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Dry reforming (DRM) is an important reaction mainly used in petrochemical industries. 

Therefore, in DRM reaction which using a nickel catalyst with high activity, stability, 

low deactivation, and a favourable product ratio with efficient and practical supports are 

always the challenge. Objectives of this study is to improve catalyst performance of Ni 

metal with three different types of supports named as dolomite, talcum and alkaline 

sludge (AS). These basic supports were pre-treated at high temperature (900°C) followed 

by catalyst preparation via facile wet-impregnation method. Thus, three series of 

monometallic nickel-based catalyst at different metal loading (5 to 15 wt%) were 

prepared in order to determine the optimum loading of nickel of each support. The 

supports and synthesized catalysts were characterized by various physicochemical 

analysis including X-ray diffraction (XRD), N2 adsorption-desorption, X-ray 

fluorescence (XRF), field emission scanning electron microscope (FESEM), 

transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy 

(FTIR), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction of 

hydrogen (TPR-H2), temperature programmed desorption of carbon dioxide (TPD-CO2), 

temperature programmed desorption of ammonia (TPD-NH3) and thermogravimetric 

analysis (TGA). Investigation on supports and prepared catalysts revealed that the phase 

composition (such as Ni0, NiO, NiOH, CaO and MgO) in each of the catalysts highly 

affected the textural and chemical properties of catalysts. Crystallite and particle size 

together with high metal degree of dispersion enhanced reducibility. Meanwhile, basic 

sides highly contributed by O2- ion attributed by Mg and/or Ca in supports. DRM 

reactions were carried out in stainless steel fixed-bed reactor connected with online GC-

TCD. Prior the reaction, 0.1-0.6g of catalyst were loaded into the reactor, reactant (CH4: 

CO2=1:1) flow at 30ml min-1, GHSV from 3000-1500h-1 and reaction temperature varied 

from 600-950℃. The catalytic performance indicates that 10%NiO/Dolomite and 

10%NiO/Talc shows highest CH4 and CO2 conversion together with H2 selectivity and 

H2/CO ratio for its series respectively. 10% NiO/Dolomite catalyst recorded CH4 and 

CO2 conversion, χCH4; χCO2 up to 98% and H2 selectivity, SH2=75%; H2/CO⁓1:1 at 

800°C temperature of reaction. Meanwhile, 10%NiO/Talc was found to be most effective 
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catalyst with 98% CH4 and 80% CO2 conversion respectively (SH2 = 65%; H2/CO ⁓1.2) 

at 700 °C under 1 atm pressure reaction condition. Thus, 15%NiO/AS show higher 

performance at 800°C compared to its series with 95% CH4 conversion and more than 

80% CO2 conversion; while for H2 selectivity and H2/CO ratio both shows SH2=50% and 

1.5 H2/CO. Kinetic study revels that DRM reaction follow dual site associative 

adsorption Langmuir–Hinshelwood model. Therefore, mechanistic evaluation indicates 

four routes involves on DRM reaction including CH4 dissociation at 350-500 °C; 

followed by in-situ reduction of NiO; DRM reaction at temperature >500°C; and some 

parallel reaction (>800°C). Furthermore, the calculated apparent activation energy of 

NiO/Dolomite, NiO/Talc and NiO/AS are +115.47, +114.90 and +135.21 kJ mol-1 

respectively. and applicable for membrane reactor implementation. Analysis of spend 

catalysts proves that the formation of graphitic carbon much influence by physical 

properties of catalyst. Based on optimization studies, 10%NiO/Talc has been applied on 

long lasting stability test due to excellence catalytic performance. The results show this 

catalyst can be last up to 400 hours without any significant decreasing on its activity or 

selectivity. All in all, it can be concluded that the use of basic material contains Mg 

and/or Ca as support helps in increasing the potential of nickel as the best transition 

metal for DRM reaction. 
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Reformasi kering (DRM) merupakan suatu tindak balas utama yang banyak digunakan 

dalam industri petrokimia. Cabaran dalam mengendalikan tindak balas DRM adalah 

untuk menghasilkan mangkin nikel dengan aktiviti yang tinggi, stabil, penyahaktifan 

rendah dan nisbah produk yang tinggi dengan penyokong yang efisyen dan praktikal. 

Objektif kajian ini adalah bagi menambahbaik keupayaan mangkin nikel dengan 

menggunakan tiga jenis bahan penyokong dinamakan sebagai dolomit, talkum dan 

enapcemar beralkali (AS). Pra-rawatan bahan penyokong berbes ini dilakukan pada 

suhu tinggi (900 °C) diikuti dengan penyediaan mangkin melalui kaedah pengisitepuan 

basah mudah. Tiga siri mangkin monologam berasaskan nikel dengan muatan berbeza 

(5 ke 15 % bt) telah disediakan untuk mengenalpasti muatan nikel paling optimum bagi 

setiap bahan penyokong. Penyokong dan mangkin yang terhasil dicirikan melalui 

pelbagai teknik analisis fizik-ko-kimia seperti pembelauan sinar-X (XRD), penjerapan 

dan nyahjerap N2, floresen sinar-X (XRF), mikroskop imbasan elektron pancaran 

lapangan (FESEM), mikroskop transmisi elektron (TEM), spectroskopi inframerah 

penukaran Fourier (FTIR), spektroskopi fotoelektron sinar-X (XPS), penurunan suhu 

terprogram hidrogen (TPR-H2), suhu terprogram nyahjerapan karbon dioksida (TPD-

CO2), suhu terprogram nyahjerapan ammonia (TPD-NH3) dan analisis 

termogravimetrik (TGA). Penelitian terhadap penyokong dan mangkin yang disediakan 

menunjukkan adanya komposisi fasa (seperti Ni0, NiO, NiOH, CaO dan MgO) setiap 

mangkin sangat mempengaruhi ciri-ciri tekstur dan sifat kimia mangkin. Sifat 

keliangan, kekristalan dan saiz zarah bersama-sama dengan darjah penyerakan logam 

yang tinggi mempertingkatkan lagi sifat kebolehturunan mangkin. Manakala tapak bes 

mangkin sangat dipengaruhi oleh ion O2- yang dimiliki oleh Mg dan/atau Ca dalam 

bahan penyokong. Tindak balas DRM dilakukan dalam reaktor kekatil tetap keluli 

tahan karat yang disambungkan bersama GC-TCD secara dalam talian. Sebelum tindak 

balas dijalankan, 0.1-0.6g mangkin dimasukkan ke dalam reaktor, bahan tindak balas 

(CH4: CO2=1:1) dialirkan pada 30ml min-1, GHSV daripada 3000-1500h-1 dan suhu 

dipelbagaikan daripada 600-950℃. Keputusan penentuan prestasi pemangkinan 

menunjukkan 10%NiO/Dolomite dan 10%NiO/Talc menghasilkan % penukaran CH4 
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dan CO2 bersama keterpilihan H2 dan nisbah H2/CO yang paling tinggi untuk sirinya. 

Mangkin 10%NiO/Dolomite mencatatkan penukaran CH4 dan CO2, (χCH4; χCO2) 

sehingga 98% dan keterpilihan H2, SH2=75%; H2/CO⁓1:1 pada suhu tindak balas 

800°C. Sementara itu, mangkin paling efektif ditunjukkan oleh 10%NiO/Talc dengan 

penukaran CH4 sebanyak 98% dan 80% CO2 (SH2 = 65%; H2/CO⁓1.2) pada suhu 700°C 

dan tekanan 1 atm. Seterusnya, 15%NiO/AS pula menunjukkan prestasi pemangkinan 

yang tinggi pada 800°C untuk sirinya dengan 95% penukaran CH4 dan lebih 80% 

penukaran CO2; sementara itu, keterpilihan H2 dan nisbah H2/CO pula masing-masing 

menunjukkan SH2=50% dan 1.5. Kajian kinetik membuktikan tindak balas DRM ini 

menuruti model kinetik Langmuir–Hinshelwood bagi penjerapan dua tapak terpisah. 

Justeru, penilaian mekanisma menunjukkan empat langkah yang terlibat semasa tindak 

balas DRM termasuklah pemisahan CH4 pada suhu 350-500°C, diikuti penurunan NiO 

secara in-situ; tindak balas DRM pada suhu >500°C; dan tindak balas selanjar 

(>800°C). Tambahan pula, tenaga pengaktifan yang dikira menunjukkan 

NiO/Dolomite, NiO/Talc and NiO/AS masing-masing adalah +115.47, +114.90 dan 

+135.21 kJ mol-1
 dan boleh diaplikasi dalam ujian reaktor membran. Analisis pada 

mangkin yang telah digunakan membuktikan pembentukan karbon grafit banyak 

dipengaruhi oleh sifit fizikal. Berdasarkan dapatan kajian pengoptimuman, 

10%NiO/Talc telah diaplikasikan bagi ujian kestabilan pada tempoh masa yang 

panjang disebabkan prestasi pemangkinan yang sangat baik. Keputusan menunjukkan 

mangkin ini mampu bertahan menghampiri 400 jam tanpa menunjukkan pengurangan 

yang ketara pada aktiviti dan sifat keterpilihannya. Kesimpulannya, penggunaan bahan 

berbes sederhana yang mengandungi Mg dan/atau Ca sebagai penyokong dapat 

membantu meningkatkan potensi nikel sebagai logam peralihan terbaik untuk tindak 

balas DRM. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background Study 

 

 

Palm oil industry is one of the biggest contributors for economic growth in Malaysia 

but at the same time, it also contributes for environmental pollution due to the huge 

quantities of effluent during oil extraction process. The production of crude palm oil, 

large amount of waste and by-products are generated. The solid waste streams consist 

of empty fruit bunch (EFB), mesocarp fruit fibres (MF) and palm kernel shells (PKS). 

Reuse of these waste streams in applications for heat, steam, compost and to lesser 

extent power generation are practised widely across Asia. Underutilization of liquid 

waste stream, known as POME or Palm Oil Mill Effluent, this is generated during the 

palm oil extraction/decanting process and often seen as a serious environmental issue. 

Therefore, discharge of POME is subject to increasingly stringent regulations in many 

palms oil-producing nations. 

 

 

POME is an attractive feedstock for biogas production and is abundantly available in 

all palm oil mills. Hence, it ensures continuous supply of substrates at no or low cost 

for biogas production, positioning it as a great potential source for biogas 

production. (Chin et al., 2013). Biogas captured from POME can be carried out using 

several various technologies ranging in cost and complexity. The closed-tank anaerobic 

digester system with continuous stirred-tank reactor (CSTR), the methane fermentation 

system employing special microorganisms and the reversible flow anaerobic baffled 

reactor (RABR) system are among the technologies offered by technology providers, 

Malaysian Palm Oil Board (2015). Gas production largely depends on the method 

deployed for biomass conversion and capture of the biogas, and can, therefore, 

approximately range from 5.8 to 12.75 kg of CH4 per cubic meter of POME. 

Application of enclosed anaerobic digestion will significantly increase the quality of 

the effluent/discharge stream as well as the biogas composition. 

 

 

Utilization of CH4 for production of synthetic gas (CO and H2) has benefits in fulfil 

energy demand especially on contributing to carbon neutral energy chain. The 

considerable attention has been paid to catalytic conversion of dry reforming CH4 for 

environmental protection as well as neutral energy sources. The interesting part of this 

reaction is an ability to convert simultaneously two major greenhouse gasses (CO2 and 

CH4) to valuable production of syngas with low H2/CO molar ratio. The production 

syngas from catalytic methane reforming can serve as intermediate chemicals for 

gasoline production by methanol-to-gas (MTG) process or diesel production using 

Fisher-Tropsch process (Tijmensene et al., 2002; Wood, Nwaoha, & Towler, 2012; 

Xiong et al., 2011).  Furthermore, H2 is considered as future energy vector due to its 

benefits on carbon-free formation and can be used directly for thermal combustion or 

converted into electrical energy for fuel cell application. 
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Dry reforming of CH4 is an old technology but presently not fully developed for 

commercial scale production process for producing syngas and the major route for H2 

production. The considerable efforts have been focused on the development of catalysts 

for CO2 reforming of CH4 to achieve optimum catalytic activity together with lower 

energy consumption and high resistant of catalyst deactivation. Nevertheless, the 

challengers of developing an effective catalyst together with efficient support have 

been major concern amongst researchers around the world. Although catalysts based on 

noble metals promising particularly good performance due to high stability and 

activity, however they are pricey and limited in availability.  

 

 

1.2 Problem Statement 

 

 

Recently, alternative resource for energy demand was focus on H2 production as 

potential future fuel. These options have led to exploration of reaction that can produce 

H2 and at the same time reduce the greenhouse gases. In the quest to overcome the 

constraints, considerable attention has been paid to the CO2 reforming of CH4 in view 

of environmental protection as well as potential industrial application aspects. This 

process has the merit of using two most prominent components (CO2 and CH4) of 

greenhouse gasses as feedstock to the dry reforming process. However, there are 

several drawbacks which might be limitation to the process.  

 

 

The CH4 dry reforming process is presently not fully develop for commercial scale 

production compared to steam reforming which utilizes steam in the reforming of CH4 

over catalytic reaction to produce syngas mainly due to challenges of developing 

suitable catalyst, difficulties in obtaining optimum process conditions and 

understanding the complex mechanisms of the main and elementary reaction. Although 

there are many types of catalysts has been proposed for the CO2 reforming of CH4, the 

suitable and active catalyst for this reaction is still under exploration. 

 

 

Nevertheless, the challenges of developing an effective catalyst with high activity, 

stability, less susceptibility to catalyst deactivation, good product ratio together with 

efficient supports have been the major concern amongst researchers. Transition metal 

could be the best choice and have been investigated widely for CH4 dry reforming. 

Among these metals, noble metal such as platinum (Pt) and palladium (Pd) have been 

reported to have high activity and selectivity together with anti-coking properties. 

Instead of these good properties, the noble metal-based catalysts are awfully expensive 

and limited in availability. On the other hands, nickel-based catalyst has shown good 

potential for this reaction. 

 

 

Ni-based catalyst are inexpensive compared to noble metals and readily available. 

However, major obstacle encountered for dry reforming reaction over Ni based catalyst 

is the rapid deactivation due to carbon deposition, sintering end up with poisoning of 

the active site on the catalyst which often reduce activity, selectivity and stability. 

During catalyst deactivation, coke was form on the active sites which is associated with 

large Ni particles sizes (more than 10 nm) and low ability of support to adsorb CO2 that 

is helpful to gasify the carbon formed on the surface of catalyst. In addition, Ni based 
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catalysts with weak metal-support interaction showed a tendency to sinter at high 

reduction temperature.  

 

 

To overcome all mention problems, mesoporous support with high basicity can be used 

to enhance Ni dispersion on the support surface and suppress the coke formation. It was 

expected that incorporated of Ni and dolomite would form a strong metal-support 

interaction. Hence, the addition of other metal binder to catalyst would result a 

synergetic effect between both metals and support which is believed will enhance the 

activity and stability in CO2 reforming of CH4. 

 

 

1.3 Objectives 

 

 

This research aims to synthesize nickel-based catalysts supported on basic material 

generally from mineral and industrial waste. Thus, utilization on these materials which 

is enriched with Mg and/or Ca would improve CO2 adsorption which is important 

especially on DRM reaction. This research also focused on the physicochemical 

properties of the synthesized catalysts and the feasibility of the support from the low-

cost material such dolomite, talc and AS. Hence, there are four main objectives in this 

research. 

 

 

1. To synthasize nickel catalysts supported on basic material such as 

dolomite, talc and alkaline sludge (AS)  

2. To characterized the prepared nickel catalysts on the textural and 

chemical properties 

3. To optimize reaction conditions for CO2 reforming of CH4, based on 

nickel concentration, temperature, catalyst loading and GHSV towards 

time-on-stream 

4. To evaluate kinetic parameter, reaction mechanisms and stability 

generated from catalytic performance of the catalyst 

 

 

1.4 Scope of Research 

 

 

This study focuses on development of NiO catalysts derived from different support 

material. Three types of support which contain basic element of Ca and/or Mg have 

been chosen from mineral and industrial waste named as dolomite, talc and alkaline 

sludge. To determine the elemental component existed in each of supports, XRF 

analysis were carried out respectively.   Initially, all the supports were pre-treated via 

calcination process at 900oC to make sure the contamination has been removed before 

the preparation of catalysts. Therefore, the catalysts were prepared via wet 

impregnation method and calcined at 600oC to ensure the prepared catalyst was stable 

at room temperature.  

 

 

Three series of xNiO/Dolomite, xNiO/Talc and xNiO/AS catalysts (x = 5,10, 15 wt%) 

undergoes physicochemical characterization via phase and chemical composition 
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(XRD); surface area and porosity (N2 adsorption-desorption); surface morphology 

(FESEM-EDX); reduction behaviour (TPR-H2); acid-basic sites properties (TPD-NH3 

& TPD-CO2) and surface analysis of elemental composition & chemical state  (XPS). It 

is believed that the physicochemical properties play an important role in catalytic DRM 

reaction. Besides, effect of reduction step (reduced and non-reduced catalyst) and 

reduction environment (H2 and CH4) also evaluated to estimate the impact these 

different condition towards catalytic activity of prepared catalyst. Meanwhile to 

understand the phenomenon occurred during DRM reaction, such as carbon formation 

and deactivation of active sites the difference between fresh and spend of the best 

catalyst on each series were recognized by using TGA/DTG; FESEM & TEM, XRD 

and TPO analysis.  

 

 

Consequently, to confirm catalytic activity of the prepared catalysts, the catalytic DRM 

reaction for isothermal and non-isothermal condition were carried out by using 

stainless steel micro-reactor connected to online GC-TCD system and Micromeritics 

Autochem II+ Enhanced Chemisorption Analyzer connected with mass spectrometer 

(MS). Generally, the parameter of reaction was carried out with a reactant gas mixture 

consisting of CH4 and CO2 in the ratio of 1:1 flowing 30 ml min-1 at 800 °C for 10-hour 

DRM reaction. In isothermal reaction, the effect of reaction parameter, such as nickel 

loading (Dolomite, NiO, 5-15%NiO/Dolomite), reaction temperature (650-950oC), 

GHSV (3000-15000h-1), catalyst loading (0.1-0.6g) towards time dependent reaction 

(2,3,4,6 and 9 hour) were conducted to examine optimum condition of the catalyst. The 

optimum condition for the prepared catalysts were determined based on CH4 & CO2 

conversion together with H2 & CO selectivity and H2/CO ratio. Besides, the effect of 

reduction behaviour carried out in non-isothermal reaction to understand in-situ 

reduction occurred during DRM reaction. The reaction condition was carried out in a 

continuous-flow of CH4: CO2 (20ml min-1), starting from 400°C to 950°C with a ramp 

rate of 10 °C min–1. 

 

 

Further investigation on inside into catalytic activity of NiO series catalysts were 

evaluated by using non-isothermal data via kinetic and mechanistic of comparative 

NiO/Dolomite, NiO/Talc and NiO/AS with 10% nickel concentration. Therefore, based 

on the selected model, the mechanisms of catalytic DRM reaction were discussed 

comprehensively. Based on Arrhenius plot generated from kinetic assessment, the 

activation energy (Ea) of NiO-based catalysts were calculated to determine the 

excellent catalytic activity quantitatively during DRM reaction. Mechanism’s study of 

NiO-based catalysts was predicted using non-linear Langmuir–Hinshelwood kinetic 

model assisted by Polymath version 6.1 software. Based on model fitted the 

mechanisms route of catalytic DRM reaction over NiO-based catalysts were analysed 

by XPS technique.  

 

 

The interpretation of NiO-based catalysts in term of application on membrane reactor 

was investigated. The Pd membrane was prepared via electroless plating method and 

evaluated on physical properties (cross-sectional for thickness determination) and 

performance (H2 permeability). The membrane reactor test was carried out reaction 

condition of 500oC reaction temperature, 25.1cm Pd membrane area, 4.0g weight of 

catalyst, 15ml-stp min-1 for both CO2 and CH4 flow rate and W/F value of 1.49×104 gcat 

min mol-1-CO2. The obtained results were compared with fixed bed reactor to 
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determine applicability of NiO-based catalysts. Besides, the stability for long-lasting 

reaction period of NiO-based catalyst were carried out by using 10%NiO/Talc catalyst 

due to is excellent catalytic performance and potential towards DRM reaction. The test 

was conducted on fixed bed reactor at 700oC, 30ml min-1 reactant flowrate and more 

than two weeks of non-stop DRM reaction monitored by GC-TCD. The findings from 

this research are important specially to proves the parallel reaction involves during 

DRM reaction of exceptionally long reaction period.  

 

 

1.5 Organization of the Thesis 

 

 

The thesis consisted of ten chapters. The Chapter One introduces the background 

studies which briefly described Malaysia’s Palm Oil Industries producing high 

concentration of CH4 and CO2 from POME. Although CH4 and CO2 generated as the 

waste for these industries, with the proper utilization and treatment the waste can turn 

out into wealth. DRM reaction could be a better problem solving and promising 

application with excellent developed catalyst to enhance the reaction for future energy 

industries. Besides, it also consists of the problem statements, the main objectives of 

research, and scope of research. The Chapter Two consists of comprehensive literature 

review that based on previous reported of DRM reaction and nickel-based catalysts. In 

the initial paragraph, the review more focusing on global warming scenario which 

correlated to greenhouse gasses (CH4 and CO2) emission followed by effort to control 

this problem globally. Next, the literature studies were focused on renewable energy 

especially in the production of hydrogen as future energy. Therefore, the production of 

hydrogen intensively discussed particularly on thermochemical routes. The main part 

of this chapter lies on DRM reaction with details discussion on fundamentals, 

problems, influence on catalytic activity until the development of effective NiO-based 

catalysts. Meanwhile, Chapter 3 covers the material, method and sequential process 

from NiO-based catalysts development followed by catalytic reaction of DRM until 

deep investigation beyond the reaction such as kinetic & mechanistic study and long-

lasting stability. It also consists of analysis involves during each of the process 

sequences in term of physicochemical analysis, catalytic activity and related calculation 

for overall process. Furthermore, the experimental set up in different type of reactor 

such as fixed bed and membrane system are discussed in this chapter. Chapter 4 

discusses extensively the potential of NiO/Dolomite catalysts series based on 

physicochemical properties obtained by prepared catalysts. Based on the results, 

several qualities of the catalyst were identified such as bifunctionality and reducibility 

at lower temperature are the key point to increase catalytic activity on DRM reaction. 

However, the explanations on chapter 4 are limited to physicochemical characteristics 

only. Therefore, Chapter 5 continued to explain inside into DRM reaction using 

NiO/Dolomite catalysts regarding XPS perspectives followed by optimization reaction 

using several parameters such as nickel concentration, temperature of reaction, catalyst 

loading/weight and GHSV. The kinetic and mechanistic study were conducted by using 

10%NiO/Dolomite due to excellent catalytic performance. The details discussion 

supported by reduction behaviour and in-situ reaction of non-isothermal DRM 

monitored by online MS were carried out to corroborates inside into DRM reaction. 

Then, Chapter 6 followed by explained the potential of NiO/Talc in DRM reaction. 

The physicochemical properties explained excellent catalytic performance of 

10%NiO/Talc catalyst with high conversion and selectivity. In addition, spent catalyst 

analysis was carried out to indicates carbon formation during DRM reaction. 
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Meanwhile, Chapter 7 discussed the capability of NiO/AS catalysts towards DRM 

reaction. Chemical properties such as reducibility, basicity and nickel dispersion were 

more dominant in enhancing DRM reaction rather than physical characteristics. 

Chapter 8 conducted to clarify the comparison study of NiO catalysts in 

physicochemical properties and kinetic & mechanistic studies by determining Ea of 

each selected NiO-based catalyst. Consequently, characterization of spent catalysts was 

carried out to evaluate effect of carbon formation in different supports material. Hence, 

Chapter 9 demonstrate the potential of NiO catalyst in membrane reactor system. The 

catalysts were tested in Pd membrane system at lower reaction temperature (500oC) 

compared to fixed bed reactor system. Even the results obtained lower than fixed bed 

reactor, but its promising for new application and comparable with noble metal catalyst 

(Ru/Al2O3). Besides, the long-lasting stability test conducted on 10%NiO/Talc for 2 

weeks reaction periods. The sides’ reaction involves during DRM reaction were 

explain briefly based on obtained results. Finally, chapter 10 concludes the significant 

results and outcomes of this research with few recommendations for future work. 

.  
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