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The preparation of graphene in three-dimensional (3D) mode serves as an
alternative to maintain its characteristically large surface area, which under
normal circumstances, is diminished by the restacking of the individual graphene
sheets. In addition, 3D graphene enables the surface area to be reserved and
combined with void spaces, the potential as an oil absorbent material is
anticipated.

In this study, 3D graphene oxide (3D GO) was prepared from the Pickering
emulsion of GO in water/toluene mixture. The Pickering emulsion was first
prepared by mixing toluene (9.35 M) and water in the presence of graphene oxide
(2 mg mL1). The trapped solvents were then removed by freeze-drying thus
forming porous structure. At PVA content 30%, 120 minutes of sonication and
thermal reduction temperature of 150 °C for 30 minutes, the targeted surface
area improvement was observed where the surface area of 3D GO obtained is
104 m2g-1 compared to the surface area of GO in 2D form which is 36 m2g-L. Oil
absorption capacity obtained is 145 g g1 which is on par with other graphene-
based oil absorbent.

As confirmed by scanning electron microscopy (SEM), mercury intrusion
porosimetry (MIP) and Brunauer-Emmett-Teller (BET), the 3D GO displayed dual
pore size distributions of macropores and mesopores where porosity value of
0.95 obtained from bulk density of 0.03 g mL1 ratio to particle density of 0.60 g
mL1. The reusability study meanwhile shows at capacity of 145 g g1to 55 g g?
ten repetition sorption-desorption cycle, the 3D GO able to be reuse although
downfall significantly.
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Penghasilan grafin dalam mod tiga dimensi (3D) menjadi alternatif bagi
mengekalkan ciri luas permukaan tinggi grafin, yang pada kebiasaannya terjejas
akibat pencantuman semula lapisan helaian individu grafin. Tambahan pula,
melalui penstrukturan grafin 3D membolehkan kawasan permukaan disimpan
dan apabila digandingkan bersama ruang rongga yang lompong maka
penggunaan sebagai bahan penjerap adalah dinantikan.

Dalam kajian ini, grafin oksida 3D (3D GO) telah disediakan daripada emulsi
Pickering grafin oksida dalam larutan air/toluena. Penyediaan emulsi Pickering
dimulakan dengan mencampurkan pelarut toluena (9.35 M) dan air dengan
kehadiran grafin oksida (2 mg mL?). Pelarut yang terperangkap dikeluarkan
menggunakan pengering beku yang menghasilkan pembentukan struktur
berliang. Pada kandungan PVA 30%, 120 minit tempoh sonikasi dan suhu termal
150 °C untuk 30 minit, kawasan permukaan yang disasarkan telah diperhatikan
dimana pada 3D GO adalah 104 m2 g1 manakala bagi kawasan permukaan GO
dalan bentuk 2D adalah 36 m2 g-l. Kapasiti serapan minyak adalah 145 g g*
setanding dengan bahan penjerap minya grafin yang lain.

Seperti yang dibuktiktikan melalui imej mikroskopi pengimbasan elektron (SEM),
porosimetri merkuri (MIP) dan Brunauer-Emmett-Teller (BET), 3D GO
memaparkan taburan saiz liang dwi-model iaitu makro dan meso dengan nilai
keliangan 0.95 yang diperoleh melalui ketumpatan pukal 0.03 g mL! nisbah
kepada ketumpatan zarah 0.60 g mL1. Manakala, kajian keupayaan penggunaan
semula menunjukkan sebanyak 145 g g sehingga 55 g g1 sepuluh ulangan
kitaran penyerapan-penyahjerapan, 3D GO boleh digunakan semula walaupun
mengalami penurunan yang ketara.
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CHAPTER 1

INTRODUCTION

1.1 Research background

The idea of constructing a 3D GO structure can be visualized as arrangement of
the 2D graphene sheets in space to form a three-dimensional structure. This is
particularly important for the preservation of the enormous surface area of
graphene and the simultaneous incorporation of porosity into the system
(Nardecchia et al., 2013). Therein, the empty spaces present within the sheets
may act as pores that can be utilized for sorption purposes (Fig. 1.1) (Hiew et al.,
2018). Thus far, the use of 3D graphene has already featured in several industries
of electrochemical energy storage (Mao et al., 2015), bioelectronics devices (Qiu
et al., 2017), gas storage (Dos Santos et al., 2017), sensors (Qiu et al., 2017),
and catalysis (Fan et al., 2015).

The 3D GO configuration theoretically constitutes a multi-level, interconnected
porous architecture comprised of micropores, mesopores and macropores. In this
regard, both microporosity and mesoporosity renders graphene the high surface
area property and acts as side branches for the larger pores to which facilitate oil
retention, while macroporosity provides easy access of bulky molecules into the
sorbent material (Nardecchia et al., 2013). Overall, in general, such hierarchical
porous structures are desirable due to their immense potentials to enhance
adsorption properties, catalysis performance, drug delivery and energy
applications (Fig. 1.2) (Wu et al., 2021, Dutta et al., 2014).

Being abundant in nature, carbon-based material holds potentialto be developed
as functional materials for the future. This includes its possibility to be utilized for
sorbent applications. To date, different types of carbon derived products have
been studied and used as sorbent materials, namely, activated carbon, carbon
nanotubes, soot, graphite, and graphene (Gupta et al., 2016).



Figure 1.1: lllustration diagram to construct 3D graphene from graphene
layers. The construction of graphene in 3D mode can allow the full
utilisation of surface area due to suppressed restacking of the sheets.
(Image taken from Hiew et al., 2018)

Hierarchical porous carbon

Figure 1.2: Schematic illustration of hierarchical porous carbon
featuring in a) desulphurisation and b) energy applications. (Image
taken from Whi et al.. 2021 and Dutta et al.. 2014)



1.1.1 Background research of graphene-based material

Graphene is a chemically inert carbon allotrope with a theoretical surface area of
2630 m?/g, making it a promising candidate for absorbent material development.
It was first isolated by A.K. Geim and K.S. Novoselov in 2004 via the mechanical
exfoliation (“Scotch-tape” method) of bulk graphite (Novoselov et al., 2004). Since
then, concentrated efforts were made in synthesis and modification of graphene
and its derivative and towards exploring its various potential applications
(Alkhouzaam et al., 2020, Yu et al., 2020, Marcano et al., 2018). Nevertheless,
the utilisation of graphene is bound to the isolation of its monoatomic layers in
which the Van der Waals interaction promotes restacking, hence limiting its large
surface area characteristic (Gupta et al., 2015).

Several works have been reported on the preparation of 3D graphene using
different technigues of which can be classified into template-based and template-
free method. Examples of template-based 3D graphene preparation techniques
are such as polymerframework carbonization (Patil et al., 2016), chemical vapour
deposition (CVD) (Sha et al., 2016) and template-assisted hydrothermal (Yin et
al., 2014). These techniques, however, are associated with high production costs
and involves template-removal step at the end of the process (Hiew et al., 2018).
Alternatively, soft template or template-free method could possibly lower the
production cost through alleviation from the use of hard substrate. This includes
the use of Pickering-emulsion technique where foams are utilised as template to
form hollow structures.

Application of Pickering emulsion technique in different product manufacturing
industries and research has started to gain popularity owing to its hard template-
free design (Low et al., 2020) and offering more control towards manipulation of
the 3D microstructure (Chen et al., 2014). One of the pioneering works of
developing 3D graphene using this method was carried out by Chen et al. (2014)
by introducing amphiphilic graphene oxide sheets to the water/toluene system
followed by sonication to establish a long-lasting Pickering emulsion. After the
removal of the trapped solvent a 3D hollow graphene oxide structure was
obtained (Chen et al., 2014). The resultant 3D graphene featured as light-brown
coloured foam-like material which is highly porous.



1.2 Research problems and motivation

Several intervention approaches were identified to retain the large surface area
characteristic of graphene. One of the most effective and practical to date is by
introducing oxygen-rich functional groups on the surface of graphene which
increases its interlayer spacing and helps stabilizes graphene in aqueous and
common organic solvents (Rajaura et al., 2016). Even though certain appealing
characteristics of graphene such as high mechanical strength and excellent
electrical conductivity were altered as a result of oxidation, graphene can still be
reduced back to recover its properties (De Silva et al., 2017). Meanwhile, very
recently another alternative approach to preserve the large surface area
characteristic of graphene was introduced, namely, formation of 3D graphene
(Hiew et al., 2018). By constructing graphene in three-dimensional mode, the
restacking of graphene sheets is suppressed, hence enabling the utilization of
graphene’s large surface area (Hiew et al., 2018).

1.3 Significance and impacts of the research

In this study, the method of preparing 3D graphene adopts the method used by
Chen et al. (2014) but with additional modifications. Since the 3D graphene
developed in this study carries the prospect for absorbent application, the
microstructural and surface properties of the sample have been given focus. The
Pickering emulsion approach was chosen to allow the control of desired
microstructures, phase composition and surface chemical properties. This
approach lowers the production cost through alleviation from the use of hard
substrate and the foams are utilised as template to form hollow structures. On
top of Chen’s developed method, we have incorporated thermal treatment step
to recover the hydrophobic property of graphene, as well as studying the effects
of different preparation conditions, namely, the addition of cross-linking agenti.e.,
PVA at different content, sonication time, and thermal reduction temperature.
Sonication plays an important role in forming smaller size of oil droplets which
contributes to the stabilisation of the Pickering emulsion formed. The sonication
was performed at fixed frequency of 40 kHz at different time duration to determine
the appropriate processing time. Furthermore, the 3D r-GO’s sorption capacity
and regeneration ability against different types of oils and organic solvents were
also reported herein.



1.4 Objectives

The obijectives of this work are as follows:

1. To develop, characterize and identified optimum parameter of the 3D r-
GO foams which encompasses the aspects of surface area, porosity,
morphology and response towards oil absorption capacity.

2. To evaluate the versatility of 3D r-GO foams as sorbent material over
diverse types of organic solvents and oils.

3. To assess an ability of 3D r-GO forregeneration as absorbent material
and collect the extracted used engine oil.
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