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Development of sustainable routes to produce bio-based compounds from renewable 

feedstock is the most relevant strategy to counterbalance the inevitable depletion of fossil 

resources in the near future. Therefore, the potential of upgrading of bio-based feedstock 

to produce value added chemicals are highly sought after where ketonization is one of 

the reactions to convert fatty acids into value added alkanones, ready for subsequent 

process to yield lubricants, waxes, and specialty chemicals. Current development in 
ketonization relies heavily on using diluted short chained carboxylic acid as feedstock 

and very few literatures with fatty acids are found, furthermore current ketonization with 

fatty acids results in low to moderate yields of ketone with single metal oxides.  This 

study aims to develop ZrO2 based catalysts for the ketonization of palmitic acid to 

produce elongated ketones as the intermediate in producing high performing bio 

lubricants. In this work, modification of ZrO2 based catalyst with selected transition 

metals dopants have shown promising improvement in catalytic activity of palmitic acid 

ketonization reaction. Small amounts of metal oxide deposition on the surface of ZrO2 

catalyst enhances the yield of palmitone (16-hentriacontanone) as the major product with 

pentadecane as the largest side product. This investigation explores the effects of 

carefully chosen metal oxides (Fe2O3, NiO, MnO2, CeO2, CuO, CoO, Cr2O3, La2O3 and 

ZnO) addition as a dopant on bulk ZrO2. The catalysts are prepared via deposition-
precipitation method followed by calcination at 550°C and characterized by XRD, BET-

surface area, TPD-CO2, TPD-NH3, FESEM, TEM and XPS.  The screening of 

synthesized catalysts was carried out with 5% catalyst loading onto 15g of pristine 

palmitic acid and the reaction carried out at 340°C for 3h. Screening studies show 

catalytic activity improvement with addition of dopants in the order of La2O3/ZrO2 < 

CoO/ZrO2 < MnO2/ZrO2 with the highest palmitone yield achieved using MnO2/ZrO2 

catalyst. This is attributed to the existence of intermediate acid and basic sites on the 

catalyst surface that facilitates the activity of ketonization of palmitic acid. Besides, 

NiO/ZrO2 exhibits high selectivity exclusively for pentadecane compared to other 

catalysts with maximum yield of 24.9% and conversion of 64.9% is observed. 



 

 

ii 

Optimisation of ketonization shows that reaction temperature and time significantly 

influence the overall catalytic activity. In conclusion, under the optimized reaction 

condition of 3h, 340oC and 5% of catalyst loading, highest conversion of 92.3% is 

achieve with obtained palmitone and pentadecane yield of 27.7% and 10.8% 

respectively. 
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Pembangunan laluan lestari untuk menghasilkan sebatian berasaskan bio daripada bahan 

mentah yang boleh diperbaharui adalah strategi paling relevan untuk menampung 

kekurangan sumber fosil yang tidak dapat dielakkan. Oleh sebab itu, cara -cara yang 

berpontensi untuk menaik taraf bahan mentah berasaskan bio untuk menghasilkan bahan 

kimia bertaraf tinggi amat diperlukan di mana ketonisasi merupakan salah satu tindak 

balas untuk menukarkan asid lemak kepada alkanon yang menjadi bahan perantara 

dalam penghasilan minyak pelincir, lilin dan bahan kimia khusus yang lain. 
Perkembangan semasa dalam ketonisasi sangat bergantung pada penggunaan asid 

karboksilik rantai pendek yang dicairkan sebagai bahan mentah dan sangat sedikit 

literatur dengan asid lemak ditemui, tambahan pula ketonisasi semasa dengan asid lemak 

menghasilkan hasil keton yang rendah hingga sederhana dengan menggunakan oksida 

logam tunggal. Matlamat kajian ini adalah untuk membangun pemangkin berasaskan 

ZrO2 untuk ketonisasi asid palmitik untuk menghasilkan keton berantai karbon panjang 

sebagai perantara dalam menghasilkan pelincir bio berprestasi tinggi. Dalam 

penyelidikan ini, pengubahsuaian pemangkin berasaskan ZrO2 dengan dopan logam 

peralihan terpilih telah menunjukkan peningkatan yang yang memberangsangkan dalam 

aktiviti tindak balas ketonisasi asid palmitik. Oksida logam dalam jumlah yang kecil yg 

dimendapkan pada permukaan mangkin ZrO2 meningkatkan hasil palmitone (16-

hentriacontanone) sebagai produk utama dengan pentadekana sebagai hasil sampingan 
terbesar. Penyelidikan ini mengkaji kesan penambahan oksida logam terpilih (Fe2O3, 

NiO, MnO2, CeO2, CuO, CoO, Cr2O3, La2O3 dan ZnO) sebagai dopan pada ZrO2. 

Pemangkin disediakan melalui kaedah pemendapan-kerpasan diikuti dengan 

pengkalsinan pada 550°C dan dicirikan oleh XRD, BET-Kawasan permukaan, TPD-

CO2, TPD-NH3, FESEM, TEM dan XPS. Saringan pemangkin yang disintesis tersebut  

telah dijalankan dengan 5% pemangkin dimuatkan pada 15g asid palmitik tulen dan 

tindak balas dijalankan pada 340°C selama 3 jam. Kajian saringan menunjukkan 

peningkatan aktiviti pemangkin dengan dopan mengikut urutan La2O3/ZrO2 < CoO/ZrO2 

< MnO2/ZrO2 dengan hasil palmitone tertinggi dicapai menggunakan mangkin 

MnO2/ZrO2. Ini disebabkan oleh kewujudan tapak asid dan bes perantaraan pada 
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permukaan mangkin yang memudahkan aktiviti ketonisasi asid palmitik. Didapati juga, 

NiO/ZrO2 mempamerkan selektiviti tertinggi untuk pentadekana berbanding pemangkin 

lain dengan hasil maksimum 24.9% dan penukaran sebanyak 64.9% diperhatikan. 

Pengoptimuman tindak balas ketonisasi menunjukkan bahawa suhu dan masa tindak 

balas adalah sangat signifikan dalam mempengaruhi keseluruhan aktiviti pemangkin. 
Kesimpulannya, di bawah keadaan tindak balas yang dioptimumkan iaitu 3h, 340oC dan 

5% pemuatan mangkin, penukaran tertinggi sebanyak 92.3% dicapai dengan hasil 

palmitone dan pentadekana yang diperolehi masing-masing sebanyak 27.7% dan 10.8%. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 The background of lubricants industry 

Lubricants are defined as a substance that is used to modify the friction and wear of the 

surfaces that comes into contact with one that is in relative motion (Harris & Kotzalas, 

2006; Uhler et al., 2016). Mostly utilised in the industrial and transport sector, lubricants 

are currently produced through refineries or petrochemical plant that processes crude 

oils or natural gas. Lubricants play a pivotal role in engine functions such as controlling 

friction between surfaces, reducing wear by preventing metal to metal contact and 
controlling the temperature by reducing the heat from fluid friction and combustion of 

fuel (Lubrizol, 2015) and the supply for this substance is in huge demand. However, the 

processing, utilization and disposal of this substance are causing irreparable harm to the 

environment. It is estimated that about 50% of lubricants sold worldwide end up in the 

environment via volatility, spills and accidents (Chand & Kumar, 2017). Low 

biodegradability of mineral based lubricants added to its high ecotoxicity are a threat to 

the ecosystem, hence, the increased utilization of synthetic lubricants is a step in 

reducing the resultant environmental impact. Synthetic lubricants have higher 

performance, resulting in higher efficiency and lower fuel consumption, yet the ever-

rising demands of this petroleum derived product only increases its contributions 

towards environmental harm. According to the United States Environmental Protection 
Agency (USEPA), greenhouse gas emissions from transportation sector is the largest 

contributor of U.S. greenhouse gas emissions, totalling to about 27% in the year 2020. 

(USEPA, 2022).  

Lubricants are made of 80 – 90% base oils which are made of petroleum hydrocarbon 

distillates and 10-20% additives. The base oil portion is primarily made up of saturated 

long-chain hydrocarbons of 15-30 carbon atoms length (Hutchings & Shipway, 2017). 

Base oils can be of mineral oils or synthetic hydrocarbons such as poly alpha olefins 

(PAOs) and esters. PAOs are ethylene-derived polymerized linear α-olefins comprising 

30 or more carbon atoms that are widely used in automobiles fluids, turbine gear, and 

bearing oils (Nikolakopoulos et al., 2018). PAOs are colourless liquid with well-defined 

isoparaffinic structures and high degree of saturation that offers excellent thermal 

stability to the substance. The demand for PAOs doesn’t show a plateau in the near 
future. The global PAO market size is estimated to grow at a CAGR of 2.9%, reaching 

USD 17.5 billion by 2023, as reported by Markets and Markets (MarketsandMarkets, 

2019). Although synthetic base oils and lubricants are considered high performance 

lubricants with less environmental impact than mineral base oils, the adverse effects of 

these chemicals are very well documented. Ecosystems are interrupted with non-

biodegradable lubricants disposal as well as emissions increase as the result of 

combustion (Singh & Goel, 2018). Hence, it is vital to find alternate sources which are 

eco-friendly and sustainable to produce lubricants and base oil. Biomass derived 

products is a potential and viable alternative to produce the intermediates needed. 
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1.2 Upgrading of bio feed into value added chemicals 

Development of sustainable routes to produce bio-based compounds such as alcohols, 

fatty esters, and ketones from renewable feedstock is the most relevant strategy to 

counterbalance the inevitable depletion of fossil resources in the near future. Therefore, 

the potential of bio-lubricants development and its applications has received a wider 

consideration from researchers. The use of bio-based feedstock to produce fuel and 

lubricants are currently the most sought after route with the use of heterogenous catalysts 

being vital in this process (Immer et al., 2010). High oxygen content of biomass 

feedstock has negative effects on the finished hydrocarbon products, such as low heating 
value, contributes to high viscosity and often immiscible with conventional fluids, hence 

the need for oxygen removal. Converting these oxygenated feedstock is regarded as a 

complex process that requires extensive transformative steps in order to reduce the 

oxygen content of the bio feed, while keeping the carbon and hydrogen intact (Aranda-

pérez et al., 2017).  

Figure 1.1 shows a roadmap of how different bio-based feedstock can be converted to 

value added hydrocarbons. Oxygenated feedstock such as triglycerides, lignocellulosic 

masses, polysaccharides, fatty acids can be converted via reactions such as pyrolysis, 

esterification, transesterification, hydrodeoxygenation, hydrogenation and others to 

yield biofuels, bio oils and other value added compounds (R. Kumar et al., 2018). 

Pyrolysis is a thermochemical decomposition of a feedstock and convert them to value 
added products in the presence of a catalyst and the absence of oxygen (Basu, 2018). 

Biomass, which are a mixture of cellulosic materials, lignin and other organics are 

usually pyrolyzed at high temperatures to produce bio-oil that consists of polar organics 

(75-80%) and water with release of vapours (Banks & Bridgwater, 2016). On the other 

hand, direct esterification of acids and alcohol and ester-ester/ester-alcohol based 

transesterification are of major importance in the processing of biodiesel and renewable 

chemicals (Hoydonckx et al., 2004; López et al., 2008). Oxygen eliminating 

hydrodeoxygenation (HDO) is a reaction that removes oxygen from oxygenated 

compounds using metal oxide catalysts with nickel-molybdenum and cobalt-

molybdenum being the commonly used catalysts (Galadima et al., 2022). In the HDO 

process, a series of reactions (inclusive of hydrogenation, hydrogenolysis, 

decarbonylation, and hydrolysis) takes place to yield green fuels and chemicals (Zaiman 

Zhang & Li, 2022).  

These bio feedstock can also be upgraded to produce sustainable base oils and PAOs as 

part of bio-lubricant production. Figure 1.2 shows multiple pathways of upgrading fatty 

acids and fatty esters into bio-PAO as reported by Yusop and Hong, 2013. Both fatty 

acids and esters can undergo hydrogenation reaction to produce alkanes or fatty alcohols 

respectively. In hydrogenation, the unsaturated double bonds react with hydrogen over 

catalysts, usually nickel based catalysts. 

 



 

 3
 

 

F
ig

u
r
e
 1

.1
 :

 R
o
a
d

m
a
p

 o
f 

b
io

m
a
ss

 t
o
 f

u
e
l 

r
a

n
g

e 
h

y
d

r
o
c
a
r
b

o
n

 c
o
n

v
e
r
si

o
n

 (
R

. 
K

u
m

ar
 e

t 
al

.,
 2

0
1

8
) 

A
ld

o
l 

=
 a

ld
o
l 

co
n

d
en

sa
ti

on
 p

ro
d
u
ct

, 
D

=
 d

eh
yd

ra
ti

o
n

, 
K

=
 k

et
o
n

iz
at

io
n

, 
H

=
 h

yd
ra

ti
on

, 
h

 =
 h

yd
ro

g
en

at
io

n
, 
h

l 
=

 h
yd

ro
g
en

o
ly

si
s,

 C
 =

 c
yc

li
za

ti
o
n

, 
g
 

=
 

ri
n

g
 

o
p

en
in

g
, 

O
li

g
.=

o
li

g
o
m

er
iz

at
io

n
, 

F
T

 
=

 
F

is
ch

er
-T

ro
p

sc
h

, 
in

te
r.

=
in

te
rm

ed
ia

te
, 

C
#
=

 
h

yd
ro

ca
rb

o
n

 
w

it
h

 
#
 

n
u
m

b
er

 
o
f 

ca
rb

o
n

s,
 

H
C

=
 

H
y
d

ro
ca

rb
o
n

, 
O

l 
=

 a
lc

o
h

o
l,

 O
n

e 
=

 k
et

o
n

e,
 A

l 
=

 a
ld

eh
yd

e,
 P

A
 =

 P
en

ta
n

o
ic

 a
ci

d
, 

5
-H

M
T

H
F

 =
 5

-h
yd

ro
x

ym
et

h
yl

te
tr

ah
yd

ro
fu

rf
u
ra

l,
 T

H
F

 =
 

T
et

ra
h

yd
ro

fu
rf

u
ra

l,
 D

M
F

=
 D

im
et

h
yl

 f
u
ra

n
, 

U
n

. 
p

o
ly

m
er

 =
 U

n
sa

tu
ra

te
d

 p
o
ly

m
er

, 
4

-H
P

A
 =

 4
-h

yd
ro

x
yp

en
ta

n
o
ic

 a
ci

d
, 

G
V

L
=

 γ
-v

al
er

o
la

ct
o
n

e,
 

H
M

F
=

 F
u

rf
u
ra

l,
 T

H
f=

 t
et

ra
h

yd
ro

fu
ra

n
, 
an

d
 L

A
 =

 L
ev

u
li

n
ic

 a
ci

d
 



 

 

4 

These compounds further undergo selective dehydrogenation and dehydration to 

produce olefins, which is the starting material for the production of bio PAO (Ray et al., 

2011; Yusop & Hong, 2013). Another pathway shown in Figure 1.2 (Route 2) is via the 

decarboxylation of fatty acids, where the carboxyl group is removed, leaving an olefin 

to be converted to bio-PAO (Yusoff, I, Yusop, N. M., Basar, J., Belhocine, T., Saleh, 

2013). 

 

Figure 1.2 : Pathways to produce bio-PAO (Yusop & Hong, 2013) 

 

 

Apart from these aforementioned pathways, one other catalytic reaction pathway that 

can convert these bio feedstocks into base oil for lubricants is shown in Figure 1.3. Fatty 

acids and triglycerides undergo a two-stage reaction process, ketonization followed by 

hydrogenation, to yield base oil (bio-PAO) for lubricant production. Ketonization, or 

ketonic decarboxylation is a carbon coupling reaction of fatty acids with a release of CO2 

and water yielding a corresponding ketone (Murzin et al., 2019).  

 

Figure 1.3 : Two-step pathway to bio-base oil (bio-PAO) 

 

 

The first stage of the pathway shown in Figure 1.3 is ketonization of fatty acids where 

catalysts are employed in converting oxygenated compounds like fatty acids (Gaertner 

et al., 2010). Ketonization converts the carboxylic acids to form new C-C bonds via 

decarboxylative carbon coupling to yield alkanones, carbon dioxide (CO2) and water 

(H2O) (Wang & Iglesia, 2017):  
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2R1COOH → R1C(=O)R1  + CO2 + H2O   (R1 = alkyl)          (Eq. 1.1) 

This reaction proves to be an attractive pathway in upgrading bio-derived feedstock in 

that three oxygen atoms are removed, and the carbon chain is elongated to yield heavier 

carbon components (Wang & Iglesia, 2017). The produced alkanones are ready for 

subsequent process to yield waxes, lubricants and specialty chemicals (Gaertner et al., 

2010). 

1.3 Potential of fatty acids from palm industry in bio lubricant value chain  

In Malaysia, palm oil and palm-based bio feed is the main source of feedstock for 

biofuels (biodiesel, green diesel) and other biochemicals in the oleochemical industry. 
Malaysia currently accounts for 28% of world palm oil production and 33% of world 

exports. If taken into account of other oils and fats produced in the country, Malaysia 

accounts for 9.5% and 19.7% of the world’s total production and exports of oils and fats 

(MPOC, 2019). One of the by-products of palm oil extraction is known as Palm Fatty 

Acids Distillates (PFAD), which accounts for up to 5% of the raw material inputs and 

considered as an unwanted processing residue (Neste, 2019). Palm fatty acid distillates 

are composed of several types of fatty acids with carbon chain lengths in the range of 

C12 - C18 with C16 being the largest fraction of above 45% (Tay et al., 2009). Table 1.1 

shows the fatty acid profile of a PFAD feedstock where palmitic acids being the largest 

saturated fatty acid constituent (Lokman et al., 2014).  

Table 1.1 : Fatty acids profile of PFAD feedstock 

 
Fatty Acid Formula Carbon Structure Composition wt.% 

Myristic acida C14H28O2 C14:0 1.93 ± 0.12 
Palmitic acida C16H32O2 C16:0 45.68 ± 1.52 
Stearic acida C18H36O2 C18:0 4.25 ± 0.04 
Oleic acidb C18H34O2 C18:1 40.19 ± 1.29 

Linoleic acidc C18H32O2 C18:2 7.90 ± 0.11 
aSaturated fatty acids; bMonounsaturated fatty acids; cPolyunsaturated fatty acids 

 

 

The highly paraffinic structure of PFAD is suitable for conversion to paraffinic 

hydrocarbon products. However, PFAD’s high oxygen containing constituents needs to 

be upgraded into feasible starting material for production of fuel, lubricants or other 

oleochemical synthesis.   

1.4 Application of heterogenous catalysts in bio-lubricant synthesis 

Catalysts are classified as substances that increases the rate of a chemical reaction 

without itself becoming permanently involved in the reaction (Richardson, 2013). 

Hence, the catalyst would not be part of the overall stoichiometry of the reaction, but it 
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will be part of the reaction mechanism steps. Catalysts play a role in reducing the 

activation energy (Ea) of a reaction without disturbing the energy difference between 

reactant and products as shown in Figure 1.4. 

 

Figure 1.4 : Catalyst lowering the activation energy for a reaction  

(Flowers et al., 2022) 

 

 

Catalysts are usually divided into homogenous, heterogenous and enzymatic catalyst. 

(Richardson, 2013). Most of the industrial processes employ heterogenous catalysts for 

ease of handling and separation. Metal oxides catalysts are often employed in the 

processing of bio-feedstock into value added chemicals, and common catalysts used in 

these processes are given in Table 1.2.  

Table 1.2 :  Common metal oxide catalysts used in bio feed processing 

 
Reaction Common Catalysts Ref 

Hydrogenation Pd/Pt catalysts  
Hydrodeoxygenation Ni–Mo and Co–Mo,  

Al2O3-supported sulphided Ni–
Mo and Co–Mo  

(Kim et al., 2019) 

Decarboxylation Noble metals such as Pd and 
Pt, Ni 

(Wu et al., 2016) 

Gasification K, Na, Ca, Mg based catalyst (Arnold & Hill, 2019) 

Transesterification CaO, MgO, SrO (Borges & Díaz, 2012) 
Ketonization Transition metal oxides like 

TiO2, ZrO2,  
(Pham et al., 2013) 
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1.5 Evolution of catalysts for ketonization of carboxylic acids  

Ketonization of carboxylic acids to produce symmetrical ketones is an attractive option 

for fatty acid conversion as it transforms the feedstock into a longer carbon chain value 

added product with elimination of three oxygens for every two carboxylic acids. It is 

also a clean reaction as there are no dangerous by products are formed (Murzin et al., 

2019). Ketonization was first reported as dry distillation of calcium acetate to acetone in 

early 1858 and until 1920s it was the industrially used method to produce acetone (Renz, 

2005). Improvements to this process into a semi -continuous process was developed 

around 1928, around the same time heterogenous catalytic processes for ketonization in 
the gas  phase were  reported. The interest in ketonization slowly waned however, before 

its recent resurgence. 

A variety of basic, acidic and amphoteric metal oxide catalysts have been screened in 

the catalytic ketonization reaction (M. Gliński et al., 2014; R. Kumar et al., 2018; Renz, 

2005). Based on those findings, amphoteric reducible metals such as ZrO2  have been 

shown to be a more effective catalyst compared to other oxides in ketonization 

(Simakova & Yu, 2016). Fally et al. (2000) reported that high ketonization activity of 

ZrO2 catalyst is due to the formation of a highly defective surface, higher Lewis acid 

content and oxygen vacancies (Fally et al., 2000). The role of heterogenous catalysts and 

the mechanisms of the ketonization reaction have been heavily reviewed in the literature, 

however, there is no collective agreement on the definitive ketonization mechanism 
(Boekaerts & Sels, 2021). Several possibilities of the mechanism has been put forth to 

explain ketonization among them being bulk ketonization, roles of α-hydrogen, ketene 

intermediates and β-ketoacid intermediates and there are compelling evidences in favour 

of the β-ketoacid intermediate route to produce ketones (Boekaerts & Sels, 2021; Pham 

et al., 2013). The study by Pham et al. (2013) illustrates the mechanism of the 

ketonization of carboxylic acids via the β-ketoacid intermediate where coupling of an 

enolized carboxylate with a  carboxylate or an acylium. These β-ketoacids readily 

decompose at mild temperatures to produce ketone and CO2. 

 

Figure 1.5 : Ketonization mechanism via β-ketoacid intermediate (Pham et al., 2013) 
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There is only a small amount of published work on the ketonization of fatty acids. Corma 

et al. (2008) have demonstrated the ketonization of lauric acid at high conversion and 

selectivity (98%) over MgO catalyst in the gas phase (Corma et al., 2008). In another 

study that investigated the saturation of fatty acids in the ketonization efficiency, it is 

found that the ketonization selectivity to ketones decreased with increasing unsaturation 

due to cracking that leads to production of coke (89% to 75%) (K. Lee et al., 2018). 

Most of the literature and studies on ketonization investigates the conversion of short 

chained carboxylic acids such as acetic acids, propionic acids and pentanoic acids 

(Murzin et al., 2019).  A screening study conducted by Gliński et al. (2014) shows the 

ketonization of propionic acid over 32 metal oxide catalysts at temperatures 350 to 

450°C and compared the activity of those oxides. Their findings clearly show there are 

three groups of catalysts according to its activity; slightly active, fairly active and the 

highly active where oxides of manganese, zirconium, cerium, thorium, and uranium are 

placed in the highly active category (M. Gliński et al., 2014). Furthermore, to increase 

the selectivity and yield, the carboxylic acid feed is often diluted using solvents like 

hexane, dodecane and xylene (Y. Guo et al., 2020; Maluangnont et al., 2017; Snell & 

Shanks, 2013a). Overall, it should be noticed that a variety of feedstock has been used 

in ketonization, although the focus is mostly on diluted short chained carboxylic acids.  

1.6 Problem Statement  

Fossil fuel-based hydrocarbon products (fuels, lubricants, and chemicals) are large 
contributors to carbon emission, cause irreparable harm to the environment and a major 

stumbling block in achieving SDG goals. The shift to utilize readily available renewable 

and alternative feedstock is a valuable step in producing bio derived products such as 

bio lubricant and its intermediates. Furthermore, the utilization of these bio-derived feed 

is a natural progression towards reaching sustainability goals. Ketonization is an 

attractive pathway to upgrade renewable feedstock into value added sustainable 

chemicals (fuel, lubricants, wax, and intermediates). Most of the previous studies focuses 

heavily on ketonization of short chain carboxylic acids (acetic and propionic acid) 

whereas the requirements for sustainable chemicals like lubricants and its intermediates 

often require long chain paraffins and isoparaffins (C20-C40). Moreover, acid feeds are 

often diluted with expensive solvents to increase the activity of ketonization. The acids 

are diluted 1-50% in solvents like dodecane or xylene, making the process very solvent 
intensive. Solventless ketonization on the other hand, pose limitations on the reaction in 

terms of steric hindrance of the long alkyl chain of long chain fatty acid thus reducing 

the activity of the catalyst. Apart from this , current literature does not elucidate strongly 

the physico-chemical properties of catalysts suited for ketonization although acid-base 

amphoteric characteristics of the catalysts are often mentioned as a promoting factor for 

the reaction.  

This study aims to improve the catalyst activity of long chain fatty acid ketonization 

under in bulk, solventless conditions by developing catalysts and changing the physico-

chemical characteristics using transition metal dopants. Based on literatures, we explore 

the effect of a series metal oxide dopants (Fe2O3, NiO, MnO2, CeO2, CuO, CoO, Cr2O3, 
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La2O3 and ZnO) supported on ZrO2 for the ketonization of palmitic acid and it is 

expected that these dopants will influence the physico-chemical characteristics of the 

base ZrO2 (i.e., acid/base nature). Therefore, the synergistic effects of these added 

dopants on ZrO2 are investigated to convert solvent-free, bulk palmitic acid (C15COOH) 

to palmitone (C31H62O). Since most of the previous studies focused on ketonization of 
diluted short chain carboxylic acids, there is a research gap in application of longer chain 

fatty acids as a feedstock for solventless ketonization. Hence, this study aims to illustrate 

the activity of various metal oxide catalysts in palmitic acid ketonization and identify the 

most active metal oxide dopants and its physico-chemical characteristic to enhance the 

product yield and selectivity. 

1.7 Objectives  

The main objective of this study is to identify the best catalyst ZrO2 based catalyst 

candidate for the ketonization of palmitic acid. The specific objectives of this research 

are listed as below: 

 

1. To synthesize and characterise Zirconia supported catalysts with addition of 

selected dopants via deposition-precipitation method (Fe, Ni, Ce, Cu, Cr, Co, 

Mn, La, and Zn). 

2. To perform catalytic ketonization of bulk palmitic acid using the prepared 

catalysts. 

3. To optimize ketonization reaction parameters, namely the reaction temperature, 

catalyst loading, and reaction time to achieve highest ketone yield based on the 

best catalyst candidate from Objective 2. 
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