temperature dependence 
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