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The use of predictive model is useful for preventing and controlling disease out-

break. This can be done by analysing weather behavior in relation to disease 

occurrence.  In Malaysia, leptospirosis disease is the one of the higher number of 

cases that reported for past 7 years, and the absence of understanding and 

modelling studies that allows development of an early warning system.  In this 

study, predictive model is developed using machine learning to capture the relation 

between weather variables such as temperature, sum of rainfall, and relative 

humidity, and Leptospira occurrence. The aim of this study is to predict the 

occurrence of Leptospirosis in Seremban district using a machine learning and 

meteorological data as input.  The first objective of the study is to investigate the 

best time lags for each weather variable using feature selection methods.  The 

second objective is to develop, train and test a neural network model for disease 

prediction based on the selected features.  Feature selection was conducted using 

two methods: firstly, though correlation analysis, and secondly through graphical 

and non-graphical Exploratory Data Analysis (EDA). The neural network model is 

developed using Backpropagation training, optimizing the number of hidden layers 

and hidden nodes. The success is measured using accuracy, sensitivity, and 

specificity of the model. Correlation analysis has shown that Seremban district has 

higher correlation with disease occurrence when sum of rainfall at lag 4 until 16 

weeks and temperature at lag 1 week, while by using EDA has shown Seremban 

can have high correlation with leptospirosis occurrence when the temperature at 

lag 16 weeks and sum of rainfall at lag 12 until 20 weeks.  This study also shown 

the predictive model can achieve high accuracy between 80% to 84% when the 

input variables were following the feature selection that have been made by EDA 

and the number of hidden neurons is 10. In conclusion, this study is able to show 
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the trend of the environmental variable in predicting the leptospirosis occurrence 

at different time lag. Besides, by having this predictive model, it helps the public 

health not only to predict the occurrence of the disease, but it can prevent from 

the outbreak start to spread to the community by giving the early warning based 

on the weather status in future. 
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Penggunaan model ramalan berguna untuk mencegah dan mengawal wabak 
penyakit. Ini boleh dilakukan dengan menganalisis perubahan dan keadaan 
cuaca yang berkait rapat dengan kejadian penyakit. Di Malaysia, penyakit 
leptospirosis adalah salah satu daripada penyakit yang mempunyai bilangan kes 
tertinggi yang dilaporkan selama 7 tahun yang lalu, dan ketiadaan pemahaman 
dan kajian pemodelan terhadap penyakit ini telah mendorong penciptaan sistem 
amaran awal. Dalam kajian ini, model ramalan dibangunkan menggunakan 
pembelajaran mesin (machine learning) untuk mencari hubungan diantara 
pembolehubah cuaca seperti suhu, jumlah hujan, dan kelembapan relatif, dan 
kejadian Leptospirosis. Tujuan kajian ini adalah untuk meramalkan berlakunya 
Leptospirosis di daerah Seremban menggunakan data pembelajaran mesin dan 
meteorologi sebagai input. Objektif pertama kajian ini adalah untuk menyiasat 
tempoh masa terbaik bagi setiap pembolehubah cuaca menggunakan kaedah 
pemilihan ciri.  Objektif kedua adalah untuk membangun, melatih dan menguji 
model rangkaian neural untuk ramalan penyakit berdasarkan ciri-ciri yang dipilih.  
Pemilihan ciri dijalankan menggunakan dua kaedah: pertama, analisis korelasi, 
dan kedua melalui Analisis Data Eksplorasi grafik dan bukan grafik (EDA). Model 
rangkaian saraf dibangunkan menggunakan latihan Backpropagation, 
mengoptimumkan jumlah lapisan tersembunyi dan simpul tersembunyi. 
Kejayaan diukur menggunakan ketepatan, kepekaan dan kekhususan model.  
Analisis korelasi menunjukkan bahawa daerah Seremban mempunyai korelasi 
yang lebih tinggi dengan kejadian penyakit apabila jumlah hujan pada 4 hingga 
16 minggu sebelum kejadian leptospirosis,manakala suhu pada 1 minggu 
sebelum kejadian, sedangkan dengan menggunakan EDA menunjukkan 
Seremban dapat mempunyai korelasi tinggi dengan kejadian leptospirosis ketika 
suhu pada 16 minggu sebelumnya dan jumlah hujan pada 12 hingga 20 minggu 
sebelum kejadian penyakit. Kajian ini juga menunjukkan model ramalan dapat 
mencapai ketepatan yang tinggi antara 80% hingga 84% apabila pembolehubah 
input mengikuti pemilihan ciri yang telah dibuat oleh EDA dan bilangan neuron 
tersembunyi adalah 10. Kesimpulannya, kajian ini mampu untuk menunjukkan 
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corak pembolehubah cuaca dalam meramalkan kejadian leptospirosis pada 
waktu yang berbeza. Selain itu, dengan menggunakan model ramalan ini, ia 
bukan sahaja dapat membantu pusat kesihatan untuk meramalkan berlakunya 
penyakit itu, tetapi ia dapat mencegah daripada wabak mula merebak didalam 
masyarakat setempat dengan cara memberi amaran awal berdasarkan status 
cuaca pada masa akan datang. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Introduction  
 
 
Waterborne disease has a worldwide distribution and it was frequently happens 
in developing countries causing human suffering (Cotruvo et al., 2004). In 2009, 
4 billion cases of diarrhoea were reported that brought 1.6 million to a death and 
62.5 million Disability Adjusted Life Years (DALYs) (Wright and Gundry, 2009). 
Waterborne disease belongs to top five common disease that causes of death. 
Malaysia is one of the developing countries that face this disaster. Generally, 
these diseases that able to spread rapidly in contaminated water. Small worms 
and parasitic protozoa can live in water naturally and most of protozoa are 
harmful. Because they cannot be seen, they are hard to be avoided. Most of the 
time, developed countries have a small number of cases that relate to this 
disease because they have sophisticated and updated water system including 
the filter and chlorinate water to kill all worms and protozoan that can cause 
disease. In other words, waterborne disease closely related to the water 
management such as inadequate water supply, improper sewage disposal, poor 
personal hygiene and unsatisfactory environmental sanitation. However, 
drinking water quality in developed countries is also not assured. In France, 
when drinking water was tested, it was uncovered that 3 million people were 
drinking water that have not meet the World Health Organization (WHO) 
standard, and 97% of groundwater sample did not meet standards for nitrate in 
the same study (World Water Assessment Programme, 2003). 
 
 
The first waterborne disease was reported occur in Malaysia during the first half 
of the twentieth century. The infection starts at a northern state in Peninsular 
Malaysia which is Kedah. The first infection that was recorded is Cholera disease 
(FEDERATION et al., 1954). Then, the disease was continue spread to another 
state such as Sarawak, Kelantan, Perak and Malacca. Based on the analysis 
and the statistic that was recorded from years 1970 to 1997, this disease was 
fluctuating and become peak every five years, and mostly happen May, June 
and July where it a dry season (Kin, 2007). There are others waterborne disease 
that occur in Malaysia such as dengue, malaria, leptospirosis and Hepatitis B. 
All this disease can be spread by water easily. This is because, during severe 
drought, this condition force many people to use water directly from river (Kin, 
2007). Based on all these studies, instead of condition of water itself, the climate 
also can be a cause to the spreading of the waterborne disease. Many do not 
realize that this water-borne disease can cost many lives if not prevented from 
the beginning. This is because the disease is very sensitive to weather (National 
Research Council (US) Committee on Climate, Ecosystems, Infectious Diseases 
and Health, 2001). According to Department of Statistic Malaysia, leptospirosis 
is one of waterborne diseases that have ranked in the top 5 most cases and 
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mortality among others killer disease from 2012 until 2015 (Department of 
Statistics Malaysia, 2015). 
 
 
One previous study also shown, number of deaths that caused by leptospirosis 
have significant increase since 2007 until 2010 and Malaysia recorded the 
highest number of deaths due to the disease in 2014 (Garba et al., 2017). There 
are 5 states in Malaysia contribute the highest cases for leptospirosis such as 
Melaka, Selangor, Kuala Lumpur, Negeri Sembilan and Sarawak (Tan et al., 
2016), and in 2015, Negeri Sembilan become second larger number of outbreaks 
of leptospirosis after Kuala Lumpur (Garba et al., 2017). These two records have 
made leptospirosis a dangerous disease in Malaysia and have received attention 
from various parties including the Department of Health Malaysia over the past 
several years (Tan et al., 2016; Garba et al., 2017). 
 
 
There are previous studies that have investigate the factors that can contribute 
in spreading the leptospirosis disease. In tropical country like Malaysia, 
environmental conditions are one of the variables that associated to a survival of 
specific bacteria especially leptospirosis disease. Extreme weather event such 
as floods and cyclones that occur in recent year may have potential to increase 
the disease incidence as well as the magnitude of leptospirosis outbreaks (Lau 
et al., 2010; Vijayachari et al., 2008). The findings of these studies have been a 
turning point for many researchers to develop a model that can predict the 
number of cases of leptospirosis in the future. In Thailand, few researchers have 
used to investigate the impact of time variation of meteorological variables in the 
number of leptospirosis cases. 
 
 
Autoregressive Integrated Moving Average with Exogenous Inputs (ARIMAX) 
was used as a predictive model to predict the number of cases for leptospirosis 
from 2003 until 2010(Chadsuthi et al., 2012). In this study, they have used 
correlation analysis and found rainfall with 10-month lag time and temperature 
with an 8-month lag time can show the trend in leptospirosis cases and indirectly 
may increase the prediction of the number of leptospirosis cases. Their research 
shown the positive impact on the performance of the model and this study has 
also strengthened the theory of the relationship between meteorological factors 
and the transmission of leptospirosis.   Besides, another retrospective study was 
undertaken to describe the meteorological impact on the patterns of human 
leptospirosis cases that recorded in Reunion Island (Indian Ocean) (Desvars et 
al., 2011).   In this study, the researchers used the same type of predictive model 
which is ARIMAX to find the correlation between leptospirosis cases and 
meteorological variable. However, this study has found the rainfall and 
temperature 2-month prior is the most effective variable to predict the number of 
cases of leptospirosis. To the best of our knowledge, there are no studies in 
Malaysia that have focused on developing a predictive model that can help public 
health officially to predict the occurrence of the leptospirosis using 
meteorological variables. 
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Understanding extreme weather events and how this can explain the occurrence 
of leptospirosis diseases is a necessary first step at improving predictability and 
ultimately the community response to the epi- demic. However, due to the 
complexity of the physical and microbiological interactions that lead to conditions 
favouring disease occurrences, a mathematical model development can be 
laborious because it required several processes characterizing of physical and 
microbiological fundamental (Tompkins and Di Giuseppe, 2015). In contrast, a 
data mining approach can be more resource effective as models can be trained 
to learn patterns from historical records and be blind to the modeller’s prior 
knowledge. Data mining models have long gained popularity in the fields of 
hydrology, agriculture, ecology, as well as health, yet limited work has been done 
for a couple hydro-meteorological-health systems and specifically for improving 
the understanding and forecasting of water-borne diseases (Babovic, 2005; 
Debeljak et al., 2009; Lucas, 2004; Mucherino et al., 2009). 
 
 
1.2  Problem Statement  
 
  
Malaysia is heavily influenced by the monsoon rains. The monsoon will cause a 
rain cycle based on southwest monsoon, northeast monsoon and two transition 
periods. This phenomenon indirectly will cause the whole of Peninsular Malaysia 
to be particularly humid in the east coast in the beginning of the northeast 
monsoon season and to dry at the end of the season. Negeri Sembilan is a state 
in Malaysia which lies on the western coast of Peninsular Malaysia. The 
monsoon rains cause variability of rainfall distribution across Negeri Sembilan 
and form two significant features which is a wetter region west of the highlands 
(including Seremban) up to the coast indicates an increase in annual rainfall 
while the area on the east of the highlands (including Jelebu and Kuala Pilah) 
were experience the decreasing rate of rainfall (Wong et al., 2016). The 
variability on rainfall distribution has influenced on the survival period, growth, 
transmission of leptospira in the external environment. 
 
 
When conditions are optimal, pathogenic leptospires can survive in water and 
wet soil for weeks to months (Vijayachari et al., 2008). Besides, it also can 
influence the rodent behaviour because rodent activity increase during raining 
(Kraus et al., 2005). Rodent has tendency to moving indoors to seek shelter 
during raining or winter season or during colder ambient temperatures (Ng, 
2016). In other words, the rodent would move to residential area where it would 
increase the chance of human to contact with rodent or rat dropping. 
Furthermore, growth rate of rodent may increase during this season because 
they would reduce their reproduction, thus they not facing the competition for 
access to food (Ng, 2016). These statements have been proved by two previous 
study which have been undertaken at two different country which is Thailand and 
Reunion Island (Indian Ocean) (Chadsuthi et al., 2012; Desvars et al., 2011). 
Both studies shown different finding where study at Thailand shown rainfall 10-
month prior give positive correlation to increasing number of leptospirosis cases 
while study on Reunion Island found 2 months prior of rainfall give positive 
influence. Thus, in Negeri Sembilan (Malaysia) might have different correlation 
result due to different geographical and climate zone. 
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Referring these two previous studies, both used correlation analysis to find the 
best time lag for meteorological variable which have higher correlation with 
leptospirosis cases (Chadsuthi et al., 2012; Desvars et al., 2011). Cross-
correlation might be the best and fast solution to identify the correlation between 
2 independent variables, but it also provides meaningless correlation that exist 
between time series. For example, if the values of x series does not give any 
information to the y series at any times, then it still possible for cross-correlation 
to appear significant non-zero when the measurement against the stan- dard 
criteria (Dean and Dunsmuir, 2016). This is because cross-correlation analysis 
only investigates the change of y series when the x series changed at any times 
without give good expositions of pre- conception between these two variables. 
Besides, cross-correlation analysis also not promising a good performance for 
predictive model. Regarding to previous study that develop predictive model by 
using ARIMAX, the model was achieve better performance when the ARIMAX 
model combine with single input variable such as rainfall (low RMSE) compare 
ARIMAX with both input variables (rainfall and temperature) (Chadsuthi et al., 
2012). This finding has proven that cross-correlation only find the best correlation 
between one input and one output variable without giving strong preconception 
reason for that correlation. Thus, when it come together with another variable, 
the model cannot fit because it has 2 difference correlation for 2 difference input 
variables. 
 
 
ARIMAX model is one of mathematical model which very famous among 
researchers that involve in predictive modelling (Dhewantara et al., 2019). This 
model become popular due to ability to have solid underlying theory, stable 
estimation of time-varying trends (due to stationary characteristic) and can give 
advantages on simplify a complex situation (Li et al., 2012). However, 
implementation mathematical model required few assumptions or estimation in 
their equation.   In early model development, it may seem that the problem is 
very complex to make any progress. Thus, it very necessary to assume to help 
in simplifying the problem and focus on the model’s objective. The assumption 
may include the number of factors affecting the model, thereby deciding which 
factors are most important. Thus, this might cause simplification on the real 
problem and does not include all aspects of the problems. The model output 
might gives very precise result. But it does not mean the model have very 
accurate. The model was built with statistical technique based on the specific 
range that has been covered by input data. But if the model faced with unseen 
data, model need to have few changes on the parameter to keep the model to 
perform well. In other words, mathematical model cannot generalize the real 
problem and less reliable (Richardson, 1979). 
 
 
In conclusion, to overcome all these drawbacks and improve the predictive 
model of disease prediction, we are proposing one method for feature selection 
that can see through the data and select which data that associated with the 
leptospirosis occurrence. Besides, exploring the ability of modern mathematical 
models may help in improving disease prediction as well. 
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1.3  Objective 
 
 
The overall aim is predicting the occurrence of Leptospirosis in Seremban district 
using a machine learning and meteorological data as input. Specific objectives: 
 

I. To design and analyze feature selection methods which are 
correlation analysis and Exploratory Data Analysis to find the 
best time lag of temperature and rainfall data. 

II. To develop a predictive model using backpropagation neural 
network for the direct and indirect impacts of environmental 
variables on the occurrence of Leptospirosis 

 
 
1.4  Research Contributions 
 
 
To correlate between the meteorological variables and occurrence of 
leptospirosis disease by using Exploratory Data Analysis is new. This study 
designed and investigate the suitable approach by using this method to perform 
better selection on the time lag of temperature and rainfall data. 
 
 
1.5  Research Scope 
 
 
This study has set some limitation as guidance and reference for the 
researchers. First, this study used secondary data for both meteorological and 
clinical data. The secondary data is the data that was obtained by collection from 
the government departments including Department of Health Negeri Sembilan, 
Department of Meteorological Malaysia (MetMalaysia) and Department of 
Irrigation and Drainage and it was not retrieved by measurement of a rain gauge 
or thermometer. Secondly, this study does not in- volve any scientific experiment 
that will use any laboratory equipment. Lastly, this study only done on simulation 
which only require uses of few software and does not planning in developing the 
hardware. 
 
 
1.6  Thesis Outline 
 
 
1.6.1  Introduction 
 
 
This section discussed the general topic of transmission of leptospirosis in 
Malaysia. Besides, emphasis on the purpose of this study in disease prediction 
also has been discussed. Furthermore, the research question as well as the 
objective and research scope study also filled in this section. 
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1.6.2  Literature Review 
 
 
This section would describe all relevant topics that fall in this study subject. 
Topics that would be reviewed are meteorological factors that may affect the 
transmission of leptospirosis, previous and current studies in feature selection 
and implementation of a mathematical model in disease prediction. At the end of 
this chapter, the conclusion has been made based on the review of previous 
studies and finally, the research gap identified. 
 
 
1.6.3  Methodology 
 
 
This section gives more detail on how the study gets access to the selected 
methodological approach including data retrieved, data processing, data 
analysis and model development. Analyzed data emphasize more to the feature 
selection technique while modelling development more to the parameter 
selection for the predictive model. 
 
 
1.6.4  Result and Discussion 
 
 
This chapter was divided into 3 sections. The first section has presented the 
result of the based-line model as well as the preliminary study in this research. 
The second section presents and discusses the result of the time lag of rainfall 
and temperature data based on the type of feature selection techniques. The 
final section presents the performance of the proposed model in terms of 
accuracy, specificity, and sensitivity during the training and testing phase. 
Besides, this section also discussed how different time lags of rainfall and 
temperature data may affect the performance of the model. 
 
 
1.6.5  Conclusion 
 
 
This is the final section of this thesis. Thus, the overall conclusion including the 
methodological approach and performance of the model has been made. 
Besides, this section also included a recommendation that may improve disease 
prediction in future studies. 
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