

UNIVERSITI PUTRA MALAYSIA

ENHANCING POWER CONVERSION EFFICIENCY FOR DYE-SENSITISED SOLAR CELLS USING GRAPHENE QUANTUM DOTS

NOOR FADZILAH BINTI MOHAMED SHARIF

FK 2020 115

ENHANCING POWER CONVERSION EFFICIENCY FOR DYE-SENSITISED SOLAR CELLS USING GRAPHENE QUANTUM DOTS

By

NOOR FADZILAH BINTI MOHAMED SHARIF

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

February 2020

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of any material may only be made with the expressed, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

DEDICATION

This thesis is dedicated to my precious parents and siblings

For their prayers and positive support

And to my armies (my husband and our kids "The Iman")

Especially for my husband, who has always given encouragement and support

and prayed for the completion of this research.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ENHANCING POWER CONVERSION EFFICIENCY FOR DYE-SENSITISED SOLAR CELLS USING A GRAPHENE QUANTUM DOTS

By

NOOR FADZILAH BINTI MOHAMED SHARIF

February 2020

Chairman: Professor Mohd Zainal Abidin Ab. Kadir, PhD, PEng, CEng Faculty : Engineering

Traditional dye-sensitised solar cell (DSSC) with Titanium dioxide (TiO₂) works well under low-light condition. However, the use TiO₂ in photoelectrode will cause a random electron transport and high carrier recombination between the TiO₂/dye/electrolyte interface which slow electron diffusion and reduce the charge collection efficiency (CCE). The recombination process can be reduced by Titanium (IV) Chloride (TiCl₄) surface treatment at 40mM. A TiCl₄ treatment successfully increased charge transfer resistance (R_{ct}) and electron lifetime (τ_n), resulting in suppression of electron recombination and increased CCE at 31.09% compared to untreated DSSC.

In order to enhance the PCE of DSSC, a Design of engineering (DOE) software was employed to study the validity of selection of an independent variable and its parameter for photoelectrode using a statistical method. In this stage, response surface methodology (RSM) was chosen under DOE to undergo three tests, which were: statistical test, regression analysis, and adequacy test on experimental data to develop a model. Based on the RSM test, the most variables that affected the power conversion efficiency (PCE) of DSSC were TiO₂ thickness, then GQDs concentration, and GQDs loading time. The best PCE generated at 8.03% with 16 μm TiO₂ thickness, GQDs concentration at 7.5mg/ml and 18 hours GQDs loading time.

Furthermore, the use of Graphene Quantum Dots (GQDs) into photoelectrode can improve photon absorption which contributes to better PCE and CCE of DSSC. Photoelectrodes were dip-coated in different GQDs concentrations which varied from 2.5, 5.0, to 7.5 and 10 mg/ml. The optimum content of 7.5mg/ml GQDs generated higher photon absorption wavelength of 330 to 600 nm due to the photoluminescent effect by GQDs. Thus, more electron-hole pairs were

generated in the solar cell with resulting increment of 47% PCE and 53.42% CCE compared to pristine TiO_2 DSSC.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

MENINGKATKAN KECEKAPAN PENUKARAN KUASA UNTUK SEL SOLAR - PEKA WARNA DENGAN MENGGUNAKAN GRAPHENE QUANTUM DOTS

Oleh

NOOR FADZILAH BINTI MOHAMED SHARIF

Februari 2020

Pengerusi : Profesor Mohd Zainal Abidin Ab. Kadir, PhD, PEng, CEng Fakulti : Kejuruteraan

Sel solar-peka warna yang biasa (DSSC) dengan Titanium dioksida (TiO₂) boleh berfungsi dengan baik di bawah keadaan cahaya rendah. Walau bagaimanapun, penggunaan TiO₂ yang asli dalam fotoelektrik akan menyebabkan pengangkutan elektron rawak dan penggabungan pembawa yang tinggi antara antara muka TiO₂ / pewarna / elektrolit yang memperlambat penyebaran elektron dan mengurangkan kecekapan pengumpulan caj (CCE). Proses cas rekombinasi boleh dikurangkan dengan rawatan permukaan Titanium (IV) Chloride (TiCl₄) pada kepekatan 40mM. Rawatan TiCl₄ berjaya meningkatkan rintangan pemindahan rintangan (R_{ct}) dan jangka hayat electron (τ_n). Dengan penurunan cas rekombinasi pada DSSC, kecekapan pengumpulan cas (CCE) meningkat pada 31.09% berbanding dengan DSSC yang tidak melalui rawatan TiCl₄.

Untuk meningkatkan PCE DSSC, applikasi Rekabentuk kejuruteraan (DOE) digunakan untuk mengkaji kesahihan pemilihan pembolehubah bebas dan parameternya untuk fotoelektrik dengan menggunakan kaedah statistik. Pada tahap ini, metodologi permukaan respon (RSM) dipilih di bawah DOE untuk menjalani tiga ujian yang dikenali sebagai ujian statistik, analisis regresi dan ujian ketepatan antara data eksperimen dan data model. Berdasarkan ujian RSM, pemboleh ubah yang paling mempengaruhi kecekapan penukaran kuasa (PCE) DSSC adalah ketebalan TiO₂, di ikuti oleh kepekatan GQD dan masa rendaman GQD. PCE yang terbaik dijana pada 8.03% dengan parameter yang di optimumkan ketebalan TiO₂ pada 16µm dengan kepekatan GQDs 7.5mg/ml dan pada masa rendaman GQD pada 18 jam.

Tambahan pula, penggunaan Graphene Quantum Dots (GQDs) ke fotoelektrik dapat meningkatkan penyerapan foton yang menyumbang kepada PCE dan CCE DSSC yang lebih baik. Photoelectrodes dimasukkan ke dalam kepekatan GQD dari 2.5, 5.0, 7.5 dan 10 mg / ml. Kandungan optimum GQDs pada 7.5mg / ml meningkatkan penyerapan foton yang tinggi pada gelombang 330 hingga 600 nm disebabkan oleh sifat fotoluminescent oleh GQDs. Oleh itu, sel solar dapat menghasilkan lebih banyak pasangan lubang elektron yang akhirnya menghasilkan kenaikan 47% PCE dan 53.42% CCE berbanding dengan sel solar TiO₂ yang asli.

ACKNOWLEDGEMENTS

Alhamdulillah, all praise to Allah s.w.t for His blessing and energy that He has granted me to complete my research study.

First, I would like to express my sincere gratitude to my main supervisor, Professor Mohd Zainal Abidin Ab. Kadir for his excellent supervision, time and advice to complete this research.

To co-supervisor, Associate Professor Dr. Suhaidi Shafie, as well as Associate Professor Dr. Suraya Abdul Halim and Associate Professor Dr. Wan Zuha Wan Hassan for their valuable guidance, support, and suggestions for this study.

Dr. Pandey from Kyutech Institute of Technology, Japan. His expertise and advise played a strong role in facilitating the successful completion of this thesis.

I would also like to express my gratitude to the staff of the Institute of Advanced Technology (ITMA), Faculty of Engineering, and Faculty of Science of Universiti Putra Malaysia for providing an adequate research facility such as excellent lab facilities, expert mentors, insightful talks and invaluable knowledge.

Furthermore, I would like to say a very big "Thank You" to all my friends, Dr Buda Ismaila, Mr Ali Khalifa, Miss Yaya, Dr Hazirah, Mrs Syakura, Dr Ayu, Dr Anusha (KIT Japan), Mr Saman, Mr Asnawi and Mrs Farah Adila, for technical advice and moral support throughout this research.

I would also like to thank my parents and my parents-in-law, my sisters, and brothers, in-laws, all lovely nieces and nephews for their love, support, and understanding.

I also would like to express my appreciation to my beloved husband, Muhamad Faiz Md Din who has constantly prayed for my success and showed full understanding towards my research commitment. To our sons, Danish and Amirul, you are always my heroes.

Finally, I am indebted to UPNM, KPT and Universiti Putra Malaysia for their financial support throughout this research.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohd Zainal Abidin Ab. Kadir, PhD, Peng, CEng

Professor, Ir Faculty of Engineering Universiti Putra Malaysia (Chairman)

Suhaidi Shafie, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Suraya Abdul Rashid, PhD

Associate Professor Faculty of Chemical Engineering Universiti Putra Malaysia (Member)

Wan Zuha Wan Hassan, PhD Associate Professor Faculty of Engineering

Universiti Putra Malaysia (Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 10 December 2020

Declaration by Members of Supervisory Committee

This is to confirm that:

- The research conducted and the writing of this thesis were under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature Name of Chairman of Supervisory Committee	: : Professor Mohd Zainal Abidin Ab. Kadir
Signature Name of Member of Supervisory Committee	:
Signature Name of Member of Supervisory Committee	: Associate Professor Dr. Suraya Abdul Rashid
Signature Name of Member of Supervisory Committee	: : Associate Professor Dr. Wan Zuha Wan Hassan

TABLE OF CONTENTS

				Page
ABSTR ABSTR ACKNC APPRC DECLA LIST O LIST O LIST O	ACT AK OWLEDO VAL RATION F TABLE F FIGUR F ABBR	EMENTS ES ES EVIATIONS		i iii v vi viii xiii xiii xiv xvii
СНАРТ	ER			
1	INTR	ODUCTION		1
	1.1	Backgroun	nd of the Study	1
	1.2	Problem S	latement	2
	1.3	Research		2
	1.4	Scope and		3
	1.5	Structure	of the Thesis	ა ვ
	1.0	Structure t		5
2	LITE	RATURE REV	VIEW	4
	2.1	Working P	rinciple of DSSC	4
		2.1.1 DS	SSC parameter and measurement	5
		2.1.2 Sh	nort-circuit current density (Jsc)	6
		2.1.3 Op	pen-circuit voltage	6
		2.1.4 Fil	ll factor (FF)	7
	_	2.1.5 Pc	ower conversion efficiency (η)	8
	2.2	The TiCl ₄	I reatment in Photoelectrode	8
	2.3	Response	surface Methodology (RSM) by Design	0
		Expert of C	0.0.0	9
		2.3.1 Rt	esponse surface methodology (RSM) as	10
		232 De	termination and screening of variables	10
		2.3.2 De	election of the experimental design	11
		2.3.4 Re	esponse surface methodology (RSM)	
		ap	polication in DSSC.	12
	2.4	Developm	ent of Photoelectrode Modification works	13
		2.4.1 Gr	raphene Quantum Dots Material	14
		2.4.2 Ef	fect of graphene materials on	
		ph	otoelectrode	15
	2.5	Summary		17

х

 (\mathbf{C})

METHO	IODOLOGY 18		
3.1	Introduction		18
	3.1.1	Materials and chemicals	19
	3.1.2	DSSC performance	19
	3.1.3	3Solar simulator of current-voltage (I-V)	
		measurement	19
	3.1.4	Electrochemical impedance spectroscopy	
	•••••	(EIS)	20
	3.1.5	Nyauist Plot	22
	3.1.6	Bode phase Plot	23
3.2	TiCl₄ cł	nemical treatment for blocking laver	24
3.3	Respor	nse surface methodology (RSM)	25
3.4	TiO ₂ -G	QDs-based DSCC Fabrication	25
0.1	341	GOD Synthesis process and	
	•••••	characteristics	26
	342	ETO dass substrate	28
	343	Making of TiO_2 paste and TiO_2	20
	0.4.0	nhotoelectrode	29
	311	Preparation of N-719 dve solution	20
	315	Preparation of electrolyte	30
	34.5	Preparation of counter electrode	30
	34.0	Incorporation of GODs into TiOs	50
	5.4.7	photoelectrode	31
	318	Device assembly	31
	240	TiOn CODs photoelectrode	51
	5.4.9	characteriactions	22
	2 / 10	Energy dispersive X ray enertroscopy	52
	5.4.10	(EDX) and SEM	20
	2 1 1 1	(EDA) and SEM.	32
	3.4.11	V rov diffusion (VDD)	33 22
	3.4.1Z	A-ray diffusion (ARD)	33
	3.4.13	Raman spectroscopy	33
DECLU		DISCUSSION	24
RESUL	TOL IN		34
4.1		Distant effect on DSSC performance	34
	4.1.1	Photovoltaic performance after TICI4	0.4
	440		34
	4.1.2	4Electrochemical analysis after TICI4	0.5
	440	treatment	35
	4.1.3	Morphology study of TiCl ₄ treatment	38
	4.1.4	Light absorption enhancement	40
4.2	Design	model using Response surface method	
	(RSM)	for TiO ₂ - GQD based DSSC	41
	4.2.1	Screening and selecting the	
		photoelectrode variables to determine the	
		efficiency of DSSC.	43
	4.2.2	CCD matrix of experimental and predicted	
		data of power conversion efficiency.	44
	4.2.3	Statistical analysis	45
	4.2.4	Regression analysis	47

		4.2.5	Adequacy of experimental data and	
			developed model	49
		4.2.6	Effect of the main variable	50
		4.2.7	Effect of interactive variable	53
		4.2.8	Validation of predicted data with	
			experimental data	55
	4.3	GQDs	material and TiO ₂ -GQDs DSSC	
		charac	teristics	55
		4.3.1	Physical properties	56
		4.3.2	Optical properties	57
		4.3.3	Chemical properties	59
		4.3.4	Characterisations of TiO ₂ and TiO ₂ -GQDs	
			photoelectrode and selection of optimised	
			photoelectrode parameters	60
		4.3.5	Photovoltaic performance of TiO2-GQD	
			photoelectrode	60
		4.3.6	Electrochemical analysis	62
		4.3.7	Crystalline properties of TiO2-GQDs	
			nanocomposite materials	65
		4.3.8	Optical properties of TiO ₂ -GQD	
			nanocomposite materials	65
		4.3.9	Effect of GQDs concentration on the	
			bandgap of TiO ₂ -GQDs	66
		4.3.10	Morphology and EDX studies of TiO ₂ -GQD	
			nanocomposite materials	69
		4.3.11	The N719 dye-loading study after	
			incorporating of GQDs.	70
	4.4	Summa	ary	74
5	CONC	LUSION	AND RECOMMENDATION	75
	5.1 🦳	Conclu	ision	75
	5.2	Future	Research and Recommendations	76
REFE	ERENCE	S		77
APPI	ENDICES			87
BIOD	OATA OF	STUDE	NT	93
LIST	OF PUB	LICATIO	NS	94

9

LIST OF TABLES

Table		Page
2.1	Comparative performances of DSSC using different graphene materials such as graphene (G), graphene oxide (GO), Graphene Quantum Dots (GQDs) with TiO ₂ and ZnO (Zinc oxide) for photoelectrode.	16
3.1	Materials and chemicals used in experiments	19
3.2	Independent variables for photoelectrode design	25
4.1	J–V characteristic of untreated and TiCl₄-treated DSSC	35
4.2	EIS parameters of untreated and TiCl₄- treated DSSC	37
4.3	Independent variables for photoelectrode design	43
4.4	Central composite design matrix (variables) with experimental and predicted data for TiO ₂ -GQDs photoelectrode fabrication of DSSCs	44
4.5	F-test or Sequential model sum of squares	45
4.6	The lack-of-fit-test	46
4.7	Model summary statistics	46
4.8	ANOVA on R-squared on photoelectrode fabrication of photon conversion efficiency of DSSC.	47
4.9	ANOVA analysis using quadratic equation modelling of photoelectrode fabrication of PCE of DSSC.	48
4.10	Desired condition for optimisation	55
4.11	Predicted and experimental values conducted at optimisation level	55
4.12	Optimised photoelectrode parameters of pristine TiO $_2$ and TiO $_2$ -GQDs-based DSSC	60
4.13	Photovoltaic parameters of pristine TiO_2 and GQD - TiO_2 photoelectrodes of DSSCs at different concentrations.	60
4.14	EIS parameter values for pristine TiO_2 (PT) and TiO_2 -GQD of PG 2.5, PG 5.0, PG 7.5, PG 10 cells.	62
4.15	Bandgap values for pristine TiO _{2 (PT)} and GQDs-TiO ₂ (PGs) photoelectrode.	67
4.16	Amount of dye loading for PT and PG 2.5, PG 5.0, PG 7.5 and PG 10 photoelectrodes after GQDs sensitising.	73

LIST OF FIGURES

Figure		Page
2.1	Operating Principles of Dye Sensitised Solar Cells	5
2.2	A sample DSSC $J - V$ curve under Air Mass (AM) 1.5G simulated illumination and a power density of 1000 W cm ⁻² solar simulator. The points of <i>Jsc</i> , <i>Jmax</i> , <i>Voc</i> , <i>Vmax</i> and <i>Pmax</i> are shown in the curve with the photon conversion efficiency, η of 6.97%. The fill factor can be obtained from the ratio of the <i>Pmax</i> area and product of <i>Voc</i> and <i>Jsc</i> .	6
2.3	Energy band diagram to determine the <i>Voc</i> value.	7
2.4	3D response surface plots for interaction between two variables namely, loading time and thickness at selected parameter on the response efficiency.	13
3.1	Research Methodology Flowchart	18
3.2	Photocurrent density – voltage curve characteristic of a DSSC presenting the short-circuit current density (Jsc open-circuit voltage (Voc), current density at maximum power point ($Jmax$) and voltage at maximum power ($Vmax$).	20
3.3	Nyquist Plot	23
3.4	Bode Plot	24
3.5	Flowchart of GQDs synthesis	26
3.6	TiO ₂ paste-making process	29
3.7	DSSC fabrication process.	32
4.1	J–V curve for DSSC of untreated, Pre-TiCl4, and Post-TiCl4.	35
4.2	Nyquist plot of treated, pre- TiCl4, and post-TiCl4 treatment	36
4.3	Bode plot of treated, pre- TiCl4 and post TiCl4.	36
4.4	Summary of electron lifetime τn , electron transport time τs , and charge collection efficiency ηc for untreated, pre-TiCl ₄ , and post-TiCl ₄ photoelectrode of DSSC.	37
4.5	The equivalent circuit represents the impedance of the cell, Z which includes sheet resistance Rs , electrochemical capacitance CPe and charge transfer resistance Rct .	38
4.6	Cross-sectional SEM images of thickness of (a) Untreated (b) pre- TiCl ₄ treatment and (c) Post-TiCl ₄ treatment on photoelectrode.	38

4.7	FESEM morphology of (a) Untreated TiO ₂ , (b) pre-TiCl ₄ treatment, and (c) Post-TiCl ₄ treatment on photoelectrodes. FESEM morphology of particle necking and distribution of TiO ₂ nanoparticle with the Gaussian fitting curve (orange line) of (a)(b): Untreated electrode, (c)(d): pre-TiCl ₄ treatment, and (e)(f): Post-TiCl ₄ treatment photoelectrode, respectively.	40
4.8	Absorption spectra of untreated, pre-TiCl ₄ , and post-TiCl ₄ treatment on TiO ₂ film after N-719 dye sensitizing	41
4.9	Central composite design (CCD) flowchart for optimising PCE	42
4.10	A plot of (a) Normal probability versus studentised residual (b) Studentised residual versus predicted and (c) predicted versus actual.	50
4.11	Main effect of power conversion efficiency plot: (a) TiO2 thickness, (b) GQDs concentration, (c) GQDs loading time; (d) Dye loading time.	52
4.12	3D plots of the effect of the (a) TiO ₂ film and GQDs concentration and (b) the GQDs concentration and GQDs loading time on the photon conversion efficiency.	54
4.13	The TEM image of the GQDs at a low magnificent scale (b) TEM image of GQDs at high magnificent scale (inset picture shows lattice spacing of GQDs with 0.25nm).	56
4.14	(a) GQ <mark>Ds solution under ambient light an</mark> d (b) GQD solution under U <mark>V-light appears as a blue-greenish solution</mark> .	57
4.15	Up-converted photoluminescence (PL) spectra of the graphene quantum dots (GQDs) at excitation wavelengths of 300 to 400nm on the left axis and absorption spectra of GQDs solution ison the left axis which shows GQD is UV-absorber at 290nm	
	peak.	58
4.16	Raman spectra of graphene quantum dots	58
4.17	FTIR spectra of graphene quantum dots solution	59
4.18	J - V curves of pristine TiO ₂ and TiO ₂ -GQD of DSSC.	61
4.19	Summary of the plot of (a) <i>Jsc</i> and <i>Voc</i> (b) photon conversion efficiency (PCE) and fill-factor (FF) for all photoelectrode	62
4.20	Nyquist plots with modified photoelectrodes of PG 2.5, PG 5.0, PG 7.5, PG 10 and PT of DSSCs.	63
4.21	Bode plot with modified photoelectrodes of PG 2.5, PG 5.0, PG 7.5, PG 10 and PT of DSSCs.	64
4.22	The impedance represented by equivalent circuit consisting of <i>Rs</i> , <i>Rct</i> 1, <i>Rct</i> 2, <i>Cpe</i> 1 and <i>Cpe</i> 2 of DSSC.	64

xv

4.23	X-ray diffraction profile for PT and PG films	65
4.24	Absorption spectra of (a) GQDs solution at a different concentration at 290nm peak (b) TiO2 and TiO2 - GQD thin films after immersing in GQDs (c) TiO2 and TiO2 - GQD thin films after immersing in GQDs and N719.	66
4.25	Bandgap diagram of pristine (PT) and GQDs-TiO ₂ (PGs) curves using Tauc's plot	67
4.26	Raman features of pristine TiO ₂ and TiO ₂ -GQDs photoelectrode using (a) Wide scan (b) extended functions to detect major GQDs features.	68
4.27	Surface image of (a) pristine TiO ₂ and b) TiO ₂ -GQDs films after incorporating a GQDs. Cross-sectional image of (c) pristine TiO ₂ and (d) TiO ₂ -GQDs films.	69
4.28	(a) EDX spectra of PT consisting of wt% of Titanium (Ti) and oxygen (O) and (b) PG 7.5 film consisting of wt % of Titanium (Ti), oxygen (O) and carbon (C).	70
4.29	Absorption spectra of NaOH solution after the N719 dye are desorbed for PT and PG 2.5, PG 5.0, PG 7.5 and PG 10 photoelectrodes.	71
4.30	Absorpti <mark>on spectra showing N719 dye at different concentrations of 25, 50 and 100 μM which are used to plot dye calibration curve.</mark>	72
4.31	Linear p <mark>lot to show the</mark> highest peak of calibration curve of N719 dye at different concentrations of 25, 50 and 100 µM, by tracing the amount of dye loading after GQDs sensitising on PG cells.	72
4.32	Plots on dye adsorption for PT and PG 2.5, PG 5.0, PG 7.5 and PG 10 photoelectrodes.	73

 \mathbf{G}

LIST OF ABBREVIATIONS

AM	Air Mass
ANOVA	Analysis of Variance
СВ	Conduction Band
CE	Counter Electrode
СТ	Charge Transfer
DOE	Design of Experiment
DSSC	Dye Sensitized Solar Cell
EIS	Electrochemical Impedance Spectroscopy
FESEM	Field Emission Scanning Electron Microscope
FF	Fill Factor
FTIR	Transform Infra-red
FTO	Fluorine doped Tin oxide
GQDs	Graphene Quantum Dots
номо	Highest Occupied Molecular Orbital
IQE	Internal Quantum Efficiency
ΙΤΟ	Indium doped Tin Oxide
J _{sc}	Short circuit current density
LH	Light Harvesting
LHE (λ)	Light harvesting efficiency at wavelength λ
LUMO	Lowest Unoccupied Molecular Orbital
NPs	Nanoparticles
PEDOT	Polypyrrole, poly (3, 4- ethylenedioxythiophene)
PL	Photo-luminescence

P _{max}	Maximum power
Pt	Platinum
QD	Quantum dot
R	Reflectance
RSM	Response Surface Methodology
ТЕМ	Transmission Electron Microscope
tBA	tertiary Butyl Alcohol
UV-Vis	Ultraviolet-Visible-spectroscopy
XRD	X-ray Diffraction
VB	Valence Band
V _{oc}	Open circuit potential
тсо	Transparent Conducting Oxide

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Currently, most of the energy is generated using fossil fuels, but these sources are projected to be depleted. Hence, it is imperative that alternative energy sources are developed before then. In this regard, solar energy, which is clean and abundant, holds great promise.

Dye-sensitised solar cells (DSSCs) have been developed for solar harvesting applications. The solar cell offers several advantages over silicon and thin-film cells due to their low sintering temperature, easy fabrication, non-toxicity and their ability to work under low light conditions [1–2]. Hence, this technology can be commercialised because due to economic reason compared to first and second-generation photovoltaics, if the efficiency could be enhanced significantly. To achieve that goal, it is vital to improve the photoelectrode element. Currently, there are commercial DSSC products available in the market such as wireless remote, solar keyboard for IOS and Android, Gcell sample DSSC and G100 indoor solar powered by G24i group.

Previous work in TiO₂ photoelectrode modification included surface plasmon resonance effect by metal nanoparticle, doping to tune energy band structure, growing graphene layer between FTO and TiO₂, and using graphene type nanomaterial in photoelectrode to enhance power conversion efficiency (PCE) of DSSC [3-5]. Previous studies in the literature proved that two-dimensional (2D) graphene materials can potentially enhance the properties of photoelectrode of DSSC [6–9] due to its unique properties such as high optical transmittance (~98%), good conductivity and large theoretical specific surface area (2630 m² g⁻¹) which is suitable for engineering the TiO₂ layer in DSSCs. Graphene also can be downsized by bottom-up technique using organic precursor to modify graphene bandgap and producing zero-dimensional Graphene Quantum Dots (GQDs). The existence of quantum confinement effect in GQDs will modify the optical properties of the TiO₂ photoelectrode in DSSCs. In addition, GQDs material can be used to overcome the drawback of TiO₂, such as high carrier recombination, lack of charge-carrier transport, and poor absorption on visible-region, which is believed to possibly enhance the DSSC efficiency [10 –12].

1.2 Problem Statement

Photoelectrode is one of crucial elements in DSSC because it holds and transports excited electrons from N719 dye to FTO electrode. Traditionally, TiO₂ is the most promising material for the photoelectrode due to its photostability, biocompatible, wide bandgap, cost-effectiveness and non-toxicity. However, the use of TiO₂ in DSSC cause the electrons to move randomly and increase high electron recombination between the TiO₂/dye/electrolyte interface, which slows down electron diffusion and reduces the current density amount [13 –16]. Thus, it will reduce the PCE of DSSC. In addition, previous research shows less attention being paid to the advantages of pre-and-post-TiCl₄, which resulted in easy electron diffusion and enhancement of the PCE of DSSC. To solve these issues, a chemical treatment using titanium tetrachloride (TiCl₄) in the photoelectrode was carried out.

Furthermore, there is limited research on how most variables in the photoelectrode element influence the PCE. Thus, this research used Response surface methodology (RSM) to allow simultaneous varying of process variables [17–19]. The application of RSM method in fabricating a TiO₂-GQDs, to investigate more than one independent variable has not been done before. In this research, a statistical method was used to study the validity of selection of the independent variable and its parameter for photoelectrode element. Ultimately, the most variable effect on the PCE was determined.

Moreover, using pristine TiO_2 causes poor light absorption in the visible-region and a lack of charge-carrier transport. Hence, it causes a reduction of photocurrent density [20,21]. Thus, GQDs can be used due to their stable upconversion photoluminescence property, which may enhance light absorption in the visible region [22]. In this study, GQDs concentration is varied to contribute to higher PCE and charge transport of DSSC. The TiO₂ photoelectrode is sensitised in different concentrations of GQDs then continues with dye adsorption process. The performance of TiO₂-GQDs cells was compared to pristine TiO₂ cell.

1.3 Research Objectives

The key objectives of the current study are listed as follows:

- To determine the impact of TiCl₄ treatment by investigating the carrier transport and recombination rate using electrochemical impedance spectroscopy (EIS). A longer carrier transport shows an improvement of charge collection efficiency (CCE) and power conversion efficiency (PCE).
- To investigate independent variables and their input parameters of photoelectrode that influence the DSSC performance, to determine an optimised input variable and PCE response by using central composite design (CCM) of RSM.

3) To use GQDs at different concentrations in the photoelectrode to improve photon absorption in the low visible region which can contribute to higher PCE of DSSC. The TiO₂-GQDs nanocomposite is characterised using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Raman spectrophotometer, and Ultraviolet-visible spectroscopy (UV-vis) to determine its morphology, crystallinity and optical properties.

1.4 Scope and Limitations

- This research only investigated the DSSC device at 2 cm x 2.5cm with an active area of 1 x 1 cm². Then, TiO₂ paste was made by a sol-gel method and screen-printing was selected to deposit TiO₂ paste on FTO glass because the method produces homogenous TiO₂ film.
- 2) The dip-coated method to incorporate GQDs into DSSC is done based on GQDs nature and the sensitivity of TiO₂ condition, or else the TiO₂ film will be corrugated and it may reduce the PCE of DSSC.

1.5 Research Contributions

- 1) The effects of pre-and-post-TiCl₄ treatment are proven to increase the carrier transport and reduce the recombination rate between TiO₂/dye/electrolyte interfaces. The results also shown higher charge collection efficiency (CCE) and power conversion efficiency (PCE) for DSSC.
- 2) A quadratic equation with significant variables to predict the PCE value is obtained by Central composite design (CCD). The equation is generated based on statistical approach where the technique can be employed for process optimisation of TiO₂-GQDs based DSSC in the future.
- 3) A green and acid-free GQDs at concentration of 7.5 mg/ml successfully increased the light absorption in the low visible region, resulting in a higher short-circuit current density and PCE of DSSC.

1.6 Structure of the Thesis

This thesis is divided into five chapters. Chapter one presented the background of the study, problem statement, research objectives, scope of the study, then ended with the research contributions. Chapter Two reviews the literature and discusses a previous work on photoelectrode modification and the use of GQDs to improve the PCE of DSSC. Chapter Three provides information on the preparation of TiO₂-GQDs solar cell via dip-coated method and the characterisation process to determine the performance of new DSSC. Next, Chapter Four presents the results and discussion on the improvement of PCE after GQDs incorporated in the photoelectrode of DSSC. Finally, Chapter Five summarises the research findings and offers recommendations for future work to enhance DSSC efficiency.

REFERENCES

- [1] M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells &," vol. 164, pp. 3–14, 2004.
- [2] B. O'Regan and M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," *Nature*, vol. 353, no. 6346, pp. 737–740, Oct. 1991.
- [3] S. P. Lim, A. Pandikumar, H. N. Lim, R. Ramaraj, and N. M. Huang, "Boosting Photovoltaic Performance of Dye-Sensitized Solar Cells Using Silver Nanoparticle-Decorated N,S-Co-Doped-TiO2 Photoanode," *Sci. Rep.*, vol. 5, no. 1, p. 11922, 2015.
- [4] S. Buda, S. Shafie, S. A. Rashid, H. Jaafar, and N. F. M. Sharif, "Enhanced visible light absorption and reduced charge recombination in AgNP plasmonic photoelectrochemical cell," *Results Phys.*, vol. 7, pp. 2311--2316, 2017.
- [5] P. Sudhagar, I. Herraiz-Cardona, H. Park, T. Song, S. H. Noh, S. Gimenez, I. M. Sero, F. Fabregat-Santiago, J. Bisquert, *et al.*, "Exploring Graphene Quantum Dots/TiO2 interface in photoelectrochemical reactions: Solar to fuel conversion," *Electrochim. Acta*, vol. 187, pp. 249–255, 2016.
- [6] L. Wei, P. Wang, Y. Yang, Y. Dong, R. Fan, W. Song, Y. Qiu, Y. Yang, and T. Luan, *Enhanced performance of dye sensitized solar cells by* using a reduced graphene oxide/TiO 2 blocking layer in the photoanode, vol. 639. 2017.
- [7] M. Batmunkh, M. Dadkhah, C. J. Shearer, M. J. Biggs, and J. G. Shapter, "Incorporation of graphene into SnO2 photoanodes for dyesensitized solar cells," *Appl. Surf. Sci.*, vol. 387, no. Supplement C, pp. 690–697, 2016.
- [8] X. Guo, G. Lu, and J. Chen, "Graphene-Based Materials for Photoanodes in Dye-Sensitized Solar Cells," *Frontiers in Energy Research*, vol. 3. p. 50, 2015.
- [9] S.-B. Kim, J.-Y. Park, C.-S. Kim, K. Okuyama, S.-E. Lee, H.-D. Jang, and T.-O. Kim, "Effects of Graphene in Dye-Sensitized Solar Cells Based on Nitrogen-Doped TiO2 Composite," *J. Phys. Chem. C*, vol. 119, no. 29, pp. 16552–16559, Jul. 2015.
- [10] T.-H. Wang, T.-W. Huang, Y.-C. Tsai, Y.-W. Chang, and C.-S. Liao, "A photoluminescent layer for improving the performance of dye-sensitized solar cells," *Chem. Commun.*, vol. 51, no. 33, pp. 7253–7256, 2015.

- [11] S. Chinnusamy Jayanthi, R. Kaur, and F. Erogbogbo, "Graphene Quantum Dot Titania Nanoparticle Composite for Photocatalytic Water Splitting," *MRS Adv.*, vol. 1, no. 28, pp. 2071–2077, 2016.
- [12] G. Rajender, J. Kumar, and P. K. Giri, "Interfacial charge transfer in oxygen deficient TiO2-graphene quantum dot hybrid and its influence on the enhanced visible light photocatalysis," *Appl. Catal. B Environ.*, vol. 224, no. November 2017, pp. 960–972, 2018.
- [13] A. Sedghi and H. N. M. Ã, "Influence of TiCl4 Treatment on Structure and Performance of Dye-Sensitized Solar Cells," *Jpn. J. Appl. Phys.*, vol. 52, pp. 075002-1-075002–5, 2013.
- [14] A. Sangiorgi, R. Bendoni, N. Sangiorgi, A. Sanson, and B. Ballarin, "Optimized TiO2 blocking layer for dye-sensitized solar cells," *Ceram. Int.*, vol. 40, no. 7 PART B, pp. 10727–10735, 2014.
- [15] B. C. O'Regan, J. R. Durrant, P. M. Sommeling, and N. J. Bakker, "Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dyesensitized solar cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit," *J. Phys. Chem. C*, vol. 111, no. 37, pp. 14001–14010, 2007.
- [16] N. Fuke, R. Katoh, A. Islam, M. Kasuya, A. Furube, A. Fukui, Y. Chiba, R. Komiya, R. Yamanaka, et al., "Influence of TiCl4 treatment on back contact dye-sensitized solar cells sensitized with black dye," Energy Environ. Sci., vol. 2, no. 11, p. 1205, 2009.
- [17] M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, "Response surface methodology (RSM) as a tool for optimization in analytical chemistry," *Talanta*, vol. 76, no. 5, pp. 965–977, 2008.
- [18] R. Thakur, B. Saberi, P. Pristijono, C. E. Stathopoulos, J. B. Golding, C. J. Scarlett, M. Bowyer, and Q. V Vuong, "Use of response surface methodology (RSM) to optimize pea starch–chitosan novel edible film formulation," *J. Food Sci. Technol.*, vol. 54, no. 8, pp. 2270–2278, 2017.
- [19] B. Samaila, S. Shafie, S. A. Rashid, H. Jaafar, and A. Khalifa, "Response surface modeling of photogenerated charge collection of silver-based plasmonic dye-sensitized solar cell using central composite design experiments," *Results Phys.*, no. January, pp. 1–5, 2017.
- [20] Y. Lee, J. Chae, and M. Kang, "Comparison of the photovoltaic efficiency on DSSC for nanometer sized TiO2 using a conventional solgel and solvothermal methods," *J. Ind. Eng. Chem.*, vol. 16, no. 4, pp. 609–614, 2010.

- [21] J. Chae, D. Y. Kim, S. Kim, and M. Kang, "Photovoltaic efficiency on dye-sensitized solar cells (DSSC) assembled using Ga-incorporated TiO2 materials," *J. Ind. Eng. Chem.*, vol. 16, no. 6, pp. 906–911, 2010.
- [22] E. Lee, J. Ryu, and J. Jang, "Fabrication of Graphene Quantum Dots via Size-selsctive Precipitation and Their Application in Upconversionbased DSSCs 1. Experimental Section," *Chem. Commun.*, vol. 49, p. 9995, 2013.
- [23] M. K. Nazeeruddin, E. Baranoff, and M. Grätzel, "Dye-sensitized solar cells: A brief overview," *Sol. Energy*, vol. 85, no. 6, pp. 1172–1178, 2011.
- [24] Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, T. Bessho, and H. Imai, "Characteristics of High Efficiency Dye-Sensitized Solar Cells," *J. Phys. Chem. C*, vol. 110, pp. 25210– 25221, 2006.
- [25] I. Seigo, M. N. Takurou, C. Pascal, L. Paul, G. Carole, N. M. K, and G. Michael, "Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10 %," *Thin Solid Films*, vol. 516, pp. 4613–4619, 2008.
- [26] H. Chang, C. H. Chen, M. J. Kao, S. H. Chien, and C. Y. Chou, "Photoelectrode thin film of dye-sensitized solar cell fabricated by anodizing method and spin coating and electrochemical impedance properties of DSSC," *Appl. Surf. Sci.*, vol. 275, pp. 252–257, 2013.
- [27] S. C. T. Lau, J. Dayou, C. S. Sipaut, and R. F. Mansa, "Development in photoanode materials for high efficiency dye sensitized solar cells," *Int. J. Renew. Energy Res.*, vol. 4, no. 3, pp. 665–674, 2014.
- [28] H. P. Kuo, C. F. Yang, A. N. Huang, C. Te Wu, and W. C. Pan, "Preparation of the working electrode of dye-sensitized solar cells: Effects of screen printing parameters," *J. Taiwan Inst. Chem. Eng.*, vol. 45, no. 5, pp. 2340–2345, 2014.
- [29] M. Shakeel Ahmad, A. K. Pandey, and N. Abd Rahim, "Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review," *Renew. Sustain. Energy Rev.*, vol. 77, no. January, pp. 89–108, 2017.
- [30] D. B. Menzies, Q. Dai, L. Bourgeois, R. A. Caruso, Y.-B. Cheng, G. P. Simon, and L. Spiccia, "Modification of mesoporous TiO ₂ electrodes by surface treatment with titanium(IV), indium(III) and zirconium(IV) oxide precursors: preparation, characterization and photovoltaic performance in dye-sensitized nanocrystalline solar cells," *Nanotechnology*, vol. 18, no. 12, p. 125608, Mar. 2007.

- [31] L. Kavan, B. O'Regan, A. Kay, and M. Grätzel, "Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3," *J. Electroanal. Chem.*, vol. 346, no. 1–2, pp. 291–307, 1993.
- [32] J. S. Lee, K. H. Kim, C. S. Kim, and H. W. Choi, "Synergistic effect of TiCl 4 – ZnO treated TiO 2 nanotubes in dye-sensitized solar cell," *Jpn. J. Appl. Phys.*, vol. 54, no. 06FK02, 2015.
- [33] P. M. Sommeling, B. C. O'Regan, R. R. Haswell, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, J. M. Kroon, and J. A. M. van Roosmalen, "Influence of a TiCl 4 Post-Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized Solar Cells," *J. Phys. Chem. B*, vol. 110, no. 39, pp. 19191–19197, 2006.
- [34] Y. H. Tan, M. O. Abdullah, C. Nolasco-Hipolito, and N. S. Ahmad Zauzi, "Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO," *Renew. Energy*, vol. 114, no. PB, pp. 437–447, 2017.
- [35] I. A. Mohammed, M. T. Bankole, A. S. Abdulkareem, S. S. Ochigbo, A. S. Afolabi, and O. K. Abubakre, "Full factorial design approach to carbon nanotubes synthesis by CVD method in argon environment," *South African J. Chem. Eng.*, vol. 24, pp. 17–42, 2017.
- [36] M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, "Response surface methodology (RSM) as a tool for optimization in analytical chemistry.," *Talanta*, vol. 76, no. 5, pp. 965–77, 2008.
- [37] R. R. Landge and A. B. Borade, "Optimization and analysis of process parameters in microdrilling using response surface methodology," *Int. J. Mech. Prod. Eng. Res. Dev.*, vol. 7, no. 6, pp. 297–304, 2017.
- [38] A. Witek-Krowiak, K. Chojnacka, D. Podstawczyk, A. Dawiec, and K. Pokomeda, "Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process," *Bioresour. Technol.*, vol. 160, pp. 150–160, 2014.
- [39] X. Fang, M. Li, K. Guo, J. Li, M. Pan, L. Bai, M. Luoshan, and X. Zhao, "Graphene quantum dots optimization of dye-sensitized solar cells," *Electrochim. Acta*, vol. 137, pp. 634–638, 2014.
- [40] A. Asghar, A. A. A. Raman, and W. M. A. W. Daud, "A Comparison of Central Composite Design and Taguchi Method for Optimizing Fenton Process," *Sci. World J.*, vol. 2014, 2014.

- [41] S. Lee, J. H. Noh, H. S. Han, D. K. Yim, D. H. Kim, J. K. Lee, J. Y. Kim, H. S. Jung, and K. S. Hong, "Nb-doped tio 2: A new compact layer material for TiO 2 dye-sensitized solar cells," *J. Phys. Chem. C*, vol. 113, no. 16, pp. 6878–6882, 2009.
- [42] S. P. Lim, Y. Seng Lim, A. Pandikumar, H. Lim, Y. H. Ng, R. Ramaraj, D. Bien, O. Abou-Zied, and H. Ming, "Gold-silver@TiO 2 nanocomposite-modified plasmonic photoanodes for higher efficiency dye-sensitized solar cells," *Phys. Chem. Chem. Phys.*, vol. 19, no. 2, pp. 1395–1407, Jan. 2017.
- [43] J. D. Roy-Mayhew and I. A. Aksay, "Graphene materials and their use in dye-sensitized solar cells," *Chemical Reviews*, vol. 114, no. 12. pp. 6323–6348, 2014.
- [44] K. S. Novoselov, A. K. Geim, Sv. Morozov, D. Jiang, M. I. Katsnelson, Iv. Grigorieva, Sv. Dubonos, and and A. A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene," *Nature*, vol. 438, no. 7065, p. 197, 2005.
- [45] B. S. Razbirin, N. N. Rozhkova, E. F. Sheka, D. K. Nelson, and A. N. Starukhin, "Fractals of graphene quantum dots in photoluminescence of shungite," *J. Exp. Theor. Phys.*, vol. 118, no. 5, pp. 735–746, 2014.
- [46] B. Tang and G. Hu, "Two kinds of graphene-based composites for photoanode applying in dye-sensitized solar cell," *J. Power Sources*, vol. 220, no. Supplement C, pp. 95–102, 2012.
- [47] A. Y. Kim, J. Kim, M. Y. Kim, S. W. Ha, N. T. T. Tien, and M. Kang, "Photovoltaic efficiencies on dye-sensitized solar cells assembled with graphene-linked TiO 2 anode films," *Bull. Korean Chem. Soc.*, vol. 33, no. 10, pp. 3355–3360, 2012.
- [48] Z. Salam, E. Vijayakumar, A. Subramania, N. Sivasankar, and S. Mallick, "Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoanode for dye sensitized solar cells," *Sol. Energy Mater. Sol. Cells*, vol. 143, pp. 250–259, 2015.
- [49] A. Anish Madhavan, S. Kalluri, D. K Chacko, T. A. Arun, S. Nagarajan, K. R. V. Subramanian, A. Sreekumaran Nair, S. V. Nair, A. Balakrishnan, *et al.*, "Graphene quantum dots optimization of dyesensitized solar cells," *RSC Adv.*, vol. 2, no. 33, p. 13032, 2014.
- [50] T. Wu and J. Ting, "Bridging TiO2 nanoparticles using graphene for use in dye-sensitized solar cells," *Int. J. Energy Res.*, vol. 38, no. 11, pp. 1438–1445, 2014.
- [51] J. Fan, S. Liu, and J. Yu, "Enhanced photovoltaic performance of dyesensitized solar cells based on TiO 2 nanosheets/graphene composite films," *J. Mater. Chem.*, vol. 22, no. 33, pp. 17027–17036, 2012.

- [52] G. Zamiri and S. Bagheri, "Fabrication of green dye-sensitized solar cell based on ZnO nanoparticles as a photoanode and graphene quantum dots as a photo-sensitizer," *J. Colloid Interface Sci.*, vol. 511, pp. 318– 324, 2018.
- [53] H. M. udhiphyay. D.Kishore Kumar, Ming-Hung Hsu, S.Senthilarasu, "Graphene Quantum Dots for flexible dye-sensitised solar cells," 2014.
- [54] R. Ghayoor, A. Keshavarz, M. N. S. Rad, and A. Mashreghi, "Enhancement of photovoltaic performance of dye-sensitized solar cells based on TiO2-graphene quantum dots photoanode," *Mater. Res. Express*, vol. 6, no. 2, p. 25505, 2018.
- [55] R. Cisneros, M. Beley, J. F. Fauvarque, and F. Lapicque, "Investigation of electron transfer processes involved in DSSC's by wavelength dependent electrochemical impedance spectroscopy (λ-EIS)," *Electrochim. Acta*, vol. 171, pp. 49–58, 2015.
- [56] J. M. K. W. Kumari, N. Sanjeevadharshini, M. A. K. L. Dissanayake, G. K. R. Senadeera, and C. A. Thotawatthage, "The effect of TiO2 photo anode film thickness on photovoltaic properties of dye-sensitized solar cells," *Ceylon J. Sci.*, vol. 45, no. 1, p. 33, 2016.
- [57] K. J. Hwang, W. G. Shim, S. H. Jung, S. J. Yoo, and J. W. Lee, "Analysis of adsorption properties of N719 dye molecules on nanoporous TiO 2 surface for dye-sensitized solar cell," *Appl. Surf. Sci.*, vol. 256, no. 17, pp. 5428–5433, 2010.
- [58] M. N. Mustafa, S. Shafie, M. H. Wahid, and Y. Sulaiman, "Optimization of power conversion efficiency of polyvinyl-alcohol/titanium dioxide compact layer using response surface methodology/central composite design," Sol. Energy, vol. 183, pp. 689–696, 2019.
- [59] Y. Lee and M. Kang, "The optical properties of nanoporous structured titanium dioxide and the photovoltaic efficiency on DSSC," *Mater. Chem. Phys.*, vol. 122, no. 1, pp. 284–289, 2010.
- [60] A. E. Touihri, T. Azizi, and R. Gharbi, "Discuss of Dye Sensitized Solar Cells accurate measuring methods," *16th Int. Conf. Sci. Tech. Autom. Control Comput. Eng. STA 2015*, no. April 2017, pp. 127–132, 2016.
- [61] H. Choi, C. Nahm, J. Kim, J. Moon, S. Nam, D. R. Jung, and B. Park, "The effect of TiCl 4-treated TiO 2 compact layer on the performance of dye-sensitized solar cell," *Curr. Appl. Phys.*, vol. 12, no. 3, pp. 737–741, 2012.
- [62] N. Huang, Y. Liu, T. Peng, X. Sun, B. Sebo, Q. Tai, H. Hu, B. Chen, S. S. Guo, *et al.*, "Synergistic effects of ZnO compact layer and TiCl 4 post-treatment for dye-sensitized solar cells," *J. Power Sources*, vol. 204, pp. 257–264, 2012.

- [63] L. Aarik, T. Arroval, R. Rammula, H. Mändar, V. Sammelselg, and J. Aarik, "Atomic layer deposition of TiO2 from TiCl4 and O 3," *Thin Solid Films*, vol. 542, pp. 100–107, 2013.
- [64] L. Vesce, R. Riccitelli, G. Soscia, T. M. Brown, A. Di Carlo, and A. Reale, "Optimization of nanostructured titania photoanodes for dye-sensitized solar cells: Study and experimentation of TiCl4 treatment," *J. Non. Cryst. Solids*, vol. 356, no. 37–40, pp. 1958–1961, 2010.
- [65] B.-M. K. Soo-Kyoung Kim, Min-Kyu Son, Jin-Kyoung Kim, "Effect of Acetic Acid in TiCl4 Post-Treatment on Nanoporous TiO2 Electrode in Dye-Sensitized Solar Cell," *Jpn. J. Appl. Phys.*, vol. 51, no. 9S2, 2012.
- [66] H. Zhang, W. Wang, H. Liu, R. Wang, Y. Chen, and Z. Wang, "Effects of TiO2 film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination," *Mater. Res. Bull.*, vol. 49, pp. 126–131, 2014.
- [67] Y. Wang, Z. Q. Lu, G. W. Du, X. Wang, D. D. Han, L. F. Liu, Y. Wang, X. Y. Liu, and J. F. Kang, "Thickness effect of nanocrystal TiO2 photoanodes on Dye Sensitized Solar Cells (DSSC) performances," *ICSICT 2012 - 2012 IEEE 11th Int. Conf. Solid-State Integr. Circuit Technol. Proc.*, pp. 4–6, 2012.
- [68] Y. Jo, C. L. Jung, J. Lim, B. H. Kim, C. H. Han, J. Kim, S. Kim, D. Kim, and Y. Jun, "A novel dye coating method for N719 dye-sensitized solar cells," *Electrochim. Acta*, vol. 66, pp. 121–125, 2012.
- [69] S. Wang, I. S. Cole, and Q. Li, "Quantum-confined bandgap narrowing of TiO2 nanoparticles by graphene quantum dots for visible-light-driven applications," *Chem. Commun.*, vol. 52, no. 59, pp. 9208–9211, 2016.
- [70] J. N. Sahu, J. Acharya, and B. C. Meikap, "Response surface modeling and optimization of chromium(VI) removal from aqueous solution using Tamarind wood activated carbon in batch process," *J. Hazard. Mater.*, vol. 172, no. 2–3, pp. 818–825, 2009.
- [71] M. Y. Noordin, V. C. Venkatesh, S. Sharif, S. Elting, and A. Abdullah, "Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel," *J. Mater. Process. Technol.*, vol. 145, no. 1, pp. 46–58, 2004.
- [72] A. I. Khuri and S. Mukhopadhyay, "Response surface methodology," Wiley Interdisciplinary Reviews: Computational Statistics, vol. 2, no. 2. pp. 128–149, 2010.
- [73] B. Acherjee, A. S. Kuar, S. Mitra, and D. Misra, "Modeling and analysis of simultaneous laser transmission welding of polycarbonates using an FEM and RSM combined approach," *Opt. Laser Technol.*, vol. 44, no. 4, pp. 995–1006, 2012.

- [74] A. H. Hamzaoui, B. Jamoussi, and A. M'nif, "Lithium recovery from highly concentrated solutions: Response surface methodology (RSM) process parameters optimization," *Hydrometallurgy*, vol. 90, no. 1, pp. 1–7, 2008.
- [75] D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie, *et al.*, "Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts," *Nanoscale*, vol. 5, no. 24, p. 12272, 2013.
- [76] A. Subramanian, Z. Pan, G. Rong, H. Li, L. Zhou, W. Li, Y. Qiu, Y. Xu, Y. Hou, *et al.*, "Graphene quantum dot antennas for high efficiency FÖrster resonance energy transfer based dye-sensitized solar cells," *J. Power Sources*, vol. 343, pp. 39–46, 2017.
- [77] N. Fadzilah, M. Kadir, S. Shafie, S. A. Rashid, W. Z. W. Hasan, and S. Shaban, "Charge transport and electron recombination suppression in dye-sensitized solar cells using graphene quantum dots," *Results Phys.*, p. 102171, 2019.
- [78] C.-B. Ma, Z.-T. Zhu, H.-X. Wang, X. Huang, X. Zhang, X. Qi, H.-L. Zhang, Y. Zhu, X. Deng, *et al.*, "A general solid-state synthesis of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications," *Nanoscale*, vol. 7, no. 22, pp. 10162– 10169, 2015.
- [79] V. Sharma and P. K. Jha, "Enhancement in power conversion efficiency of edge-functionalized graphene quantum dot through adatoms for solar cell applications," *Sol. Energy Mater. Sol. Cells*, vol. 200, no. May, p. 109908, 2019.
- [80] P. Routh, S. Das, A. Shit, P. Bairi, P. Das, and A. K. Nandi, "Graphene quantum dots from a facile sono-fenton reaction and its hybrid with a polythiophene graft copolymer toward photovoltaic application," *ACS Appl. Mater. Interfaces*, vol. 5, no. 23, pp. 12672–12680, 2013.
- [81] Y. Chong, Y. Ma, H. Shen, X. Tu, X. Zhou, J. Xu, J. Dai, S. Fan, and Z. Zhang, "The in vitro and in vivo toxicity of graphene quantum dots," *Biomaterials*, vol. 35, no. 19, pp. 5041–5048, 2014.
- [82] T. Das, B. K. Saikia, H. P. Dekaboruah, M. Bordoloi, D. Neog, J. J. Bora, J. Lahkar, B. Narzary, S. Roy, *et al.*, "Blue-fluorescent and biocompatible carbon dots derived from abundant low-quality coals," *J. Photochem. Photobiol. B Biol.*, vol. 195, no. April, pp. 1–11, 2019.
- [83] A. Cai, Q. Wang, Y. Chang, and X. Wang, "Graphitic carbon nitride decorated with S,N co-doped graphene quantum dots for enhanced visible-light-driven photocatalysis," *J. Alloys Compd.*, vol. 692, pp. 183– 189, 2017.

- [84] M. Laurenti, M. Paez-Perez, M. Algarra, P. Alonso-Cristobal, E. Lopez-Cabarcos, D. Mendez-Gonzalez, and J. Rubio-Retama, "Enhancement of the Upconversion Emission by Visible-to-Near-Infrared Fluorescent Graphene Quantum Dots for miRNA Detection," ACS Appl. Mater. Interfaces, vol. 8, no. 20, pp. 12644–12651, 2016.
- [85] I. Mihalache, A. Radoi, R. Pascu, C. Romanitan, E. Vasile, and M. Kusko, "Engineering Graphene Quantum Dots for Enhanced Ultraviolet and Visible Light p-Si Nanowire-Based Photodetector," ACS Appl. Mater. Interfaces, vol. 9, no. 34, pp. 29234–29247, 2017.
- [86] L. Wu, L. Liu, B. Gao, R. Muñoz-Carpena, M. Zhang, H. Chen, Z. Zhou, and H. Wang, "Aggregation kinetics of graphene oxides in aqueous solutions: Experiments, mechanisms, and modeling," *Langmuir*, vol. 29, no. 49, pp. 15174–15181, 2013.
- [87] X. Fang, M. Li, K. Guo, X. Liu, Y. Zhu, B. Sebo, and X. Zhao, "Graphenecompositing optimization of the properties of dye-sensitized solar cells," *Sol. Energy*, vol. 101, pp. 176–181, 2014.
- [88] B. K. Gupta, G. Kedawat, Y. Agrawal, P. Kumar, J. Dwivedi, and S. K. Dhawan, "A novel strategy to enhance ultraviolet light driven photocatalysis from graphene quantum dots infilled TiO2 nanotube arrays.," *RSC Adv.*, vol. 5, no. 14, pp. 10623–10631, 2015.
- [89] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, "Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy," *J. Phys. Chem. B*, vol. 110, no. 28, pp. 13872–13880, 2006.
- [90] J. V. Vaghasiya, K. K. Sonigara, K. B. Fadadu, and S. S. Soni, "Hybrid AgNP–TiO2 thin film based photoanode for dye sensitized solar cell," *Perspect. Sci.*, vol. 8, no. April, pp. 46–49, 2016.
- [91] Q. Zhang, G. Zhang, X. Sun, K. Yin, and H. Li, "Improving the power conversion efficiency of carbon quantum dot-sensitized solar cells by growing the dots on a TiO2 photoanode in situ," *Nanomaterials*, vol. 7, no. 6, p. 130, 2017.
- [92] S. El-Sherbiny, F. Morsy, M. Samir, and O. A. Fouad, "Synthesis, characterization and application of TiO2 nanopowders as special paper coating pigment," *Appl. Nanosci.*, vol. 4, no. 3, pp. 305–313, 2014.
- [93] R. Azimirad, S. Safa, M. Ebrahimi, S. Yousefzadeh, and A. Z. Moshfegh, "Photoelectrochemical activity of graphene quantum dots/hierarchical porous TiO2 photoanode," *J. Alloys Compd.*, vol. 721, pp. 36–44, 2017.

- [94] P. F. Lim, K. H. Leong, L. C. Sim, A. Abd Aziz, and P. Saravanan, "Amalgamation of N-graphene quantum dots with nanocubic like TiO 2: an insight study of sunlight sensitive photocatalysis," *Environ. Sci. Pollut. Res.*, vol. 26, no. 4, pp. 3455–3464, 2019.
- [95] Y. Li, C. Li, M. Yeh, K. Huang, P. Chen, R. Vittal, and K. Ho, "Graphite with Different Structures as Catalysts for Counter Electrodes in Dyesensitized Solar Cells," *Electrochim. Acta*, vol. 179, no. 7, pp. 211–219, 2015.
- [96] J. Kim, B. Lee, Y. J. Kim, and S. W. Hwang, "Enhancement of Dyesensitized Solar Cells Efficiency Using Graphene Quantum Dots as Photoanode," *Korean Chem. Soc.*, vol. 40, no. 11664, pp. 56–61, 2019.
- [97] P. Tian, L. Tang, K. S. Teng, and S. P. Lau, "Graphene quantum dots from chemistry to applications," *Mater. today Chem.*, vol. 10, pp. 221– 258, 2018.