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With the continuous downscaling in semiconductor technology, the growing power 
density and thermal issues in multi-core processors are challenging and crucial. The 
system reliability associated with increased power dissipation affect the reliability of 
thermal management.  

High temperatures and large thermal variations on the die create severe challenges in 
system reliability, performance, leakage power, and cooling costs. Dynamic thermal 
management (DTM) methods regulate the operating temperature based on the provided 
temperature profile from thermal sensors, which is transmitted using network-on-chip 
(NoC) in multi-core systems. DTM efficiency is highly dependent on the accuracy of 
thermal data.  

Temperature profile inaccuracies are caused by various factors including sensor 
placement, sensor device imprecision, and interconnection deep sub-micron (DSM) 
noise. While temperature profile inaccuracies due to sensor placement and sensor device 
imprecision have been widely addressed, limited study performed on the impact of 
interconnection DSM noise on DTM efficiency. Hence, this thesis develops a 
comprehensive simulator model to investigate the impact of interconnect DSM noise on 
thermal data accuracy and DTM efficiency. The simulation results demonstrate that 
DSM noise severely affecting the MSbs of thermal data that leads to significant 
degradation of DTM performance.  

To mitigate the DSM noise impact on DTM efficiency, an NoC fault tolerance scheme, 
exploiting inherent characteristics of DSM noise impacting the thermal data, is proposed 
that comparing to the standard coding scheme achieves lower cost in term of area and 
power consumption while increasing DTM efficiency by 38%.  
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The second source of chip reliability involves power delivery network (PDN). PDN 
suffers from long-term reliability threats such as electro- migration (EM). Loss of limited 
Controlled Collapse Chip Connection (C4) pads to electro-migration makes delivering a 
stable supply voltage more critical. C4 bumps failure mechanism depends on current 
density, on-chip voltage noise, and temperature. In this thesis, the C4 bumps failure 
mechanisms dependency on each individual bumps' temperature value is explored that 
leads to more accurate mean-time-to-failure (MTTF) of the whole system. The 
simulation results demonstrate that using uniform temperature leads underestimating the 
system MTTF by up to 16 times due to exponentially dependency of C4 bump failure to 
temperature. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

 

PEMODELAN KEBOLEHPERCAYAAN PENGURUSAN TERMA DINAMIK 
DALAM PEMPROSES BERBILANG TERAS 

 

Oleh 
 

SOMAYEH RAHIMI POUR 
 

Januari 2018 
 
 

Pengerusi : Fakhrul Zaman Rokhani, PhD 
Fakulti  : Kejuruteraan 
 
 
Dengan penskalaan rendah berterusan dalam teknologi semikonduktor, isu-isu 
peningkatan ketumpatan kuasa dan terma dalam pemproses berbilang teras adalah 
penting dan mencabar. Kebolehpercayaan sistem yang dikaitkan dengan peningkatan 
pelesapan kuasa boleh memVpengaruhi kebolehpercayaan pengurusan terma. 

Suhu tinggi dan variasi terma yang besar pada die mewujudkan cabaran yang teruk dalam 
kebolehpercayaan sistem, prestasi, kuasa bocor, dan kos penyejukan. Pengurus DTM 
mengawal suhu operasi berdasarkan profil suhu yang disediakan dari sensor terma, yang 
dihantar menggunakan rangkaian-atas-cip (NoC) dalam sistem berbilang teras. 
Kecekapan adalah DTM sangat bergantung kepada ketepatan data terma. 

Ketidaktepatan profil suhu adalah disebabkan oleh pelbagai faktor termasuk penempatan 
sensor, ketidaktepatan peranti sensor dan hingar DSM antara-sambung. Walaupun 
ketidaktepatan profil suhu yang disebabkan oleh penempatan sensor dan ketidaktepatan 
peranti sensor telah ditangani secara meluas, kajian masih terhad dalam kesan hingar 
DSM antara-sambung kepada kecekapan DTM. Oleh itu, tesis ini membangunkan satu 
platform simulator yang komprehensif untuk menyiasat kesan hingar DSM antara-
sambungan pada ketepatan data suhu dan kecekapan DTM. Hasil simulasi menunjukkan 
bahawa hingar DSM teruk menjejaskan data terma yang membawa kepada kemerosotan 
prestasi DTM yang ketara. 

Untuk mengurangkan kesan hingar DSM kepada kecekapan DTM, skim toleransi 
kegagalan NoC yang menggunakan teknik pengiraan anggaran telah dicadangkan, dan 
berbanding dengan skim pengekodan standard dapat mencapai kos yang lebih rendah 
dari segi penggunaan kawasan dan kuasa serta meningkatkan kecekapan DTM sebanyak 
38%.  
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Sumber kedua kebolehpercayaan cip melibatkan penghantaran kuasa rangkaian. PDN 
mengalami ancaman kebolehpercayaan jangka panjang seperti pengelektrohijrahan 
(EM). Kehilangan pad C4 yang terhad kepada pengelektrohijrahan menyebabkan 
penyampaian voltan bekalan yang stabil lebih kritikal. Mekanisme kegagalan C4 lebam 
bergantung kepada ketumpatan arus, bunyi dan suhu voltan atas-cip. Dalam tesis ini, 
kami meneroka kebergantungan mekanisme kegagalan C4 lebam pada setiap nilai suhu 
lebam masing-masing yang boleh membawa kepada min masa untuk kegagalan (MTTF) 
yang lebih tepat. Hasil penyelakuan menunjukkan bahawa menggunakan suhu seragam 
akan meremehkan sistem MTTF sebanyak 16 kali kerana eksponensial ketergantungan 
kegagalan C4 lebam pada suhu. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
1.1 Introduction 

In the previous decades, the scaling of CMOS technology enabled the semiconductor 
industry to successfully keep an exponential growth rate in device integration. Despite 
the fact that CMOS technology scaling has brought about exponentially greater transistor 
densities but threshold and supply voltages do not decrease sufficiently quick to avoid 
exponential growth in on-chip power density [12]. Figure 1.1 shows the power 
dissipation over multiple generations of Intel chips where each labeled point is a new 
chip generation and the branches are the changes in power dissipation as chips are scaled 
to smaller technologies. 

 
Figure 1.1: Power Dissipation Across Multiple Generations of Intel Chips [1]. 

Since a significant fraction of chip power consumption is converted to heat, an 
exponential rise in heat density is also experienced. Diverse activities and sleep modes 
of the functional blocks in high-performance chips cause severe hot spots on a chip, 
creating large temperature variations (Figure 1.2), which can decrease functionality or 
cause timing failure. An emergency temperature happens when temperatures increment 
past the maximum temperature tolerance. In emergency temperature, the chip cannot 
function at its required speed, resulting in erroneous computations. In addition to the risk 
of functional failure caused by delay increases, extended exposure to high temperatures 
can result in aging and electro-migration [13]. 
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Figure 1.2: IBM POWER4 Chip Temperature Map [2] 

Although temperature is one of many sources of variation facing nanoscale systems [13], 
its tight coupling with power dissipation and power density makes it among the most 
important of factors constraining nanoscale system design. In deep sub-micron, leakage 
current is primarily responsible for the exponential rise in heat density. The sub-threshold 
leakage causes the overall leakage current to increase exponentially with temperature. A 
positive thermal feedback may lead to a thermal runaway rendering permanent damage 
to the circuits. Thermal runaway is the condition where an increase in temperature causes 
an increase in leakage current, and the increase in leakage current dissipates enough 
additional power to further increase the temperature, resulting in a cycle of increasing 
leakage and temperature that can have unstable consequences (Figure 1.3). 

 
Figure 1.3: Impact of Thermal Runaway on a Test Socket [3] 

Since thermal issues have been recognized as a critical barrier to utilize transistors 
effectively [14], it is becoming increasingly challenging to remove the massive heat 
generated by silicon chips. Temperature has an exponential effect on electro-migration 
and affects the stability of power delivery network (PDN), too. 
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To maintain performance and reliability in multi-core processors, dynamic thermal 
management (DTM) techniques adapt the behavior of the chip based on the provided 
temperature profile from thermal sensors, which is transmitted using network-on-chip 
(NoC) in multi-core chips [15, 16, 17]. Many techniques have been proposed to manage 
on-chip heat dissipation [14, 4, 18]. The problems regarding the DTM and PDN 
reliability will be discussed in the following section. 

1.2 Problem Statement 

DTM efficiency is highly dependent on accurate input thermal data [14], as system 
performance degrades in consequence of unnecessary invokes of DTM techniques. In 
addition, inaccurate temperature profile lower than the actual temperature can result in 
late activation of DTM techniques, which could potentially result in physical damage 
[19]. Temperature sensing inaccuracies are cause by various factors including sensor 
placement, sensor device imprecision and interconnection DSM noise that will be 
explained in Section 2.3.3. The effect of sensor placement noise and sensor device 
imprecision on DTM efficiency are widely investigated [20, 21, 22, 23, 14]. 

One of the most worrying effects in nanometer technologies is the escalation of deep 
sub-micron noise. The reliability of thermal data transmitted over the bus in single core 
systems and over the NoC in multicore systems is challenging due to the increasing of 
noise in DSM technology, but to the best of our knowledge the effect of DSM noise on 
thermal data and consequently on DTM efficiency is missing from the literature. The 
above scenario motivates the need for a comprehensive investigation methodology to 
explore how DTM efficiency is affected by DSM noise. To highlight the dominant effect 
of DSM noise, this work compares the effect of DSM noise with the other noise sources 
affecting thermal data.  

To mitigate the DSM noise impact to DTM efficiency, a specific fault tolerance scheme 
is proposed, exploiting inherent characteristics of DSM noise impacting the thermal data, 
based on approximate computing, which improve the DTM efficiency while consuming 
less power and area. This scheme enables continued operation of dynamic thermal 
management even in the presence of high ratio of DSM noise in deep sub-micron 
technology. 

Reliability of thermal data is very important for DTM efficiency and consequently for 
the whole system performance and reliability. The other serious reliability challenge is a 
stable power delivery network to deliver sufficient current to switching transistors. 
Supply voltage can become noisy (i.e. drop or fluctuate) due to the PDN's intrinsic 
resistance, capacitance and inductance and cause timing errors and threatening program 
correctness. PDN suffers from long-term reliability threats such as electro-migration 
(EM). Temperature has an exponential effect on electro-migration and affects chip life 
time and voltage stability. The effect of temperature on reliability of C4 bumps are 
widely investigated, but a uniform temperature for the whole chip was considered. As 
another contribution of this study, the C4 bumps failure mechanisms dependency on 
accurate chip temperature is explored. This helps to reduce packaging cost and support 
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more off-chip I/O channels in current and near-future technology nodes by enabling the 
designers provision bump allocation under different thermal maps. 

1.3 Aim and Objective 

The aim of this thesis is to provide a reliable thermal data transmission over NoC to 
maintain high DTM efficiency and investigate the reliability of power delivery network. 
To achieve this goal, the thesis objectives are based on three main approaches: 
 

 Develop a simulation model to investigate the DTM performance under the 
effect of different sources of noise, including sensor noise, placement noise, and 
DSM noise, individually and in combination at 90nm technology scaling down 
to 22nm. 

 Design and develop a specific fault tolerance coding scheme exploiting inherent 
characteristics of DSM noise impacting the thermal data, based on approximate 
computing technique. 

 Develop Monte Carlo Simulation (MCS) to analyze the impact of temperature 
on mechanism of multiple, EM-induced, random power-C4 bump failures. 

 
1.4 Contributions 

The main contribution of this study is to investigate the impact of interconnect DSM 
noise on DTM efficiency and proposing a novel NoC fault tolerance scheme to mitigate 
the impact of interconnect DSM noise on DTM. Meanwhile, this study investigate the 
effect of temperature on power delivery network reliability. 

1.5 Scope 

The scope of this study is limited to exploiting one DTM technique to investigate the 
effect of all sources of noise on multicore processors. In this study the raw thermal data 
captured directly from sensors are used and no processing applied to them. Also in this 
thesis the focus is on the on-chip PDN and not the I/O bumps. 

1.6 Thesis Organization 

Next chapter, Chapter 2 is divided into seven sections, which introduce the required 
background and construct the foundation for the contributions of this thesis. Chapter 3 
explains the simulation scenarios. The first simulation model is used to investigate the 
effect of each source of noise on thermal data and DTM efficiency. A novel approach is 
proposed for modeling different sources of noise and their scaling trends from 90nm to 
22nm technology node. A novel fault tolerance design is also proposed due to the 
inherent characteristics of thermal monitoring data by exploiting approximate computing 
technique.  
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Since the DSM noise is increasing significantly by technology scaling, it is expected that 
by providing specific fault tolerance scheme more power and area savings are possible 
while maintaining DTM efficiency in current and near future technology nodes. This 
chapter also introduces the performance and cost metrics used to evaluate the DTM 
efficiency. For the other contribution of this study, a statistical simulation model is built 
to analyze the mechanism and consequences of multiple EM-induced C4 pad failures 
under the effect of C4 pad temperature. Chapter 4 first evaluates the effect of each source 
of noise on thermal data and DTM efficiency individually and in combination, using the 
noise models and metrics presented in Chapter 3. The second part of chapter 4 compares 
the proposed fault tolerance scheme with the benchmark scheme in terms of hardware 
implementation area and power consumption, the network performance such as 
reliability and maximum latency and the DTM efficiency. The third part of chapter 4 
evaluates the effect of C4 bump temperature on PDN reliability. The last chapter, Chapter 
5, ends the thesis with some conclusion and possible future works. 
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