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Abstract of  thesis presented to the Senate of  Universiti Putra Malaysia in 

fulf illment of  the requirement for the degree of  Master of  Science 

 

PREPARATION OF 3D NANOSTRUCTURED POROUS GRAPHENE 

FRAMEWORK FOR OIL SORBENT APPLICATION 

 

By 

 

NURUL AQILAH POHAN BT TARMIZI POHAN 

 

 July 2021 

 

Chairman  : Mohd Haniff Wahid, PhD 
Faculty  : Science 

 

The preparation of  graphene in three-dimensional (3D) mode serves as an 
alternative to maintain its characteristically large surface area, which under 

normal circumstances, is diminished by the restacking of  the individual  graphene 
sheets. In addition, 3D graphene enables the surface area to be reserved and 
combined with void spaces, the potential as an oil absorbent material is 

anticipated. 

 

In this study, 3D graphene oxide (3D GO) was prepared f rom the Pickering 
emulsion of  GO in water/toluene mixture. The Pickering emulsion was f irst 
prepared by mixing toluene (9.35 M) and water in the presence of  graphene oxide 

(2 mg mL-1). The trapped solvents were then removed by f reeze-drying thus 
forming porous structure. At PVA content 30%, 120 minutes of  sonication and 
thermal reduction temperature of  150 °C for 30 minutes, the targeted surface 

area improvement was observed where the surface area of  3D GO obtained is 
104 m2 g-1 compared to the surface area of  GO in 2D form which is 36 m2 g-1. Oil 
absorption capacity obtained is 145 g  g-1 which is on par with other graphene-

based oil absorbent. 

 

As conf irmed by scanning electron microscopy (SEM), mercury intrusion 
porosimetry (MIP) and Brunauer-Emmett-Teller (BET), the 3D GO displayed dual 
pore size distributions of  macropores and mesopores where porosity value of  

0.95 obtained f rom bulk density of  0.03 g mL-1  ratio to particle density of  0.60 g 
mL-1. The reusability study meanwhile shows at capacity of  145 g g-1 to 55 g g-1 
ten repetition sorption-desorption cycle, the 3D GO able to be reuse although 

downfall signif icantly. 
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Oleh 

 

NURUL AQILAH POHAN BT TARMIZI POHAN 

 

Julai 2021 

 

Pengerusi  : Mohd Haniff Wahid, PhD 

Fakulti  : Sains 

  

Penghasilan graf in dalam mod tiga dimensi (3D) menjadi alternatif  bagi 
mengekalkan ciri luas permukaan tinggi graf in, yang pada kebiasaannya terjejas 
akibat pencantuman semula lapisan helaian individu graf in. Tambahan pula, 

melalui penstrukturan graf in 3D membolehkan kawasan permukaan disimpan 
dan apabila digandingkan bersama ruang rongga yang lompong maka 
penggunaan sebagai bahan penjerap adalah dinantikan. 

 

Dalam kajian ini, graf in oksida 3D (3D GO) telah disediakan daripada emulsi 

Pickering graf in oksida dalam larutan air/toluena. Penyediaan emulsi Pickering 
dimulakan dengan mencampurkan pelarut toluena (9.35 M) dan air dengan 
kehadiran graf in oksida (2 mg mL-1). Pelarut yang terperangkap dikeluarkan 

menggunakan pengering beku yang menghasilkan pembentukan struktur 
berliang. Pada kandungan PVA 30%, 120 minit tempoh sonikasi dan suhu termal 
150 °C untuk 30 minit, kawasan permukaan yang disasarkan telah diperhatikan 

dimana pada 3D GO adalah 104 m2 g-1 manakala bagi kawasan permukaan GO 
dalan bentuk 2D adalah 36 m2 g-1. Kapasiti serapan minyak adalah 145 g g-1 
setanding dengan bahan penjerap minya graf in yang lain. 

 

Seperti yang dibuktiktikan melalui imej mikroskopi pengimbasan elektron (SEM), 

porosimetri merkuri (MIP) dan Brunauer-Emmett-Teller (BET), 3D GO 
memaparkan taburan saiz liang dwi-model iaitu makro dan meso dengan nilai 
keliangan 0.95 yang diperoleh melalui ketumpatan pukal 0.03 g  mL-1 nisbah 

kepada ketumpatan zarah 0.60 g mL-1. Manakala, kajian keupayaan penggunaan 
semula menunjukkan sebanyak 145 g g-1 sehingga 55 g g-1 sepuluh ulangan 
kitaran penyerapan-penyahjerapan, 3D GO boleh digunakan semula walaupun 

mengalami penurunan yang ketara. 
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 1 

CHAPTER 1 

 

INTRODUCTION 

 

1.1  Research background 

 

The idea of  constructing a 3D GO structure can be visualized as arrangement of  
the 2D graphene sheets in space to form a three-dimensional structure. This is 
particularly important for the preservation of  the enormous surface area of  

graphene and the simultaneous incorporation of  porosity into the system 
(Nardecchia et al., 2013). Therein, the empty spaces present within the sheets 
may act as pores that can be utilized for sorption purposes (Fig. 1.1) (Hiew et al., 

2018). Thus far, the use of  3D graphene has already featured in several industries 
of  electrochemical energy storage (Mao et al., 2015), bioelectronics devices (Qiu 
et al., 2017), gas storage (Dos Santos et al., 2017), sensors (Qiu et al., 2017), 

and catalysis (Fan et al., 2015). 

 

The 3D GO conf iguration theoretically constitutes a multi-level, interconnected 
porous architecture comprised of  micropores, mesopores and macropores. In this 
regard, both microporosity and mesoporosity renders graphene the high surface 

area property and acts as side branches for the larger pores to which facilitate oil 
retention, while macroporosity provides easy access of  bulky molecules into the 
sorbent material (Nardecchia et al., 2013). Overall, in general, such hierarchical 

porous structures are desirable due to their immense potentials to enhance 
adsorption properties, catalysis performance, drug delivery and energy 
applications (Fig. 1.2) (Wu et al., 2021, Dutta et al., 2014).   

 

Being abundant in nature, carbon-based material holds potential to be developed 

as functional materials for the future. This includes its possibility to be utilized for 
sorbent applications. To date, dif ferent types of  carbon derived products have 
been studied and used as sorbent materials, namely, activated carbon, carbon 

nanotubes, soot, graphite, and graphene (Gupta et al., 2016).  
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Figure 1.1: Illustration diagram to construct 3D graphene from graphene 
layers. The construction of graphene in 3D mode can allow the full 
utilisation of surface area due to suppressed restacking of the sheets.  

(Image taken f rom Hiew et al., 2018) 

 

 

 

 

 

 

  

Figure 1.2: Schematic illustration of hierarchical porous carbon 
featuring in a) desulphurisation and b) energy applications. (Image 

taken f rom Wu et al., 2021 and Dutta et al., 2014) 
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1.1.1  Background research of graphene-based material 

 

Graphene is a chemically inert carbon allotrope with a theoretical surface area of  
2630 m2/g, making it a promising candidate for absorbent material development. 

It was f irst isolated by A.K. Geim and K.S. Novoselov in 2004 via the mechanical 
exfoliation (“Scotch-tape” method) of  bulk graphite (Novoselov et al., 2004). Since 
then, concentrated ef forts were made in synthesis and modif ication of graphene 

and its derivative and towards exploring its various potential applications 
(Alkhouzaam et al., 2020, Yu et al., 2020, Marcano et al., 2018). Nevertheless,  
the utilisation of  graphene is bound to  the isolation of  its monoatomic layers in 

which the Van der Waals interaction promotes restacking, hence limiting its large 
surface area characteristic (Gupta et al., 2015). 

 

Several works have been reported on the preparation of  3D graphene using 
dif ferent techniques of  which can be classif ied into template-based and template-

f ree method. Examples of  template-based 3D graphene preparation techniques 
are such as polymer f ramework carbonization (Patil et al., 2016), chemical vapour 
deposition (CVD) (Sha et al., 2016) and template-assisted hydrothermal (Yin et 

al., 2014). These techniques, however, are associated with high production costs 
and involves template-removal step at the end of  the process (Hiew et al., 2018). 
Alternatively, sof t template or template-f ree method could possibly lower the 

production cost through alleviation f rom the use of  hard substrate. This includes 
the use of  Pickering-emulsion technique where foams are utilised as template to 
form hollow structures.  

 

Application of  Pickering emulsion technique in dif ferent product manufacturing 

industries and research has started to gain popularity owing to its hard template-
f ree design (Low et al., 2020) and of fering more control towards manipulation of  
the 3D microstructure (Chen et al., 2014). One of  the pioneering works of  

developing 3D graphene using this method was carried out by Chen et al. (2014) 
by introducing amphiphilic graphene oxide sheets to  the water/toluene system 
followed by sonication to establish a long-lasting Pickering emulsion. Af ter the 

removal of  the trapped solvent a 3D hollow graphene oxide structure was 
obtained (Chen et al., 2014). The resultant 3D graphene featured as light-brown 
coloured foam-like material which is highly porous. 
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1.2  Research problems and motivation 

 

Several intervention approaches were identif ied to retain the large surface area 
characteristic of  graphene. One of  the most ef fective and practical to date is by 

introducing oxygen-rich functional groups on the surface of  graphene which 
increases its interlayer spacing and helps stabilizes graphene in aqueous and 
common organic solvents (Rajaura et al., 2016). Even though certain appealing 

characteristics of  graphene such as high mechanical strength and excellent 
electrical conductivity were altered as a result of  oxidation, graphene can still be 
reduced back to recover its properties (De Silva et al., 2017). Meanwhile, very 

recently another alternative approach to preserve the large surface area 
characteristic of  graphene was introduced, namely, formation of  3D graphene 
(Hiew et al., 2018). By constructing graphene in three-dimensional mode, the 

restacking of  graphene sheets is suppressed, hence enabling the utilization of  
graphene’s large surface area (Hiew et al., 2018).   

 

1.3  Significance and impacts of the research 

 

In this study, the method of  preparing 3D graphene adopts the method used by 
Chen et al. (2014) but with additional modif ications. Since the 3D graphene 

developed in this study carries the prospect for absorbent application, the 
microstructural and surface properties of  the sample have been given focus. The 
Pickering emulsion approach was chosen to allow the control of  desired 

microstructures, phase composition and surface chemical properties. This 
approach lowers the production cost through alleviation f rom the use of  hard 
substrate and the foams are utilised as template to form hollow structures.  On 

top of  Chen’s developed method, we have incorporated thermal treatment step 
to recover the hydrophobic property of graphene, as well as studying the ef fects 
of  dif ferent preparation conditions, namely, the addition of  cross -linking agent i.e., 

PVA at dif ferent content, sonication time, and thermal reduction temperature. 
Sonication plays an important role in forming smaller size of  oil droplets which 
contributes to the stabilisation of  the Pickering emulsion formed. The sonication 

was performed at f ixed f requency of  40 kHz at dif ferent time duration to determine 
the appropriate processing time.  Furthermore, the 3D r-GO’s sorption capacity 
and regeneration ability against dif ferent types of  oils and organic solvents were 

also reported herein.  
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1.4  Objectives 

 

The objectives of  this work are as follows: 
 

1. To develop, characterize and identif ied optimum parameter of  the 3D r-
GO foams which encompasses the aspects of  surface area, porosity, 
morphology and response towards oil absorption capacity. 

2. To evaluate the versatility of  3D r-GO foams as sorbent material over 
diverse types of  organic solvents and oils. 

3. To assess an ability of  3D r-GO for regeneration as absorbent material 

and collect the extracted used engine oil. 
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