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ENHANCING POWER CONVERSION EFFICIENCY FOR DYE-SENSITISED 
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By 
 
 

NOOR FADZILAH BINTI MOHAMED SHARIF 
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Chairman: Professor Mohd Zainal Abidin Ab. Kadir, PhD, PEng, CEng 
Faculty    : Engineering 
 
 
Traditional dye-sensitised solar cell (DSSC) with Titanium dioxide (TiO2) works 
well under low-light condition. However, the use TiO2 in photoelectrode will 
cause a random electron transport and high carrier recombination between the 
TiO2/dye/electrolyte interface which slow electron diffusion and reduce the 
charge collection efficiency (CCE). The recombination process can be reduced 
by Titanium (IV) Chloride (TiCl4) surface treatment at 40mM. A TiCl4 treatment 
successfully increased charge transfer resistance (𝑅𝑐𝑡) and electron lifetime 
(𝜏𝑛), resulting in suppression of electron recombination and increased CCE at 
31.09% compared to untreated DSSC. 
 
 
In order to enhance the PCE of DSSC, a Design of engineering (DOE) software 
was employed to study the validity of selection of an independent variable and 
its parameter for photoelectrode using a statistical method. In this stage, 
response surface methodology (RSM) was chosen under DOE to undergo three 
tests, which were: statistical test, regression analysis, and adequacy test on 
experimental data to develop a model. Based on the RSM test, the most 
variables that affected the power conversion efficiency (PCE) of DSSC were 
TiO2 thickness, then GQDs concentration, and GQDs loading time. The best 
PCE generated at 8.03% with 16 𝜇𝑚 TiO2 thickness, GQDs concentration at 
7.5mg/ml and 18 hours GQDs loading time. 
 
 
Furthermore, the use of Graphene Quantum Dots (GQDs) into photoelectrode 
can improve photon absorption which contributes to better PCE and CCE of 
DSSC. Photoelectrodes were dip-coated in different GQDs concentrations which 
varied from 2.5, 5.0, to 7.5 and 10 mg/ml.  The optimum content of 7.5mg/ml 
GQDs generated higher photon absorption wavelength of 330 to 600 nm due to 
the photoluminescent effect by GQDs. Thus, more electron-hole pairs were 
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generated in the solar cell with resulting increment of 47% PCE and 53.42% 
CCE compared to pristine TiO2 DSSC.  
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Sel solar-peka warna yang biasa (DSSC) dengan Titanium dioksida (TiO2) boleh 
berfungsi dengan baik di bawah keadaan cahaya rendah. Walau 
bagaimanapun, penggunaan TiO2 yang asli dalam fotoelektrik akan 
menyebabkan pengangkutan elektron rawak dan penggabungan pembawa 
yang tinggi antara antara muka TiO2 / pewarna / elektrolit yang memperlambat 
penyebaran elektron dan mengurangkan kecekapan pengumpulan caj (CCE). 
Proses cas rekombinasi boleh dikurangkan dengan rawatan permukaan 
Titanium (IV) Chloride (TiCl4) pada kepekatan 40mM. Rawatan TiCl4 berjaya 
meningkatkan rintangan pemindahan rintangan (𝑅𝑐𝑡) dan jangka hayat electron 
(𝜏𝑛). Dengan penurunan cas rekombinasi pada DSSC, kecekapan 
pengumpulan cas (CCE) meningkat pada 31.09% berbanding dengan DSSC 
yang tidak melalui rawatan TiCl4.  
 
 
Untuk meningkatkan PCE DSSC, applikasi Rekabentuk kejuruteraan (DOE) 
digunakan untuk mengkaji kesahihan pemilihan pembolehubah bebas dan 
parameternya untuk fotoelektrik dengan menggunakan kaedah statistik. Pada 
tahap ini, metodologi permukaan respon (RSM) dipilih di bawah DOE untuk 
menjalani tiga ujian yang dikenali sebagai ujian statistik, analisis regresi dan 
ujian ketepatan antara data eksperimen dan data model. Berdasarkan ujian 
RSM, pemboleh ubah yang paling mempengaruhi kecekapan penukaran kuasa 
(PCE) DSSC adalah ketebalan TiO2, di ikuti oleh kepekatan GQD dan masa 
rendaman GQD. PCE yang terbaik dijana pada 8.03% dengan parameter yang 
di optimumkan ketebalan TiO2 pada 16μm dengan kepekatan GQDs 7.5mg/ml 
dan pada masa rendaman GQD pada 18 jam.  
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Tambahan pula, penggunaan Graphene Quantum Dots (GQDs) ke fotoelektrik 
dapat meningkatkan penyerapan foton yang menyumbang kepada PCE dan 
CCE DSSC yang lebih baik. Photoelectrodes dimasukkan ke dalam kepekatan 
GQD dari 2.5, 5.0, 7.5 dan 10 mg / ml. Kandungan optimum GQDs pada 7.5mg 
/ ml meningkatkan penyerapan foton yang tinggi pada gelombang 330 hingga 
600 nm disebabkan oleh sifat fotoluminescent oleh GQDs. Oleh itu, sel solar 
dapat menghasilkan lebih banyak pasangan lubang elektron yang akhirnya 
menghasilkan kenaikan 47% PCE dan 53.42% CCE berbanding dengan sel 
solar TiO2 yang asli.  
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1 

CHAPTER 1 

1 INTRODUCTION 

1.1 Background of the Study 
 
Currently, most of the energy is generated using fossil fuels, but these sources 
are projected to be depleted. Hence, it is imperative that alternative energy 
sources are developed before then. In this regard, solar energy, which is clean 
and abundant, holds great promise.  
 
 
Dye-sensitised solar cells (DSSCs) have been developed for solar harvesting 
applications. The solar cell offers several advantages over silicon and thin-film 
cells due to their  low sintering temperature, easy fabrication, non-toxicity and 
their ability to work under low light conditions [1–2]. Hence, this technology can 
be commercialised because due to economic reason compared to first and 
second-generation photovoltaics, if the efficiency could be enhanced 
significantly.  To achieve that goal, it is vital to improve the photoelectrode 
element.  Currently, there are commercial DSSC products available in the 
market such as wireless remote, solar keyboard for IOS and Android, Gcell 
sample DSSC and G100 indoor solar powered by G24i group.  
 
 
Previous work in TiO2 photoelectrode modification  included surface plasmon 
resonance effect by metal nanoparticle, doping to tune energy band structure, 
growing graphene layer between FTO and TiO2, and  using  graphene type 
nanomaterial in photoelectrode to enhance power conversion efficiency (PCE) 
of DSSC [3–5]. Previous studies in the  literature proved that  two-dimensional 
(2D) graphene materials can potentially enhance the properties of 
photoelectrode of DSSC [6–9] due to its unique properties such as high optical 
transmittance (∼98%), good conductivity and large theoretical specific surface 
area (2630 m2 g−1) which is suitable for  engineering the TiO2 layer in DSSCs. 
Graphene also can be downsized by bottom-up technique using organic 
precursor to modify graphene bandgap and producing zero-dimensional 
Graphene Quantum Dots (GQDs). The existence of quantum confinement effect 
in GQDs will modify the optical properties of the TiO2 photoelectrode in DSSCs. 
In addition, GQDs material can be used to overcome the drawback of TiO2, such 
as high carrier recombination, lack of charge-carrier transport, and poor 
absorption on visible-region,  which is believed  to possibly  enhance the DSSC 
efficiency [10 –12]. 
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1.2 Problem Statement 
 
Photoelectrode is one of crucial elements in DSSC because it holds and 
transports excited electrons from N719 dye to FTO electrode. Traditionally, TiO2 
is the most promising material for the photoelectrode due to its photostability, 
biocompatible, wide bandgap, cost-effectiveness and non-toxicity. However, the 
use of TiO2 in DSSC cause the electrons to move randomly and increase high 
electron recombination between the TiO2/dye/electrolyte interface, which slows 
down electron diffusion and reduces the current density amount [13 –16]. Thus, 
it will reduce the PCE of DSSC. In addition, previous research shows less 
attention being paid to the advantages of pre-and-post-TiCl4, which resulted in 
easy electron diffusion and enhancement of the PCE of DSSC.  To solve these 
issues, a chemical treatment using titanium tetrachloride (TiCl4) in the 
photoelectrode was carried out. 
 
 
Furthermore, there is limited research on how most variables in the 
photoelectrode element influence the PCE. Thus, this research used Response 
surface methodology (RSM) to allow simultaneous varying of process variables 
[17–19]. The application of RSM method in fabricating a TiO2-GQDs, to 
investigate more than one independent variable has not been done before. In 
this research, a statistical method was used to study the validity of selection of 
the independent variable and its parameter for photoelectrode element. 
Ultimately, the most variable effect on   the PCE was determined.  
 
 
Moreover, using pristine TiO2 causes poor light absorption in the visible-region 
and a lack of charge-carrier transport.  Hence, it causes a reduction of 
photocurrent density [20,21]. Thus, GQDs can be used due to their  stable up-
conversion photoluminescence property, which  may enhance light absorption 
in the visible region [22]. In this study, GQDs concentration is varied to contribute 
to higher PCE and charge transport of DSSC. The TiO2 photoelectrode is 
sensitised in different concentrations of GQDs then continues with dye 
adsorption process. The performance of TiO2-GQDs cells was compared to 
pristine TiO2 cell.  
 
 
1.3 Research Objectives 
 
The key objectives of the current study are listed as follows: 
 

1) To determine the impact of TiCl4 treatment by investigating the carrier 
transport and recombination rate using electrochemical impedance 
spectroscopy (EIS). A longer carrier transport shows an improvement 
of charge collection efficiency (CCE) and power conversion efficiency 
(PCE). 

2) To investigate independent variables and their input parameters of 
photoelectrode that influence the DSSC performance, to determine an 
optimised input variable and PCE response by using central composite 
design (CCM) of RSM.  
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3) To use GQDs at different concentrations in the photoelectrode to 
improve photon absorption in the low visible region which can 
contribute to higher PCE of DSSC. The TiO2-GQDs nanocomposite is 
characterised using field emission scanning electron microscopy 
(FESEM), X-ray diffraction (XRD),  Raman spectrophotometer, 
and Ultraviolet-visible spectroscopy (UV-vis) to determine its 
morphology, crystallinity and optical properties. 

 
 
1.4 Scope and Limitations 
 

1) This research only investigated the DSSC device at 2 cm x 2.5cm with 
an active area of 1 x 1 cm2. Then, TiO2 paste was made by a sol-gel 
method and screen-printing was selected to deposit TiO2 paste on 
FTO glass because the method produces homogenous TiO2 film.  

2) The dip-coated method to incorporate GQDs into DSSC is done based 
on GQDs nature and the sensitivity of TiO2 condition, or else the TiO2 
film will be corrugated and it may reduce the PCE of DSSC.  

 
 
1.5 Research Contributions 
 

1) The effects of pre-and-post-TiCl4 treatment are proven to increase the 
carrier transport and reduce the recombination rate between 
TiO2/dye/electrolyte interfaces. The results also shown higher charge 
collection efficiency (CCE) and power conversion efficiency (PCE) for 
DSSC. 

2) A quadratic equation with significant variables to predict the PCE value 
is obtained by Central composite design (CCD). The equation is 
generated based on statistical approach where the technique can be 
employed for process optimisation of TiO2-GQDs based DSSC in the 
future.  

3) A green and acid-free GQDs at concentration of 7.5 mg/ml 
successfully increased the light absorption in the low visible region, 
resulting in a higher short-circuit current density and PCE of DSSC. 

 
 
1.6 Structure of the Thesis 
 
This thesis is divided into five chapters. Chapter one presented the background 
of the study, problem statement, research objectives, scope of the study, then 
ended with the research contributions. Chapter Two reviews the literature and 
discusses a previous work on photoelectrode modification and the use of GQDs 
to improve the PCE of DSSC. Chapter Three provides information on the 
preparation of TiO2-GQDs solar cell via dip-coated method and the 
characterisation process to determine the performance of new DSSC. Next, 
Chapter Four presents the results and discussion on the improvement of PCE 
after GQDs incorporated in the photoelectrode of DSSC. Finally, Chapter Five 
summarises the research findings and offers recommendations for future work 
to enhance DSSC efficiency.  
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