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Climate change has resulted in changes in the hydrological fluxes and water distribution 

across the globe. Pakistan, which is home to almost 200 million people, is a particularly 

vulnerable country due to poverty, population growth and lack of resources. However, 

studies quantifying future climate change on water catchment regions in the country are 

limited due to multiple issues with data and modelling uncertainty. This research aims 

to quantify projected changes in the climate and its consequent impact on the 

streamflows of Haro River, the source of water for Khanpur Dam. Firstly, the climate 

change input is obtained by selecting one out of five downscaled General Circulation 

Model (GCM) outputs based on the highest coefficient of determination (R2) value from 

a regression against observed meteorological dataset. The baseline and future 

meteorological parameters from the selected GCM are then bias corrected using the 

observed meteorological dataset. For future climate, two Radiative Concentration 

Pathways (RCP) 4.5 and 8.5 are considered.   at two stations, namely Murree (P-1) and 

Islamabad (P-2). Next, a hydrological model for the basin is developed using the Soil 

and Water Assessment Tool (SWAT) to integrate the meteorological data and produce 

simulation of streamflows for the baseline (1976-2005) and future periods (2006-2095). 

The calibration, validation, uncertainty analysis and the sensitivity analysis of the SWAT 

Model is conducted in Sequential Uncertainty Fitting 2 (SUFI-2) algorithm. Finally, the 

change in streamflows is projected through a relative comparison between baseline and 

future flows on monthly and seasonal scale. The study found that the maximum 

(minimum) temperature at P-1 is expected to increase by 3.1°C (3.2°C) under RCP 4.5 

and 4.0°C (4.3°C) under RCP 8.5 in the future. Precipitation is expected to rise from 

8.9% under RCP 4.5 to 14.3% under RCP 8.5. Similarly, at P-2, the maximum 

(minimum) temperature is anticipated to increase by 3.3°C (3.3°C) under RCP 4.5 and 

4.1°C (4.2°C) under RCP 8.5. Precipitation is projected to increase between 15.4% (RCP 

4.5) and 23.1% (RCP 8.5) compared to the baseline scenario. SWAT produced good 

model performance with Nash Sutcliffe Efficiency (NSE) and R2 values of 0.80 (0.77) 

and 0.82 (0.77) respectively during the calibration (validation) period. Simulation of 

baseline and future streamflows using the calibrated SWAT indicates an increase from 
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average annual baseline streamflows of 7.7 m3/s to 8.7 m3/s (9.3 m3/s) under RCP 4.5 

(RCP 8.5). Maximum streamflows expected during the month of July, are projected to 

increase from baseline streamflow of 21.3 m3/s to 28.2 m3/s (32.6 m3/s) under RCP 4.5 

(RCP 8.5). In summer season, compared to baseline streamflows of 13.1 m3/s, the 

streamflows are expected to be 4.2 m3/s (6.8 m3/s) higher under RCP 4.5 (RCP 8.5). This 

study will help the policy makers in conceiving prudent schemes for effective utilization 

of water supply throughout the year. The new policies may focus on increasing water 

storage capacity of the dam reservoir in the future resulting from projected increase in 

streamflows.  
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Perubahan iklim telah menyebabkan perubahan kitaran hidrologi dan taburan air di 

seluruh dunia. Pakistan yang dihuni hampir 200 juta penduduk, adalah sebuah negara 

yang paling terdedah kepada kesan perubahan iklim kerana kemiskinan, pertumbuhan 

penduduk dan kekurangan sumber asli. Walau bagaimanapun, kajian penyelidikan yang 

mengukur kadar perubahan iklim masa hadapan di kawasan tadahan air di negara ini 

adalah terhad disebabkan oleh pelbagai masalah dengan ketidakpastian data dan model. 

Penyelidikan ini bertujuan untuk mengukur anggaran perubahan iklim dan kesannya 

terhadap aliran Sungai Haro, sumber air untuk Empangan Khanpur. Pertama sekali, input 

perubahan iklim diperolehi dengan memilih satu daripada lima output General 

Circulation Model (GCM) yang telah diturunkan sekala berdasarkan koefisien 

penentuan (R2) daripada regresi dengan dataset pemerhatian meteorologi. Bias dalam 

parameter meteorologi tempoh dasar dan masa hadapan dari GCM terpilih kemudiannya 

diperbetulkan dengan menggunakan set data meteorologi menggunakan. Untuk iklim 

masa hadapan, dua Radiative Concentration Pathways (RCP) 4.5 dan 8.5 

dipertimbangkan. Prestasi pembetulan bias dinilai berdasarkan purata bulanan, persentil 

ke-10 dan ke-90, dan sisihan piawai di dua stesen, iaitu Murree (P-1) dan Islamabad (P-

2). Model hidrologi untuk kawasan tadahan air dibangunkan menggunakan Soil and 

Water Assessment Tool (SWAT) untuk mengintegrasikan data meteorologi  untuk 

menghasilkan simulasi aliran sungai untuk tempoh dasar (1976-2005) dan masa hadapan 

(2006-2095). Kalibrasi, pengesahan, analisis ketidakpastian dan analisis kepekaan 

model SWAT dijalankan menggunakan algoritma Sequential Uncertainty Fitting 2 

(SUFI-2). Akhir sekali, perubahan aliran aliran dijangka melalui perbandingan relatif 

antara tempoh dasar dan masa hadapan pada skala bulanan dan bermusim. Kajian 

mendapati suhu maksimum (minimum) di P-1 dijangka berubah sebanyak 3.1°C (3.2°C) 

di bawah RCP 4.5 dan 4.0°C (4.3°C) di bawah RCP 8.5 pada masa akan datang. Hujan 

dijangka meningkat daripada 8.9% di bawah RCP 4.5 hingga 14.3% di bawah RCP 8.5. 

Begitu juga pada P-2, suhu maksimum (minimum) dijangka berubah sebanyak 3.3°C 

(3.3°C) di bawah RCP 4.5 dan 4.1°C (4.2°C) di bawah RCP 8.5. Hujan dijangka 

meningkat daripada 15.4% (RCP 4.5) kepada 23.1% (RCP 8.5) berbanding dengan 
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senario dasar. SWAT menghasilkan prestasi model yang baik dengan Nash Sutcliffe 

Kecekapan (NSE) dan nilai R2 masing-masing 0.80 (0.77) dan 0.82 (0.77) semasa 

tempoh penentukuran (pengesahan). Simulasi baseline dan arus aliran masa depan 

menggunakan SWAT yang ditentukur menunjukkan peningkatan purata tahunan arus 

aliran dasar  dari 7.7 m3/s ke 8.7m3/s (9.3 m3/s) di bawah RCP 4.5 (RCP 8.5). Aliran 

maksimum yang dijangkakan pada bulan Julai, dijangka meningkat dari aliran dasar 21.3 

m3/s ke 28.2 m3/s (32.6 m3/s) di bawah RCP 4.5 (RCP 8.5). Pada musim panas, 

berbanding arus aliran dasar 13.1 m3/s, arus aliran dijangka menjadi 4.2 m3/s (6.8 m3/s) 

lebih tinggi di bawah RCP 4.5 (RCP 8.5). Kajian ini akan membantu penggubal dasar 

yang terlibat untuk merangka skim yang berhemat bagi penggunaan bekalan air secara 

berkesan untuk sepanjang tahun. Dasar-dasar baru mungkin boleh memberi tumpuan 

kepada peningkatan kapasiti simpanan air empangan  di masa depan berikutan daripada 

peningkatan aliran aliran yang dijangka. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

In the past few decades, multiple factors have contributed in damaging the earth’s natural 

cycle. Overall, the global energy balance is facing disruption due to an alarming increase 

in urbanization, higher rate of population growth and unplanned exhaustion of non-

renewable resources (Khattak , Babel and Sharif, 2011; Chu, Xia, Xu and Singh, 2010). 

These changes have, in turn, impacted the natural climatic cycle (Merritt, Alila, Barton, 

Taylor, Cohen and Neilsen, 2006). During the last century, the atmospheric 

concentration of greenhouse gases (GHGs) due to anthropogenic activities has increased 

significantly.  This will lead to a considerable rise in Earth’s temperature in the 

upcoming years (Chu et al., 2010; Wentz, Ricciardulli, Hilburn and Mears, 2007; Merritt 

et al., 2006). As per report of IPCC (2013), the earth’s temperature has increased 

successively in the past three decades compared to previous records, with the decade of 

2000 being the warmest. 

As stated in United Nations Report on World Water Assessment Programme (2015), a 

change in climatic conditions will amplify the risk of natural disasters, particularly those 

related to water resources, which are the most hazardous economically as well as 

socially. Excessive global warming will upset the present hydrological systems. It will 

lead to a variation in water availability and will cause increment in the intensity and 

frequency of precipitation (Mahmood, Jia and Babel, 2016b). In the present scenario, 

where the rise in global warming is inevitable, there is a dire need to evaluate its possible 

effects on the hydrological cycle and to comprehend the threats posed to water resources 

due to these changes (Meenu, Rehana and Mujumdar, 2012). The impacts of climate 

change on hydrological systems are region dependent (Khattak et al., 2011). 

A number of studies carried out by Azim , Shakir and Kanwal (2016); Mahmood and Jia 

2016a ; Mahmood et al., 2016b;  Ahmad, Hafeez and Ahmad (2012); Khattak et al., 

2011; Bocciola et al. (2011); Shakir, Rehman and Ehsan (2010); and Akhtar, Ahmad and 

Booij (2008) have focused on the climate change impacts on various water resource 

related projects in Pakistan. The rapidly changing climatic scenario is highly alarming 

for Pakistan, with its growing population and natural-resource-dependent economy 

(Khattak et al., 2011). 

The assessment for annual change in hydrological parameters is usually carried out by 

incorporating 30 year historical climatic data (Morrison, Quick and Foreman, 2002).  For 

hydrologic modeling and climate change assessment, a physically based continuous time 

model; the Soil and Water Assessment Tool (SWAT) developed by Dr Jeff Arnold for 

United States Department for Agriculture (USDA) Agricultural Research Services 
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(ARS); is commonly used (Garee, Chen, Bao, Wang and Meng, 2017; Kundu, Khare 

and Mondal, 2017; Xu, Wang, Kalcic, Muenich, Yang and Scavia, 2017; Nyeko, 2015; 

Narsimlu, Gosain and Chahar, 2013 and Abbaspour, Faramarzi, Ghasemi and Yang, 

2009). SWAT incorporates input data, including weather, topography, soil, land 

management practices and vegetation present in the watershed and directly models the 

physical processes related to movement of water, sediment, plant growth, and nutrient 

cycling.  

The outputs extracted from General Circulation Models (GCMs) are incorporated in the 

hydrological model to assess the changes in water resources due to future climate. GCM 

uses multiples GHG emission scenarios and can be employed to make projections about 

climatic condition in the future. GCM outputs provide scientific evidence to perform 

necessary steps according to the predicted conditions for future hydrological changes in 

the basin. However, small basins require very fine spatial resolutions, while the spatial 

resolution of GCM is very coarse (about 200-500 km) (Mahmood et al., 2016b). 

Therefore, it is necessary to downscale the information from large scale to local scale. 

NASA’s Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset, 

launched in June 2015, comprises of the downscaled global climatic scenarios obtained 

from runs of Global Circulation Models covered in Coupled Model Intercomparison 

Project Phase 5 (CMIP5). The CMIP5 GCM runs were developed to feed into the Fifth 

Assessment Report of Intergovernmental Panel on Climate Change (IPCC, 2014). These 

projections are available at spatial resolution of 25x25 km under two Representative 

Concentration Pathways (RCPs): RCP 4.5 and RCP 8.5. 

1.2 Problem Statement 

The study aims to assess the impacts of increasing level of carbon dioxide and variation 

in rainfall and temperature on the streamflows of Haro River watershed in the future. 

Previously, Hagras and Habib (2017) carried out a similar hydrological modeling study 

at Haro River watershed using SWAT. However, their study was limited to hydrological 

modeling using manual calibration without further assessment of the future impacts of 

climate change. Moreover, the limit in prior study was the downstream Khanpur Dam, 

which prevents quantification of changes in the water resources contributing to the dam 

without interference of human controls. To achieve this, the limits of the modeling in 

this study are moved upstream of the dam at Dhartian gauging station.  

GCMs provide information that is used to define climate change under present and future 

conditions. For impact studies, these models incorporate climate processes and 

greenhouse gas emissions to simulate changes in large-scale global climate systems 

(Tshimanga and Hughes, 2012). Uncertainties arise within the GCMs due to inaccurate 

or inadequate representation of main physical processes (Raneesh and Thampi, 2013). 

Furthermore, the uncertainties in climate change impact assessment studies may also 

occur due to difference in downscaling techniques, emission scenarios as well as 

hydrological models (Vetter, Reinhardt, Flörke, Griensven, Hattermann, Huang, Koch, 

Pechlivanidis, Plötner, Seidou, Su, Vervoort and Krysanova, 2016). The combined effect 

of uncertainty and variability in future climate changes is considered challenging for 



© C
OPYRIG

HT U
PM

 

3 

planning of water resources (Bharati, Gurung, Jayakody, Smakhtin and Bhattarai, 2014).  

These uncertainties result in biases in climate representation of the baseline period, 

which may or may not be systematic. In impact assessment, particularly for mountainous 

regions, there are also uncertainties due to a mismatching scale between the climate and 

the hydrological model (Bennett, Werner and Schnorbus 2012).  

These uncertainties are addressed using multiple strategies that include using an 

ensemble of model runs and applying spatial downscaling techniques to GCM models 

(Nover, Witt, Butcher, Johnson and Weaver, 2016). It is also pertinent to remove the 

systematic bias in the GCM output before application for climate impact studies 

(Teutschbein and Seibert, 2012). To study future streamflows in Haro River due to 

climate change, the model uncertainty was abridged in the present study by initially 

assessing five GCM models and then choosing one model after bias correction for 

assessing future climate impacts.  The GCM outputs were obtained from recently 

launched NASA Earth Exchange Global Daily Downscaled Projection (NEX-GDDP) 

dataset, which is not yet frequently used for climate studies in Pakistan.  

In addition to climate modeling uncertainty, climate impact assessment is further 

complicated by uncertainties in hydrological modeling pertaining to data, 

conceptualization, and parameterization. Hilly areas especially in developing countries 

are highly susceptible to climate change impacts (McDowell, Ford, Lehner, Berrang-

Ford and Sherpa, 2013).  Yet these same areas are commonly associated with 

meteorological and hydrological data scarcity due to limitations in temporal as well as 

spatial extents of weather station networks and rain gauges (Remesan and Holman, 

2015). However, alternative observational and parameterization datasets e.g. reanalysis 

datasets are increasingly available to overcome these challenges (Nkiaka, Nawaz and 

Lovett, 2017).  Furthermore, there are also developments within the hydrological 

modeling community for models applicable in data scarce watersheds, such as SWAT, 

HBV and TOPMODEL (Wakigari, 2017). The study, therefore, aims to address the issue 

with data scarcity by using multiple data sources to parameterize, drive and calibrate 

SWAT. The subsequent calibration and validation using robust generic interface known 

as SWAT Calibration and Uncertainty Program (SWAT-CUP) limits the uncertainty in 

the input parameters by propagating it in the model output in the form of parameter 

ranges.  

With increasing level of global warming, poor management of the water resources in 

Pakistan may endanger water security, instigating an energy crisis and affecting food 

supply in the future (Akhtar, 2015). Managing water resources in dams is considered as 

the best strategy to overcome the challenges posed by climate change (Akhtar, 2015).  

Hence, the study on effects of future climate change on the water resources of Haro River 

watershed is essential as it has a direct effect on Khanpur Dam located downstream.  The 

results of the study will be useful  for effective management of the water resources of 

this watershed in the future, as the dam is used for supplying drinking water to the 

population of twin-cities of Islamabad and Rawalpindi, and for fulfilling the irrigation 

requirements for Khyber Pakhtunkhwa and Punjab Province. Outcomes of the study will 
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also help the policy makers and authorities in devising proper strategies for Khanpur 

Dam and Haro River watershed in future.   

1.3 Objectives of Research 

The aim of the study is to quantify the future impacts of climate change on the 

streamflows of Haro River. The specific objectives of the study are: 

1) To evaluate climate output from five downscaled General Circulation Models 

from the NASA Earth Exchange Global daily Downscaled Projections (NEX-

GDDP) product against observed precipitation data from national 

meteorological stations and reanalysis dataset; additionally, to quantify the 

performance of bias correction of the selected GCM output using linear 

scaling method for baseline and future periods.  

2) To quantify future climate change by comparing the bias corrected future 

climate projections against the baseline period under two emission scenarios. 

3) To perform hydrologic simulation of Haro River watershed in SWAT using 

observed records of meteorological variables and subsequent calibration and 

validation of model using Sequential Uncertainty Fitting version-2 (SUFI-2). 

4) To quantify the impact of future climate change on the streamflows of Haro 

River watershed under two emission scenarios using the calibrated SWAT 

Model and bias corrected GCM output. 

 

 

1.4 Scope of the study 

The study focuses on assessing the variation in the historical and future climatic 

projections and evaluating the potential climatic change impacts on water resources of 

Haro River watershed in Pakistan. Climate model data for five General Circulation 

Models: ACCESS 1.0, CCSM4, CNRM-CM5, MIROC ESM and MPI-ESM-LR under 

two Representation Concentration Pathway (RCP) scenarios, RCP 4.5 and RCP 8.5 is 

attained from bias corrected and spatially downscaled NEX-GDDP data at 25 x 25km 

resolution, and bias corrected using observed precipitation and temperature. Due to time 

limitations, only a single model is selected for assessment of future climate change 

impacts. This limitation is addressed based on assessing the regression analysis of GCM 

model outputs against the observed meteorological data from weather stations and 

reanalysis dataset. The observed precipitation and temperature data is obtained at two 

stations: Murree (P-1) located inside the catchment area and Islamabad (P-2) located 

outside the catchment area. The reanalysis meteorological data is obtained from the co-

located pixel to P-1 and P-2 (C-1 and C-2). 

The observed meteorological data is available only for 19 years i.e. from 1987 until 

2005. To cater for this limitation in data availability, the absence of trend in the data was 
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assessed before applying the computed bias corrected factors from 19 years of 

observation to the full historical period of 30 years. The bias corrected factors obtained 

from the historical period is then applied to the future climate period.  The bias corrected 

thirty years historical data (1976-2005) for precipitation, maximum temperature, and 

minimum temperature is utilized for SWAT simulation of the baseline period. The future 

climatic projections are ascertained by using future bias corrected GCM data for three 

time periods, each of 30 years i.e. 2006-2035, 2036-2065 and 2066-2095.  

The scope of the study also includes the hydrologic simulation of the watershed in the 

SWAT Model and subsequent calibration and validation of the model using SUFI-2. For 

hydrological modelling, the solar radiation, relative humidity and wind speed data at 

daily time scale is obtained from reanalysis data due to absence of observed data. The 

discharge data is only available from 1989-1991 and 1996-1998 (7 years total), which 

makes the calibration and validation challenging. The discharge data from the former 

period is used for calibration and from the later period is used for validation of the 

hydrological model. The baseline and future bias corrected projections are used to run 

the calibrated SWAT to investigate the effect of climate change on the water resources 

of Haro River watershed under emission scenario RCP4.5 and RCP 8.5. 

In short, the outcomes of this study need to be interpreted in the context of all the 

limitations identified throughout the data collection and modelling stages. Nevertheless, 

the limitations have been addressed to the extent defined in the scope of study.  

1.5 Significance of the study 

1) The current study is carried out to assess the likely effects of climate change 

on a localized river basin.  

2) Khanpur Dam, which is located on the downstream side of the study region, 

is the main source of supplying drinking water and fulfilling the irrigational 

water requirements. Therefore, it is pertinent to predict the impact of climate 

change in future upon the flows, precipitation and temperature.   

3) The results of the study will provide necessary information related to 

expected future seasonal streamflow changes, which will provide the basis 

for better policymaking.  

4) The study will prove helpful in planning strategies to mitigate drastic changes 

in the hydrology, if projected by the study. 
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