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High aspect ratio (HAR) and flexible wing models have multiple benefits. However,
due to the nonlinear properties of this type of structure, the linear solution of static
aeroelastic response is not sufficient to analyse the wing characteristics. Thus, making
the option become more and more undesirable due to the complexity of the
conventional finite element (FE) nonlinear analysis. To improve the computational
efficiency of the nonlinear analysis of the HAR and flexible wing models, the
Combined Modal Finite Element approach is used to characterize the nonlinear
properties of the HAR wing model by the development of nonlinear reduced order
models (NROM). However, till time no set of clear guidelines on the production of
load cases to develop the NROM using the CMFE approach. Therefore, the research
proposes a load case selection technique to develop the NROMs and investigates the
possibility of predicting the nonlinear static aeroelastic response by prescribing
eigenmode based load cases. For the conduct of the study in a systematic manner, the
programming routine was developed and coupled with the finite element solver. The
selection guideline starts with the selection of the normal modes with the most
significant contribution. With the modes selected, the loading profiles were prescribed
and the load cases were developed with the maximum force range criteria set. The load
cases are then with the use of CMFE approach are utilized to develop the NROM to
predict the nonlinear static aeroelastic deformations. The predicted nonlinear static
aeroelastic response are verified with the conventional nonlinear finite element analysis
and compared in terms of mean error and standard deviation. The load cases developed
based on the load case selection technique is able to produce highly accurate NROMs.
The study also concludes the possibility of using eigenmode based load cases to predict
the nonlinear static aeroelastic response is encouraging. The NROM developed based
on the eigenvector load case is a viable option since the overall results show good
agreement with the nonlinear deformations obtained from the FE analysis. It is also
suggested that the NROM to be developed with individual based bending and torsional
load cases since these show a more accurate result than the combined bending and



© C
OPYRIG

HT U
PM

ii

torsional load case. From the results, it is concluded the accuracy of the NROM is up to
97.5% of the maximum bending deflection of the wing model whereas for the twist
deflection the accuracy is up to 99%. With the availability of a detailed guideline for
the load case selection and the suggestion of using eigenmode based load cases,
enables researchers to explore more into the option of development NROMs using the
CMFE approach. Hence, this provides a more desirable alternative solution in
comparison to the more complex and tedious approach of nonlinear FE analysis
approach in a case of static aeroelastic deformation of high aspect ratio and highly
flexible wing model.
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ASPEK TINGGI

Oleh

THINESH A/L CHANDRASEGARAN

November 2020

Pengerusi : Mohammad Yazdi Harmin, PhD
Fakulti : Kejuruteraan

Model sayap nisbah bidang tinggi (HAR) dan fleksibel mempunyai pelbagai kelebihan.
Walau bagaimanapun, disebabkan sifat ketidakselarian jenis struktur ini, penyelesaian
selari bagi tindak balas aerokekenyalan statik tidak mencukupi untuk menganalisis ciri
sayap. Oleh itu, pilihan ini semakin tidak diingini kerana kerumitan analisis unsur
terhingga (FE) tidak selari. Untuk meningkatkan kecekapan komputasi analisis unsur
terhingga tidak selari bagi model sayap HAR dan fleksibel, pendekatan kaedah
gabungan modal unsur terhingga (CMFE) digunakan untuk mencirikan sifat tidak selari
model sayap HAR dengan pembinaan Model Ketidakselarian order terturun (NROM).
Namun, sehingga kini masih tiada set garis panduan yang jelas terhadap terbitan kes
beban untuk membangunankan NROM menerusi kaedah CMFE. Maka, kajian ini
mencadangkan teknik pemilihan kes beban untuk membangunkan NROM dan
menyiasat kemungkinan bagi meramal tindak balas aerokekenyalan statik dengan
menentukan kes beban berasaskan mod eigen. Garis panduan pemilihan dimulakan
dengan pemilihan mod normal dengan sumbangan paling ketara. Bagi menjalankan
kajian secara sistematik, rutin pengaturcaraan dikembangkan dan digabungkan dengan
pemecah elemen hingga. Garis panduan pemilihan dimulakan dengan pemilihan mod
normal dengan sumbangan paling ketara. Dengan mod yang dipilih, profil pemuatan
ditetapkan dan kes beban dikembangkan dengan kriteria julat daya maksimum yang
ditetapkan. Kes beban kemudian dengan penggunaan pendekatan CMFE digunakan
untuk mengembangkan NROM untuk meramalkan ubah bentuk aeroelastik statik
nonlinier. Tindak balas aerokekenyalan statik tidakselari yang diramalkan disahkan
dengan menggunakan kaedah lazim analisis unsur terhingga tidak selari dan
dibandingkan dari segi purata perbezaan dan sisihan piawai. Kes-kes beban yang
dibangunkan berdasarkan teknik pemilihan kes beban dapat menghasilkan NROM yang
sangat tepat. Kajian ini juga menyimpulkan bahawa kemungkinan untuk menggunakan
kes beban berasaskan mod eigen bagi meramalkan tindak balas aerokekenyalan statik
tidak selari adalah memberangsangkan. NROM berdasarkan kes beban vector eigen
merupakan pilihan yang dapat dilaksanakan kerana keputusan keseluruhan
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menunjukkan persetujuan yang baik dengan perubahan bentuk tidak selari yang
diperolehi daripada analisis unsur terhingga. Juga dicadangkan agar NROM
dibangunkan dengan kes beban mod kilas dan lentur secara individu dimana keputusan
yang lebih tepat diperolehi jika dibandingkan dengan kes beban gabungan dua mod ini.
Dari hasilnya, dapat disimpulkan bahawa ketepatan NROM adalah hingga 97.5% dari
pesongan lenturan maksimum model sayap sedangkan untuk pesongan lilitan ketepatan
hingga 99%. Dengan ketersediaan garis panduan terperinci bagi pemilihan kes beban
dan cadangan menggunakan kes beban berasaskan mod eigen, membolehkan para
penyelidik untuk meneroka lebih banyak pilihan bagi pembangunan NROMs
menggunakan kaedah CMFE. Maka, ini menyediakan penyelesaian alternatif yang
lebih diinginkan berbanding dengan kaedah analisis unsur terhingga tidak selari yang
lebih complex dan merumitkan bagi kes ubah bentuk aeroekekenyalan statik untuk
model sayap nisbah bidang tinggi dan sangat fleksibel.
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CHAPTER 1

INTRODUCTION

This chapter details the motivation behind the study and the study scope. The sections
are detailed to as well as to enlighten the reader the reasoning, the importance of the
study and the objectives to be achieved at the completion of the research.

1.1 Background and Motivation

The aviation industry is at a blooming stage and is commonly seen as a lucrative
industry. However, the truth is the industry has a very low-profit margin and is
susceptible to the slightest change in world economics (Rogeria.G.E, Michael.M, 2014).
This can be clearly seen with the bankruptcy of Thomas Cook. Hence, with this in
mind airlines try their very best to maximize their profit margin and it is claimed by the
International Air Transport Association (IATA) that approximately 24% of the
operating cost is constituted of fuel cost (IATA, 2019; IATA, 2019) . Moreover, some
countries prohibit non-native airlines to tanker fuel into the country hence leaving the
airlines susceptible to the high Jet-A fuel in the country.

Furthermore, the fragility of the aviation industry can be seen during the Coronavirus
pandemic where the whole world went into total lockdown. The aviation industry was
hit hard by this pandemic, with some airlines being in serious financial circumstances
and some opting to reduce their crew total to sustain the heavy lost endured. European
constituencies such as ACARE has initiatives in place like the FlightPath 2050 which
require the aircraft manufacturers to achieve a certain threshold in terms of aircraft
competence and efficiency. These are the pitfalls dealt by operating airlines hence
airliners look into more into the efficiency of the aircraft as way to cut down their
operating costs hence maintaining a relatively higher profit margin.

Some of the possible alterations which can affect the range of the aircraft to maximize
the profit margins are; by improving the (V/TSFC) term via engine improvement,
reduce the structural weight which increases the (Wi/Wf) term and by increasing the
lift to drag ratio by increasing the aspect ratio of the wing. In this study, the aspect ratio
of the wing is given focus.

However, the problem with high aspect ratio wings are these wings are susceptible to
geometric nonlinearity as these wings will have a larger wing deformation. Moreover,
the wings are prone to higher deflections at same conditions compared to the aircraft
having a lower aspect ratio. This leads on to the problem where the aeroelastic analysis
of the wing based on linear theory fails. High aspect ratio wings and flexed wings are
subjected to nonlinear behavior with similar loading conditions in comparison to
relatively lower aspect ratio wings. The above statement is reinforced with the incident
of the B787’s wing flexed upwards by 25 ft which is approximately thrice more than
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the deformation due to most extreme condition that will be faced by aircraft during
their life span (Nhan T. N, Eric.T, Daniel.C, 2017; Arezu.J, 2015).

Although HAR wings have very beneficial properties which can be exploited but these
wing models are not preferred due to the complexity of the nonlinear analysis and high
computing time. In general, the finite element software has the capability to analyze the
nonlinear behavior of the model in static and dynamic systems however the time and
effort to be invested in these analyses make it an unappealing option to have. Thus, a
faster simulation is more desirable in order to characterize the nonlinearity of the model
and predict the nonlinear behavior of the model without compromising on the accuracy
of the analysis. Hence, to reduce computing time and modelling time, a reduced order
model is utilized. With the assistance of curve-fitting techniques, the study is to
investigate the accuracy of the reduced order model with the analysis of nonlinearity
with MSC PATRAN and MSC NASTRAN. With regards to the development of the
NROMs, a common method used by many is the NROM development based on the
Combined Modal Finite Element (CMFE) technique. The accuracy of the NROMs
using the CMFE technique is mainly dependent on the selection of the load cases to
develop the NROMs as well as the normal mode selection.

However, the development of the NROMs based on the CMFE approach has set-back
due to the vague description of the procedures involving the NROM development. This
hinders many to the use of this approach to develop a more efficient NROM. Moreover,
with the absence of guidelines to develop this mode of analysis, the efficiency of the
analysis is compromised along with the increment of workload especially in the load
selection and normal mode selection section. This will lead into the use trial and error
method which severely hampers the efficiency of the CMFE based approach. Hence,
this study is orientated into the development of a guideline for the development of the
NROM equations based on the CMFE approach. Based on this development, the
accuracy of the equations is verified amongst three varying wing aspect ratios which
would ensure the flexibility of the guideline. The study also adventures into the
suggestion of the type of loading profiles to be used during the load case definition
stage to improve the accuracy of the NROMs.

1.2 Problem Statement

Since there are no clear procedures available for the development of NROMs using the
CMFE approach, the study mainly centers on the proposal of an effective guideline on
the load case selection and normal mode selection. The study further adventures into
investigating the accuracy of the proposed guidelines.
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1.3 Aim and Objectives

The aim of this study is to investigate the proposed guideline on the development of
nonlinear reduced order model (NROM) for static aeroelastic conditions for HAR
cantilevered wing models via the Combined Modal Finite Element (CMFE) approach.
Three aspect ratio wing models were considered for the analysis to ensure confidence
that the proposed guideline is versatile to be used in multiple HAR wing models.

The objectives of the study are as the following:

I. To model CMFE design environment of cantilevered HAR wing models.

II. To develop the load case selection guideline for the CMFE based NROM
development.

III. To evaluate the effectiveness of NROM using the proposed load case selection
guideline in the prediction of the static aeroelastic deformations in comparison
to the FEA based deformation results for a predefined range airspeed and
angle of attack.

1.4 Research Questions

The research questions of the study are as the following:

I. How is the CMFE design environment modeled to describe the nonlinear
properties of the cantilevered HAR wing models?

II. How is the load case and normal mode selected for the development of the
NROMs?

III. How accurate is the nonlinear static reduced order model when compared to
conventional finite element nonlinear static solution?

1.5 Scope and Limitations

The study is conducted with several limitations and within a prescribed scope. First of
all, the study is modeled based on rectangular HAR wing models of varying aspect
ratios based on the wing model used by N.A.Rosly et al (Rosly, N. A., & Harmin, M.
Y., 2017) . The deformation due to the aerostatic loading are only considered in the z-
axis where both bending deflection and twist deflection are accounted for. The
aerostatic condition set are in the subsonic range. Furthermore, the initial position of
the wing model is considered in the undeformed condition where the act of gravity acts
through the span of the wing model.
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1.6 Significance of the Study

With the help of the proposed guidelines on the development of the NROMs based on
the CMFE approach, more interest on using the method would arise hence leading into
more efficient analysis of the nonlinearity of the wing models. This encourages more
aircraft manufacturers to instill the benefits of the HAR wings on their aircraft without
the draw-back of the conventional nonlinear static analysis which not only increases
their workload but also isn’t computationally efficient.
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