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the requirement for the Degree of Doctor of Philosophy 

ABSTRACT 

PREPARATION AND CHARACTERIZATION OF ANTI-CORROSIVE 

COATINGS BASED ON SILANE FUNCTIONALIZED GRAPHENE OXIDE/ 

EPOXY RESIN NANOCOMPOSITES 

 

By 

 

AUJARA KABIRU MUSA  

 

December 2020 

 

Chairman : Associate Professor Nor Azowa binti Ibrahim, PhD 

Faculty  : Science 

 

Epoxy resins are generally used to protect metal substrates, however, there is a need for 

improvement of anti-rust performance and mechanical properties. The addition of nano-

sized fillers such as graphene to produce nanocomposites can overcome the shortage of 

polymeric materials and has remarkable mechanical, electrical, and gas barrier 

properties. In this study, graphene oxide and functional-GO were incorporated into 

epoxy resins to provide a protective layer of the metal substrate. Functional-GO is 

synthesized using environmentally friendly gamma irradiation techniques, which are a 

simple and clean alternative approach to alter the structural and physicochemical 

properties of graphene oxide (GO). Graphene oxide obtained by Hummer method was 

modified by incorporating 3-Aminopropyltriethoxysilane (APTES) and 3-

Glycidyloxypropyltrimethoxy silane (GPTMS) to its surface by radiation from gamma 

ray. The nature of GO and functional-GO is characterized by various techniques such as 

Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectroscopy (XRD), 

field release scanning electron microscope (FESEM), Raman spectroscopy, and 

thermogravimetric analysis (TGA). The FT-IR spectrum reveals chemical interactions 

between the cross section which shows significant weakening of the -OH, COOH and C-

O-C with the appearance of chemical bonds due to the withdrawal of oxygen functional 

groups on the GO surface where crystal surface changes and surface defects due to 

modification are determined by XRD which shows the gradual weakening with 

simultaneous disappearance of graphite peak as the oxidation process proceeds with the 

corresponding appearance of diffraction peak at about 2θ=9.8 leading to an increased in 

the interlayer spacing from 0.34nm to 0.90nm. Similarly, the Raman spectroscopy 

indicate an increase in ID/IG from 0.90 for GO to 1.21 and 1.18 for AGO-150 and GGO-

150 respectively. The TGA thermograms showed peaks at various temperature regions 

(i.e.  30-120°C, 120-300°C and 300-650°C) which can be attributed to the degradation 

oxygen functional groups and chemically bonded silane on the GO surface. Within these 

temperature regions the AGO-150 exhibits highest thermal stability with the lowest 

water evaporation (5.5%), lowest decomposition of unreacted silanes (9.36%) and 

thermal-oxidative decomposition of grafted silane (32.17%). Preparation of the 
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protective material of the steel substrate begins by ultrasonically dispersing the 1 wt.% 

GO in the solvent before mixing it by shearing it into an epoxy matrix and adding a 

hardener. XRD showed the existence of GO morphology, functional-GO intercalation 

and exfoliation throughout the matrix shown by the existence of broad diffraction peak 

of epoxy between 2θ=5-28° centered at 2θ=18° indicating the dispersion of 

functionalized-GO in the matrix. SEM on the sample surface layer determined during 

the tensile test showed microscopic and homogeneous functional-GO dispersion in the 

matrix. Thermogravimetric analysis (TGA) through the analysis of some thermodynamic 

parameters such as Ton, W350°C, Tmax and T500°C   all revealed improved thermal stabilities 

of nanocomposites coatings fabricated with functionalized-GO. The dynamic 

mechanical analysis (DMA) was used to investigate the thermomechanical properties of 

nanocomposite coatings. Thermodynamic parameters such E’ and Tg of the 

nanocomposites coatings showed a significant increase in storage modulus and a gradual 

increase in glass transition temperature with the dispersion of functionalized-GO, where 

EAG-150 exhibits highest E’ of 3414.90 MPa and Tg of 90.49°C.  

 

The physical properties of coatings such as adhesion, hardness, flexibility, and chemical 

properties are also assessed. Corrosion resistance of nanocomposite layers in NaCl 

solution (3.5% by mass) was also assessed using Open Circuit Potential (OCP), 

potentiodynamic polarization, and Electrochemical Impedance Spectroscopy (EIS). The 

results showed that the functional nanocomposite layer-GO is capable to block the 

penetration of electrolytes between the metal surface and the coating. This study shows 

that Functional-GO /epoxy nanocomposites provide better corrosion protection and can 

act as an excellent corrosion barrier on lightweight steel substrates due to improvement 

of some electrochemical properties such as shifting of Ecorr to more positive value i.e., 

from -0.853554V for EP to -0.18488 for EAG-150 and decreasing of Icorr value from 

8.349×10-7 for EP to 5.281×10-8 for EAG-150. This improvement in corrosion protection 

behavior can be attributed to the GO two-dimensional (2D) structure and outstanding 

performance, which can hinder the penetration of corrosive media to a certain extent, 

thereby enhancing the anti-corrosion properties of the coatings. 
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memenuhi keperluan untuk ijazah Doktor Falsafah 

ABSTRAK 

PENYEDIAAN DAN PENCIRIAN LAPISAN ANTI KARAT BERASASKAN 

GRAPHEN BERFUNGSIONAL SILAN/EPOKSI NANOKOMPOSIT 

 

Oleh 

 

AUJARA KABIRU MUSA  

 

Disember 2020 

 

Pengerusi : Profesor Madya Nor Azowa binti Ibrahim, PhD 

Fakulti  : Sains 

 

Resin epoksi secara amnya digunakan untuk melindungi substrat logam, namun, terdapat 

keperluan untuk peningkatan prestasi anti karat dan sifat mekanikalnya. Tambahan 

pengisi bersaiz nano seperti grafin untuk menghasilkan nanokomposit dapat mengatasi 

kekurangan bahan polimer dan mempunyai sifat mekanikal, elektrik, dan gas yang utuh. 

Pada kajian ini, grafin oksida dan fungsional-GO dimasukkan ke dalam resin epoksi bagi 

menyediakan lapisan pelindung substrat logam. Fungsional-GO disintesis dengan 

menggunakan teknik penyinaran gamma yang mesra alam, dimana merupakan 

pendekatan alternatif mudah dan bersih untuk mengubah sifat struktur dan fizikokimia 

grafin oksida (GO). Grafin oksida yang diperoleh melalui kaedah Hummer telah 

diubahsuai dengan mencantumkan 3-Aminopropiltrietoksi silana (APTES) dan 3-

glisidiloksipropiltrimetoksi silana (GPTMS) ke atas permukaan grafin oksida 

menggunakan radiasi dari penyinaran sinar gamma. Sifat GO dan fungsional-GO 

dicirikan melalui pelbagai teknik seperti spektroskopi inframerah transformasi Fourier 

(FT-IR), spektroskopi difraksi sinar-X (XRD), mikroskop elektron pengimbasan 

pelepasan medan (FESEM), spektroskopi Raman, dan analisis termogravimetrik (TGA). 

Spektrum FT-IR mendedahkan interaksi kimia antara keratan rentas yang menunjukkan 

kelemahan ketara -OH, COOH dan C-O-C dengan kemunculan ikatan kimia kerana 

tarikan kumpulan fungsional oksigen pada permukaan GO yang membawa perubahan 

permukaan kristal dan kerosakan permukaan disebabkan untuk pengubahsuaian 

ditentukan oleh XRD yang menunjukkan kelemahan secara beransur-ansur dengan 

hilangnya puncak grafit secara serentak ketika proses pengoksidaan diteruskan dengan 

penampilan puncak difraksi yang sepadan pada sekitar 2θ = 9,8 yang menyebabkan 

peningkatan jarak antara lapisan dari 0.34nm kepada 0.90nm. Seterusnya, spektroskopi 

Raman juga menunjukkan peningkatan ID/IG dari 0.90 untuk GO ke 1.21 dan 1.18 untuk 

AGO-150 dan GGO-150g. Termogram TGA menunjukkan puncak julat bagi suhu (30-

120 °C, 120-300 °C dan 300-650 °C) yang dikaitkan dengan degradasi kumpulan fungsi 

oksigen dan ikatan kimia silan pada permukaan GO. Pada kawasan suhu ini, AGO-150 

menunjukkan kestabilan terma tertinggi dengan penyejatan air terendah (5.5%), 

penguraian terendah silan yang tidak berinteraksi (9.36%) dan penguraian terma-

oksidatif silan cantuman (32.17%). Penyediaan bahan pelindung substrat keluli 
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dimulakan dengan penyebaran ultrasonik GO seberat 1% ke dalam pelarut sebelum 

mencampurkannya dengan mengkikis ke dalam matriks epoksi dan menambahkan bahan 

pengeras. XRD menunjukkan adanya morfologi GO dan interkalasi dan pengelupasan 

GO-fungsional di seluruh matriks yang ditunjukkan oleh adanya puncak difraksi epoksi 

luas antara 2θ = 5-28° berpusat pada 2θ = 18° menunjukkan penyebaran fungsional-GO 

dalam matriks. SEM pada lapisan permukaan sampel yang ditentukan semasa ujian 

tegangan menunjukkan penyebaran fungsional-GO mikroskopik dan homogen dalam 

matriks. Analisis termogravimetri (TGA) melalui analisis beberapa parameter 

termodinamik seperti Ton, W350°C, Tmax dan T500°C semuanya menunjukkan peningkatan 

kestabilan terma lapisan nanokomposit yang dibuat dengan fungsional-GO. Analisis 

mekanikal dinamik (DMA) digunakan untuk menyiasat sifat termomekanik pelapis 

nanokomposit. Parameter termodinamik seperti pelapisan nanokomposit E' dan Tg 

menunjukkan peningkatan modulus penyimpanan yang ketara dan peningkatan suhu 

peralihan kaca secara beransur-ansur dengan penyebaran fungsional-GO, di mana EAG-

150 menunjukkan E' tertinggi 3414.90 MPa dan Tg 90.49 °C. 

 

Sifat fizikal lapisan seperti kelekatan, kekerasan, kelenturan, dan sifat kimia juga dinilai. 

Ketahanan kakisan lapisan nanokomposit dalam larutan NaCl (3.5% jisim) juga dinilai 

menggunakan Potensi Litar Terbuka (OCP), polarisasi potensiodinamik, dan 

Spektroskopi Impedansi Elektrokimia (EIS). Hasil kajian menunjukkan bahawa lapisan 

nanokomposit berfungsi-GO mampu menyekat penembusan elektrolit antara permukaan 

logam dan lapisan. Kajian ini menunjukkan bahawa nanokomposit fungsional-

GO/epoksi memberikan perlindungan hakisan yang lebih baik dan dapat bertindak 

sebagai penghalang hakisan yang sangat baik pada substrat keluli ringan kerana 

peningkatan beberapa sifat elektrokimia seperti peralihan Ecorr ke nilai yang lebih positif 

iaitu dari -0.853554V untuk EP ke -0.18488 untuk EAG-150 dan penurunan nilai Icorr 

dari 8.349 × 10-7 untuk EP kepada 5.281 × 10-8 untuk EAG-150. Peningkatan tingkah 

laku perlindungan hakisan ini dapat dikaitkan dengan struktur dua dimensi (2D) GO dan 

prestasi luar biasa, yang dapat menghalang penembusan bahan hakisan kepada tahap 

tertentu, sehingga meningkatkan sifat anti-karat permukaan. 

 

  



© C
OPYRIG

HT U
PM

v 

 

ACKNOWLEDGEMENTS 

 

In the name of Allah, the most gracious and the most merciful who thought man by pen. 

All thanks to Allah, who has allowed me to see this day, the day I have been dreaming 

of, may the peace and blessings of Allah be upon his noble prophet Muhammad (SAW). 

 

First of all, I would like to use this opportunity to express my heartfelt thankfulness to 

my supervisor, Assoc. Prof. Dr. Nor Azowa Bint Ibrahim, for her continues advice, 

support, guidance, and care for the successful conduct of this research work despite 

multiple challenges. I appreciate your immense contribution, and I pray that may Allah 

continue to shower blessing on your path. I would also like to express my gratitude to 

my co-supervisors, Dr. Norhazlin Zainuddin, Dr. Siti Mariam Mohd Nor, and Chantara 

Thevy Ratnam, for their great contribution, precious suggestions, and critical assessment 

toward smooth conduct of this research. May God continue to bless them, and may He 

light all their ways of achievements. I will also like to acknowledge my sincere gratitude 

to the Malaysian Nuclear Agency (Nuklear Malaysia) for providing resources, especially 

radiation instrument for this study. A similar gesture goes to Dr.  Chieng Buong Woei of 

the Polymer research laboratory and Dr. Teo Ming Ting (Nuclear Malaysia) for their 

guidance for the smooth conduct of the research. I will also wish to express my 

appreciation to all my colleagues and lab-mates in the polymer research laboratory, 

Isyaku Saleh, Ahmed Chalabi, for their help, contributions, support, and understanding 

they rendered during the conduct of this research. More so, to all lecturers and members 

of staff in Faculty Sciences for their support in making this research a successful one. 

Words cannot express my gratitude to my wife, Fauziyya Musa and my daughters 

Rabi’at, Fatima, Amina, and Nana Aisha for their support and encouragement towards 

the success of this research. They are always beside me during the happy and hard 

moments to motivate me. I would also like to extend my sincere gratitude to my father, 

Alhaji Musa Ibrahim and Hajiya Fatima Bintu Usman, for their prayers, love, care, 

support, and generosity. May Allah grant them all his best in Jannatul Firdaus. My 

gratitude also goes to the entire members of my family for their encouragement, advice, 

and support as well. May Allah bless them all. 

 

My appreciation also goes to Tertiary Education Trust Fund (Tetfund) via Jigawa State 

Polytechnic, Dutse, Jigawa State. 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

vii 

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been 

accepted as fulfillment of the requirements for the award of Doctor of Philosophy degree. 

The members of the Supervisory Committee were as follows: 

Nor Azowa binti Ibrahim, PhD 

Associate Professor 

Faculty of Sciences 

Universiti Putra Malaysia 

(Chairperson) 

Norhazlin binti Zainuddin, PhD 

Senior Lecturer 

Faculty of Sciences 

Universiti Putra Malaysia 

(Member) 

Siti Mariam binti Mohd Nor, PhD 

Senior Lecturer 

Faculty of Sciences, 

Universiti Putra Malaysia 

(Member) 

Chantara Thevy Ratnam, PhD 

Senior Research Scientist 

Malaysian Nuclear Agency  

Bangi, Malaysia  

(Member) 

_______________________________ 

ZALILAH MOHD SHARIFF, PhD 

Professor and Dean 

School of Graduate Studies 

Universiti Putra Malaysia 

Date: 21 July 2022 



© C
OPYRIG

HT U
PM

ix 

 

Declaration by Members of Supervisory Committee 

 

This is to confirm that: 

• the research conducted and the writing of this thesis was under our supervision; 

• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate 

Studies) Rules 2003 (Revision 2012-2013) are adhered to.  

 

Signature:  ________________________________________ 

Name of 

Chairman of 

Supervisory 

Committee:  Associate Professor Dr. Nor Azowa binti Ibrahim 

 

Signature:  ________________________________________ 

Name of 

Member of 

Supervisory 

Committee:  Dr. Norhazlin binti Zainuddin 

 

Signature:  ________________________________________ 

Name of 

Member of 

Supervisory 

Committee:  Dr. Siti Mariam binti Mohd Nor 

 

Signature:  ________________________________________ 

Name of 

Member of 

Supervisory 

Committee:  Dr. Chantara Thevy Ratnam  

 

  



© C
OPYRIG

HT U
PM

x 

 

TABLE OF CONTENTS 

 

Page 

 

ABSTRACT    i 
ABSTRAK    iii 
ACKNOWLEDGEMENTS  v 
APPROVAL    vi 
DECLARATION   viii 
LIST OF TABLES   xiii 
LIST OF FIGURES   xiv 
LIST OF ABBREVIATIONS  xviii 
 

CHAPTER 

 

 1 INTRODUCTION  1 
1.1 Research Background  1 
1.2 Problems statement  4 
1.3 Objective of the study  4 
1.4 Significance of the Study  5 

 
 2 LITERATURE REVIEW  6 

2.1 Corrosion   6 
2.2 Principle of corrosion  6 
2.3 Cost of corrosion  8 
2.4 Mechanism of corrosion  9 
2.5 Corrasion Rate  9 
2.6 Types of Corrosion  10 

2.6.1 Electrochemical (wet) corrosion  10 
2.6.2 Chemical (dry) corrosion  12 

2.7 Classification of corrosion  13 
2.8 Corrosion Prevention and Control  13 
2.9 Anti-corrosive coatings  16 
2.10 Anti-corrosion coatings: Mechanism  17 
2.11 Types of Anti-corrosion coatings  17 

2.11.1 Metallic Coating  18 
2.11.2 Inorganic Coating  18 
2.11.3 Organic Coating  18 

2.12 Classification of organic coatings  19 
 2.12.1 Epoxy resins  19 
2.13 Classes of Epoxy Resins  22 

2.13.1 Bisphenol-A Epoxy Resins  22 
2.13.2 Cycloaliphatic epoxy resin  23 
2.13.3 Trifunctional epoxy resin  24 
2.13.4 Tetrafunctional epoxy resins  25 
2.13.5 Novolac epoxy resins  25 
2.13.6 Biobased epoxy resins  26 

2.14 Curing of Epoxy Resin  27 
2.14.1 Amine Hardeners  28 
2.14.2 Alkali curing agents  29 
2.14.3 Anhydride curing agent  29 



© C
OPYRIG

HT U
PM

xi 

 

2.14.4 Catalytic curing agents  30 
2.15 Curing systems  30 
2.16 Epoxy-based coatings  30 
2.17 Hybrid Materials coatings  31 
2.18 General coating enhancement methodology  32 
2.19 Organic coatings based on graphene and graphene oxide  33 
2.20 Synthesis of graphene and its derivatives for Polymer 

Nanocomposites  36 
 2.20.1 Bottom-Up Graphene  36 
 2.20.2 Top-down Graphene  37 
2.21 Functionalization of Graphene  40 

2.21.1 Covalent functionalization  41 
2.21.2 Non-covalent functionalization  41 
2.21.3 Reduction of Graphene Oxide  41 

2.22 Functionalization of Graphene oxide  42 
2.23 Radiation processing of materials  44 
 2.23.1 Gamma-ray  45 
2.24 Propose a mechanism for the functionalization of GO using 

Gamma-ray irradiation  46 
2.25 Coupling agents  47 
2.26 Silane chemistry  49 
2.27 Interphase region  50 
2.28 Surface Modification of Graphene Oxide  50 
2.29 Graphene-based Polymer Nanocomposite Coating  51 
2.30 Nanocomposite Coating Methods  52 
2.31 Adhesion of Nanocomposite Coating  53 
2.32 Electrochemical Testing  53 
 2.32.1 OCP test  54 
 2.32.2 Potentiodynamic Polarization  54 
 2.32.3 Electrochemical impedance spectroscopy (EIS) 55 

 
 3 MATERIALS AND METHODS  56 

3.1 Description of Methodology  56 
3.2 Materials   56 
3.3 Synthesis of Graphene Oxide  57 
3.4 Functionalization of Graphene Oxide  58 
3.5 Degree of grafting  59 
3.6 Preparation of nanocomposite coatings  59 
3.7 Characterizations of Graphene Oxide (GO) and 

Functionalized-GO (f-GO)  60 
3.7.1 Fourier Transform Infrared Analysis  60 
3.7.2 X-ray Diffraction Spectroscopy  61 
3.7.3 Field Emission Scanning Electron Microscopy 61 
3.7.4 Raman Spectroscopy  61 
3.7.5 Thermogravimetric Analysis  62 

3.8 Characterization of the Nanocomposites Coatings  62 
 3.8.1 Fourier Transform Infrared (FT-IR) spectroscopy 62 
 3.8.2 X-ray Diffraction Spectroscopy  62 
3.9 Film Properties of the coatings  63 
 3.9.1 Crosshatch Adhesion Test  63 
 3.9.2 Pencil Hardness Test  64 
 3.9.3 Conical Mandrel Test  64 



© C
OPYRIG

HT U
PM

xii 

 

3.10 Chemical Properties  64 
3.10.1 Water resistance Test  65 
3.10.2 Salt Water Resistance Test  65 
3.10.3 Acid Resistance Test  65 
3.10.4 Alkali Resistance Test  66 
3.10.5 Solvent Resistance Test  66 
3.10.6 Stain Resistance Test  66 

3.11 Thermomechanical Properties of the nanocomposite 
coatings   67 

 3.11.1 Thermogravimetric Analysis  67 
 3.11.2 Dynamic Mechanical Analysis (DMA)  67 
3.12 Corrosion Studies  68 
 3.12.1 Potentiodynamic Polarization Measurements  68 
 3.12.2 Electrochemical Impedance Spectroscopy  69 

 
 4 RESULT AND DISCUSSION  70 

4.1 Synthesis and functionalization of Graphene Oxide  70 
4.2 Degree of grafting  71 
4.3 Characterization of Graphene Oxide and Functionalized 

Graphene Oxide  73 
4.3.1 FTIR analysis of GO, APTES, and Functionalized-

GO  73 
4.3.2 X-ray Diffraction Analysis of GO and 

Functionalized-GO  76 
4.3.3 Field Emission Scanning Electron Microscopy 

(FE-SEM)  80 
4.3.4 Raman spectroscopy  82 
4.3.5 Thermogravimetric Analysis  84 

4.4 Characterization of the Nanocomposite coatings  90 
4.4.1 Fourier Transform Infrared Spectroscopy  90 
4.4.2 XRD Spectroscopy  92 
4.4.3 Scanning Electron Microscope  93 

4.5 Interface Properties of the coatings  95 
4.6 Chemical Resistance Test  97 
4.7 Stain resistance test  99 
4.8 Thermomechanical Properties of the Coatings  101 

4.8.1 Thermal Analysis  101 
4.8.2 Dynamic Mechanical Analysis  103 

4.9 Corrosion Study  106 
 4.9.1 Potentiodynamic Polarisation  106 
 4.9.2 Electrochemical Impedance Spectroscopy  109 

 
 5 CONCLUSIONS AND RECOMMENDATIONS  126 
  5.1 Conclusions  126 
  5.2 Recommendation for future work  127 
 
REFERENCES    128 
APPENDICES    152 
BIODATA OF STUDENT   158 
LIST OF PUBLICATIONS  159 
 



© C
OPYRIG

HT U
PM

xiii 

 

LIST OF TABLES 

 

Table  Page 

 

2.1   comparison between wet corrosion and dry corrosion  12 

2.2   Summary of bottom-up synthesis methods  37 

2.3   Summary of Graphite Oxide synthetic methods  38 

2.4   Compatibility of some coupling agents to polymer matrix  49 

3.1   ASTM D3359 crosshatch adhesion rating  63 

4.1   Summary of the Raman Shift and ID/IG for the samples Samples 83 

4.2  Percentage weight loss of GO and functionalized-GO at various 

temperature regions  87 

4.3   Interface properties of the coatings  96 

4.4  Chemical and solvent properties of the coatings  98 

4.5   Stain resistance properties of the coatings  100 

4.6  Thermogravimetric parameters of EP, EGO, EAG-50, EAG-100 

and EAG-150  102 

4.7  Thermogravimetric parameters of EP, EGO, EGG-50, EGG-100, 

and EGG-150  103 

4.8   Summary of storage modulus and tan δ  105 

4.9  Polarization parameters of neat epoxy (EP) and GO and f-GO 

epoxy nanocomposites (EGO, EAG-50, EAG-100, and EAG-150 108 

4.10  Polarization parameters of neat epoxy (EP) and GO and f-GO 

epoxy nanocomposites (EGO, EGG-50, EGG-100 and EGG-150) 109 

4.11   Impedance modulus |Z|0.01 Hz values of the EAG’s samples  117 

4.12   Impedance modulus |Z|0.01 Hz values of the EGG’s samples  118 

4.13   Charge transfer values of the EAG’s samples  118 

4.14   Charge transfer values of the EGG’s samples  119 

 



© C
OPYRIG

HT U
PM

xiv 

 

LIST OF FIGURES 

 

Figure  Page 

 

2.1  Corrosion process of steel in the presence of electrolytes, 

oxygen, and water  8 

2.2   Galvanic cell  11 

2.3   Methods of corrosion prevention  14 

2.4   Epoxy group  20 

2.5   Digdlycidyl ether of bisphenol A, DGEBA  20 

2.6   Comparison of the world market for epoxy resin by value  21 

2.7   Reactivity of epoxide group toward chemical species  21 

2.8   Synthesis of Diglycidyl Ether of Bisphenol-A (DGEBA)  23 

2.9  Chemical structure of Cycloaliphatic epoxy (CAE) resin  23 

2.10   Chemical structure of BISE  24 

2.11  Chemical structure of trimethylol propane-N-triglycidyl 

ether  24 

2.12  Chemical structure of tetrafunctional epoxy resin synthesized by 

(a) 1,3-diaminebenzene and (b) 4,4’-aminodiphenyl 

methane  25 

2.13   Chemical structure of Novolac epoxy resin  26 

2.14  Chemical structure of (a) epoxidize soybean oil (b) epoxidize 

castor oil  27 

2.15  Oxirane opening of epoxide system (scheme 1) and curing 

mechanism of epoxy resin with amine hardener (scheme 2)  28 

2.16  Curing mechanism of epoxide and anhydrides in the presence of 

tertiary amine  29 

2.17  Schematic representation of the effect of graphene barrier on the 

diffusion of corrosive media in coatings  34 

2.18  2D hexagonal graphene nanosheet as a building block  35 

2.19   Typical comparison between (a) Graphite (b) Graphite Oxide 37 



© C
OPYRIG

HT U
PM

xv 

2.20  Flow chart of the ‘top-down’ approach to produce graphene and 

its derivatives from raw graphite  39 

2.21  Schematic and SEM illustration of graphite structures after 

different treatments: (a) no treatment, (b) oxidation, (c) thermal 

expansion, and (d) ultrasonic dispersion  39 

2.22   Graphene and its derivatives based on ISO  40 

2.23   Electronic ionization and excitation  44 

2.24  Effect of radiation in preparation of various types of                        

materials    45 

2.25  Proposed reaction scheme for functionalization of silane onto 

GO surfaces via γ-ray irradiation  47 

2.26   Adhesion promoters  48 

2.27   Chemical structure of silane  49 

2.28   Silane coupling agents’ dual reactivity  50 

3.1   Flow chart of the methodology  57 

3.2  Schematic diagram for the synthetic procedure of the graphene 

oxide (GO) based on chemical oxidation of graphite using the 

modified Hummers method  58 

3.3  Schematic diagram for the radiation-induced functionalization 

of graphene oxide  59 

3.4  Preparation of GO and f-GO/epoxy coatings on a mild steel 

substrate  60 

3.5   Electrochemical measurements set-up  68 

4.1  Chemical structure of (1) 3-aminopropyltriethoxysilne (APTES) 

and (2) 3-glycidyloxypropyltrimethoxysilane (GPTMS)  71 

4.2   Proposed mechanism for the functionalization of GO  71 

4.3   Bar chart for APTES and GPTMS degree of grafting on GO  72 

4.4  FTIR spectra of APTES, GO, and 3-Aminopropyltriethoxysilne 

functionalized-GO (AGO-50, AGO-100, and AGO-150)  74 

4.5  FTIR spectra of GPTMS, GO, and 3-

Glycidyloxypropyltrimethoxysilane functionalized-GO (GGO-

50, GGO-100, and GGO-150)  75 



© C
OPYRIG

HT U
PM

xvi 

4.6   FTIR spectra of GO, AGO-100, and GGO-100  76 

4.7  XRD spectra of GO and 3-Aminopropyltriethoxysilne 

functionalized-GO (AGO-50, AGO-100, and AGO-150)  78 

4.8  XRD spectra of GO and 3-Glycidyloxypropyltrimethoxysilane 

functionalized-GO (GGO-50, GGO-100, and GGO-150)  79 

4.9   XRD spectra of Graphite Oxide, GO, AGO-100, and  GGO-100 80 

4.10  FE-SEM micrographs of GO, AGO-50, GGO-50, AGO-100, 

GGO-100, AGO-150, and GGO-150  81 

4.11  Raman spectra of GO and 3-Aminopropyltriethoxysilane 

functionalized-GO (AGO-50, AGO-100, and AGO-150)  82 

4.12  Raman spectra of GO and 3-Glycidyloxypropyltrimethoxysilane 

functionalized-GO (GGO-50, GGO-100, and GGO-150)  83 

4.13  Thermograms of GO, AGO-50, AGO-100, and AGO-150 (a) 

TG and (b) DTG  86 

4.14  Thermograms of GO, GGO-50, GGO-100, and GGO-150 (a) 

TG and (b) DTG  88 

4.15   Thermograms of GO, AGO-100, and GGO-100  89 

4.16  FTIR spectra of unharden epoxy (EP-U), harden epoxy (EP), 

and GO and f-GO epoxy nanocomposites (EGO, EAG-50, EAG-

100, and EAG-150)  91 

4.17  FTIR spectra of unharden epoxy (EP-U), harden epoxy (EP), 

and GO and f-GO epoxy nanocomposites (EGO, EGG-50, EGG-

100, and EGG-150)  91 

4.18  XRD diffractograms of GO, f-GO, neat epoxy (EP), and GO and 

f-GO epoxy nanocomposites (EGO, EAG-50, EAG-100, and 

EAG-150)  92 

4.19  XRD diffractograms of GO, f-GO, neat epoxy (EP), and GO and 

f-GO epoxy nanocomposites (EGO, EGG-50, EGG-100, and 

EGG-150)  93 

4.20  SEM micrograph of the fractured surface of (a) neat cured epoxy 

EP (b) EGO, (c)  EAG-50, (d) EAG-100, and (e) EAG-150 

nanocomposites  94 

4.21  SEM micrograph of the fractured surface of (a) EGG-50, (c) 

EGG-100 and (d) EGG-150  95 



© C
OPYRIG

HT U
PM

xvii 

4.22   TG thermograms of EP, EGO, EAG-50, EAG-100 and EAG-150 101 

4.23   TG thermograms of EP, EGO, EGG-50, EGG-100, and   EGG-

150  103 

4.24  Storage modulus (E′) and loss factor (tan δ) curves of epoxy and 

its nanocomposites as a function of temperature for EP, EGO, 

EAG-50, EAG-100, and EAG-150  105 

4.25  Storage modulus (E′) and loss factor (tan δ) curves of epoxy and 

its nanocomposites as a function of temperature for EP, EGO, 

EGG-50, EGG-100, and EGG-150  106 

4.26  Tafel curves of neat epoxy (EP) and GO and f-GO epoxy 

nanocomposites (EGO, EAG-50, EAG-100, and EAG-150)  107 

4.27  Tafel curves of neat epoxy (EP) and GO and f-GO epoxy 

nanocomposites (EGO, EGG-50, EGG-100 and EGG-150)  108 

4.28  Time-dependent OCP for f-GO epoxy nanocomposites coatings 

(EGO, EAG-50, EAG-100, and EAG-150) immersed in 3.5 

wt.% NaCl solution  110 

4.29  Time-dependent OCP for f-GO epoxy nanocomposites coatings 

(EGO, EGG-50, EGG-100, and EGG-150) immersed in 3.5 wt% 

NaCl solution  110 

4.30  Electrochemical model impedance parameters from EIS data 

fittings of the GO, f-GO epoxy nanocomposites coatings (EGO, 

EAG-50, EAG-100, and EAG-150)  116 

4.31  Electrochemical model impedance parameters from EIS data 

ittings of the GO, f-GO epoxy nanocomposites coatings (EGO, 

EGG-50, EGG-100, and EGG-150)  124 

4.32  Electrochemical model impedance parameters from EIS data 

fittings of the coatings  125 

 

    

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

xviii 

LIST OF ABBREVIATIONS 

 

0D 0 Dimensional  

135Cs Cesium-137 

1D 1 dimensional 

2D 2 dimensional 

3D 3 dimensional 

60Co Cobolt-60 

APTES 3-Aminopropyltriethoxysilane 

ASTM American Society for Testing and Materials 

BISE 1,3-bis[3-(4,5-epoxy-1,2,3,6-tetrahydrophthalimido)propyl] 

tetramethyldisiloxane 

BPA Bisphenol A 

CAE Cycloaliphatic epoxy 

CNT Carbon nanotube 

CR Corrosion rate 

CVD Chemical Vapor Deposition 

DETA Diethylenetriamine 

DGEBPA Diglycidyl Ether of Bisphenol-A 

DMA Dynamic Mechanical Analysis 

DMF Dimethylformamide 

DTA Deferential Thermal Analysis 

DWCNT Double-walled carbon nanotube 

EAG APTES functionalized-GO/Epoxy coatings 

ECH Epichlorohydrin 

Ecorr Corrosion potential 



© C
OPYRIG

HT U
PM

xix 

EG Expanded graphite 

EGG GPTMS functionalized-GO/Epoxy coatings 

EGO GO/Epoxy coatings 

eV Electron volts 

EVA Ethylene-vinyl acetate 

FESEM Field Emission Scanning Electron Microscopy 

f-GO Functionalized-GO 

FRA Frequency Response Analysis  

FT-IR Fourier-transform infrared spectroscopy 

GDP Gross Domestic Product 

GGO GPTMS functionalized-GO 

GNP Graphene Nano Platelets  

GO Graphene Oxide 

GPTMS 3-glycidyloxypropyltrimethoxy silane 

Gy Gray 

H12MDI 4,4’-dicyclohexylmethene diisocyanates 

HDI Hexamethylene diisocyanates 

HHPA Hexahydrophthalic anhydride 

Icorr Corrosion current density 

IPDI Isophorone diisocyanates 

ISO International Organisation for Standardization 

KBr Potassium Bromide 

KGy Kilo Gray 

LDH Layered Double Hydroxide 

https://photometrics.net/field-emission-scanning-electron-microscopy-fesem/


© C
OPYRIG

HT U
PM

xx 

MEK Methyl Ethyl Ketone 

MHHPA Methyl hexahydrophthalic anhydride 

MMT Montmorillonite 

IMPACT International Measures and Prevention, Application and Economics 

of Corrosion Technologies 

MTHPA Methyl Tetrahydrophthalic Anhydride 

MWCNT Multi-walled carbon nanotube 

NACE National Association of Corrosion Engineers 

OCP Open Circuit Potential 

PA Phthalic Anhydride 

PDI Pentamethylene diioscyanates 

PDP potentiodynamic polarization 

PE-g-MA polyethylene-grafted maleic anhydride 

PMMA polymethylmethacrylate 

PNC Polymer Nanocomposites 

PS Polystyrene  

PVP polyvinylpyrrolidone 

rGO Reduced Graphene Oxide 

RM Ringgit 

Rp polarization resistance 

RT Room Temperature 

SCE Saturated Calomel Electrode 

SEM Scanning Electron Microscopy 

SRI Standard research institute 

SWCNT Single-walled carbon nanotube 



© C
OPYRIG

HT U
PM

xxi 

TEM Transmission electron microscope 

TETA triethylenetetramine 

Tg Glass transition temperature  

THF tetrahydrofuran 

THPA tetrahydrophthalic anhydride 

TMXDI tetramethyl xylylene diisocyanates 

US United States 

UV Ultra violet 

XDI xylylene diisocyanates 

XRD X-ray diffraction 

γ-ray Gamma-ray 

  



© C
OPYRIG

HT U
PM

 

1 

CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Research Background 

 

Corrosion is a process that leads to the deterioration of the performance of a material; it 

is a physicochemical interaction leading to a significant reduction of the functional 

properties of either the material or/and the environment in which it has interacted 

(Marcus and Maurice,2009). Corrosion is more commonly understood to involve a 

chemical or electrochemical process that involved the typical transfer of electron due to 

the natural tendency for most metals to return to their natural state. Typically, metals are 

produced by extracting them from nature by applying energy to the mineral and ore. In 

an open environment, these metals are not thermodynamically stable and therefore tend 

to return to their lower Gibbs free energy forms as hydroxides, oxides, etc. These 

chemical and electrochemical processes through which metals go back to their lower 

Gibbs free energy states are termed corrosion. Corrosion tends to deteriorate metal 

surface through charge transfer reaction at an ambient environment (Cai et al., 2016).  

 

Corrosion is a spontaneous process, and just like any other natural phenomenon, it drives 

the material to its lowest possible energy state. Metals and alloys have a natural tendency 

to combine with oxygen and water in the surrounding environment and return to their 

most stable form. When iron and steel interact with the environment, they return to their 

native and stable oxide. Like any other natural disaster such as weather change and 

earthquake, corrosion results in an unprecedented and economic challenge. National 

Association of Corrosion Engineers (NACE) International established the International 

Measures and Prevention, Application, and Economics of Corrosion Technologies 

(IMPACT) in October 2014. The NACE-IMPACT report is regarded to be the first 

assessment of global corrosion costs. Its report published in 2016 estimates the cost of 

corrosion at US$2.5 trillion, equivalent to 3.4% of global GDP (Prasad et al., 2020). To 

make a global assessment, classification was made based on economic region to 

represent the total economy according to the World Bank’s economic status for the 

countries. The economic regions comprised of the United States (US), China, European 

region, India, the Arab world, Russia, Japan, the four Asian tigers + Macau, and the rest 

of the world. 

 

Furthermore, the industrial economic sector, services, and agricultural sectors in each of 

these countries were considered. A substantial economic impact was logged for the Arab 

world, sacrificed 5% of GDP for corrosion costs in different economic sectors. The least 

affected economic region is Japan, with total corrosion cost equivalent to 1% of GDP. 

The report, however, excludes the cost associated with individual safety and 

environmental consequences even though its essential in a real sense for implementing 

effective corrosion management strategies (Koch et al., 2016). The lifetime of products 

containing metallic components is often limited by the corrosion of their metallic parts. 

This cost could be saved with a better understanding and control of corrosion phenomena 

(Marcus and Maurice, 2009). Loss of production, inefficient operation, high maintenance 
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are among the expensive problem associated with metal corrosion (Karthik et al., 2015). 

Its therefore imperative to note that total elimination of the corrosion process is 

impossible; hence, various techniques are utilize in multiple fields such as marine 

equipment, pipelines, and construction to attenuate the intensity and severity of 

corrosion. These techniques include anodic or cathodic protection (Shen et al., 2005), 

corrosion inhibitors (Zheludkevich et al., 2006), and protective coatings (Hong, 2018).  

 

Coatings are usually applied to improve the surface properties of a substrate, corrosion 

resistance, wettability, and adhesion. Applications of these coatings is a smart way to 

combine the mechanical properties of metals with the surface characteristics of the 

coatings (Ammar et al., 2016). The coating industry has been driven to seek new 

technologies and materials to improve the efficiency of coatings by economic benefits 

and growing environmental concerns. Several factors affect the effectiveness of a coating 

against all the possible damaging sources: they are the quality of the coating, the substrate 

characteristics, the properties of the coating/substrate interface, and the corrosiveness of 

the environment (Kiran et al., 2017).  Organic coatings are widely used in the protection 

of the metallic structures against corrosion due to their high barrier and superior 

mechanical properties (Alam et al., 2013).  

 

Various organic coating systems such as polyurethane, acrylic coatings, vinyl-based 

coatings, epoxy coatings, etc., are available in the market as it is generally assumed that 

these polymeric coatings play as a physical barrier between the metal substrate and 

corrosive environment. Among these polymeric coatings, Epoxy coatings have been 

widely used for protecting metal structures from environmental and corrosion attacks 

due to their outstanding toughness and durability (Brostow et al., 2010)  

 

Epoxies are noted for their versatility, high resistance to chemicals, outstanding adhesion 

to a variety of substrates, toughness, high electrical resistance, durability at high and low 

temperatures, low shrinkage upon cure, flexibility, and the ease with which they can be 

poured or cast without forming bubbles and relatively cheap (Wang et al., 2018). These 

properties make them eligible for use in various applications such as protective coatings 

that can reduce the corrosion of metal/alloy substrates by acting as an excellent physical 

barrier layer because it also effectively prevents the invasion of aggressive chloride ion, 

hydrogen ion, and oxygen in a wet environment (Jin et al., 2017). But pure epoxy 

coatings have some deficiencies, which include micro-pores, bubbling, poor resistance 

to cracks propagation. Also, epoxies have hydrophilic hydroxyl groups and free volumes 

in their structure, which make them permeable to aggressive agents (i.e., water, oxygen, 

Cl−), which consequently accelerates the corrosion of the metallic substrate over time (Ji 

et al., 2006). To overcomes this problem, various efforts were made by researchers to 

improve the properties of the epoxy by the addition of various types of additives such as 

carbon-based nanofillers (Frigione and Lettieri, 2020), thereby enhancing barrier 

performance. The incorporations of these additives that are miscible into the resin occupy 

cavities, thereby reducing the porosity and zigzagging the diffusion path for the 

deleterious species and consequently enhancing the integrity and durability of the coating 

(Chen et al., 2017). Apart from increasing the length of the diffusion pathways for the 

corrosive agents, these additives also offer electrochemical anodic or cathodic protection 

effects. Also, properties of the coating such as UV blocking, scratch and abrasion 
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resistance, hardness, and other mechanical properties were reported to be improved by 

the addition of these fillers (Rahman et al., 2015). 

 

Graphene related materials have attracted tremendous attention and have been employed 

in various field, especially in the improvement of the properties of polymeric coatings, 

due to its two-dimensional structure, high aspect ratio and specific surface area, superior 

gas barrier properties, and permeability to small ions and molecules (Xia et al., 2016). 

This property consequently makes the reinforced composites coatings to have an 

excellent anti-corrosive performance in a severely corrosive environment.  

 

However, the electrostatic interaction, π-π stacking, and high specific surface area make 

graphene aggregates easily, thereby resulting in heterogeneous dispersion in the polymer 

matrix. The tendency of graphene to agglomerate and its subsequent stacking resulted in 

graphite-like with low surface area pose a challenge in obtaining homogeneous 

dispersion and efficient interfacial interaction of graphene in organic coating and 

subsequent nanocomposites with optimal properties (Wang et al., 2012). 

 

However, one of the approaches to improve the dispersion of graphene sheets in organic 

coatings is utilizing graphene oxide (GO), which has functional groups including 

hydroxyls, epoxides, and carboxyl on its structure that alter the van der Waals 

interactions, making them easily dispersed in the polymer matrix. Recently, researchers 

show that graphene oxide (GO) as a two-dimensional nanofiller of sp2-hybridized carbon 

atoms, remarkably improves the corrosion resistance of polymeric coatings via 

increasing the diffusion path of corrosive agents as well as decreasing the coating 

porosity (Mo et al., 2015). However, to ensure adequate dispersion of GO in polymer 

coatings and its subsequent strengthening of the interfacial bonding between GO and 

polymer matrix, surface modification of GO is an alternative choice to prevent GO 

agglomeration and hence improved corrosion resistance of the coating. The functional 

groups at the basal plane and edges of GO provide the reactive sites for covalent 

functionalization. Amongst various functionalization methods considered for improving 

GO dispersion in a polymer matrix, silane modification is a promising method for 

enhancing the properties of the composites due to its bifunctional structure (Zhang et al., 

2018). The coupling process is accomplished via a chemical reaction between the silane 

molecules alkoxy groups and the hydroxyl group’s presence on the surface of the 

graphene, at the same time, the other functional groups of silane molecules, which are 

generally amine, ethylene, epoxy, trihydroxy, etc. remained. These surviving functional 

groups can provide a chemical bonding site of graphene with the polymer matrix, leading 

to enhanced properties (Li et al., 2015). Thus, the performance of epoxy coatings will 

ultimately be enhanced by utilizing the advantages of functionalized-GO (f-GO).  

 

So far, there have been several methods for the functionalization of GO, one of which is 

chemical techniques that typically require a long reaction time, toxic reagent, strict 

reaction conditions that restrict large-scale production (Ahmad et al., 2017). Hence, a 

new route combining the economic advantage and convenience of chemical synthesis 

with excessive reduction efficiency has therefore been an import goal for the preparation 

of functionalized GO. Gamma-ray irradiation has recently been investigated as a safe, 

clean and simple way to alter the nanostructure and properties of carbon materials and 
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facilitate chemical reactions on their surface (Ansón-Casaos et al., 2014). Not only 

because it is an environmentally friendly procedure, but also because it is practical, cost-

effective and can be performed at room temperature, the method has attracted interest 

among researchers. However, the study of inducing grafting onto the surface of GO using 

gamma-ray irradiation is still an emerging field. 

 

1.2 Problems statement 

 

Corrosion is a disturbing phenomenon in which chemical or electrochemical reactions 

occur that lead to the deterioration of metals materials. Apart from economic losses 

associated with corrosion, the process is a threat to the safety of industrial production. 

However, various corrosion protection methods have been developed which includes 

protective coatings, environmental modifications, cathodic and anodic protection, 

application of inhibitors or any combination of these. Protection of metallic surface from 

corrosion employing polymeric coatings are the commonest approach due to their 

excellent anti-corrosion performance coupled with their low cost. Among them, epoxy 

coatings have captivated the interest of researchers due to their excellent mechanical 

properties and adhesion to metallic substrates. Nevertheless, epoxy coatings fail over 

prolong exposure to permeable aggressive corrosive media, in addition to its low 

resistance to crack propagation; epoxy contains hydrophilic hydroxyl groups in their 

cured network leading to poor resistance in humid condition. Hence, the initiation and 

propagation of cracks in the coating allow the penetration of corroding agents through 

the defect thus reduces adhesion and enhancing corrosion. 

 

To overcome this problem, nanoparticles such as graphene oxide is incorporated as a 

nanofiller. Nonetheless, graphene oxide sheet agglomeration due to the strong van der 

Waals forces among their sheets and its weak compatibility with most of the polymer 

matrices have been fundamental roadblocks that restrict its potentials. Surface 

modification by adding functional groups such as organo silane compounds is an 

effective way to reduce the tendency to agglomerate. Also, functionalization increases 

the graphene compatibility with specific polymers thereby improving the reinforcing 

effect. Previous studies focus on the functionalization of graphene derivatives through 

various techniques that are often complex with long reaction time, toxic reagents with 

specific reaction conditions. However, this study focus on the γ-irradiation method of 

graphene functionalization, which is cost-effective, environmentally friendly, and can be 

conducted at low temperatures. 

 

1.3 Objective of the study 

 

To prepare and characterized an anti-corrosive coating based on silane functionalized 

Graphene Oxide (f-GO) / Epoxy resin nanocomposites  

Specific Objectives: 

• To prepare, functionalized and characterized Graphene oxide with 

Organosilane, i.e. 3-Aminopropyltriethoxysilane (APTES) and 3-
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Glycidyloxypropyltrimethoxy (GPTMS) via radiation assisted process using 

gamma-ray irradiation at various radiation doses. 

• To prepare and characterize nanocomposites coatings for morphology, coatings 

surface performance and chemical resistance performance  

• To investigates thermomechanical properties of the nanocomposites coatings 

via Thermogravimetric Analysis (TGA) and Dynamic Mechanical Analysis 

(DMA). 

• To investigate the anti-corrosion performance of the AGO/Epoxy coatings 

(EAG’s) and GGO/Epoxy coatings (EGG’s) via Electrochemical Impedance 

Spectroscopy (EIS) and Potentiodynamic polarization.  

 

1.4 Significance of the Study 

 

Several studies in this field have been inspired by the excellent properties of graphene. 

Up till now, the performance of polymer/graphene nanocomposites have been 

extensively investigated so far in applications such as solar cells, supercapacitors, 

lithium-ion batteries, electrochemical sensing, and membrane-based separation 

applications. Currently, most of the research of graphene/Epoxy nanocomposites is 

largely focusing on their electrical conductivity features in fuel cells, transistors, and 

photocatalytic applications. Up till now, no research is being reported on the 

incorporation of gamma-irradiation functionalized-GO nanomaterials as nanofillers in 

the fabrication of epoxy nanocomposites for anti-corrosion coatings. Since various 

researches findings have shown that graphene exhibited anti-corrosion properties, the 

present study would concentrate on the functionalization of GO with hydrophobic silane 

molecules such as APTES and GPTMS to increase the properties of GO. This can, in 

turn, heighten the performance of GO as a coating material. 
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