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ENHANCEMENT OF BIOCONTROL ACTIVITIES OF TRICHODERMA 
HARZIANUM RIFAI THROUGH PROTOPLAST FUSION 

By 

WONG MUIYUN 

January 1999 

Chairperson: Professor Dr. Sariah Meon 

Faculty : Agriculture 

Enhancement of the biocontrol activities of Trichoderma harzianum Rifai 

against two soilborne pathogens, Sclerotium rolfsii and Ganoderma boninense 

through protoplast fusion was attempted. Mycelial cultures from three 

indigenous isolates from the rhizospheres of groundnut (IMI 378843), chilli 

(IMI 378844) and oil palm (IMI 378841) were used for the protoplast isolation 

and fusion studies. The result showed that the optimum release of viable 

protoplasts was obtained when mycelial cultures at the exponential stage was 

incubated for 4 h in Novozym 234 (Sigma) as the lytic enzyme at 

concentration of 7 mg/ml dissolved in 0.7 M NaCI and 0.6 M sorbitol. 

Pretreatment of mycelium v.ith 0.01 M 2-mercaptoethanol gave no Significant 

difference on protoplast yield of the three isolates studied. The protoplast 

yield was within the range of 1()6-1OS protoplasts/ml and the average size of 

the protoplasts was 2.5-10.0 J.1D1. 

Chemically induced fusion, using polyethylene glycol (pEG), among 

the three isolates yielded a total of 12 fusants. The fused protoplasts 
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germinated 18 h after incubation in liquid Protoplast Regeneration Medium 

(PRM). When plated on solid PRM, the fusants regenerated into single 

colonies between 24-48 h after incubation. Of the 12 fusants obtained, five 

fusants showed non-parental type in isozyme analysis. They were further 

evaluated based on the cultural and morphological analysis, biomass growth, 

antagonistic activities against S. Tolfsii and G. boninense, tolerance to 

commonly used fungicides, and the ability to produce two extracellular lytic 

enzymes, J)-l,3-glucanase and chitinase. 

Despite isozyme banding patterns of the five fusants showing non­

parental type, there was similarity in colony and microscopic appearance with 

the parental isolates. Two fusants (D and E), showed significantly (p<O.Ol) 

better performance in antagonistic activities against both S. Tolfsii and G. 

boninense than their parental isolates. All the five fusants showed no 

improvement in biomass growth and tolerance to sublethal doses of 

Quintozene, Propiconazole and Penconazole. However, these fusants and 

their parental isolates showed significantly (p<O.Ol) higher tolerance to these 

fungicides than the target pathogens. The production of J3-1,3-glucanase and 

chitinase using substrate media were not detected in both the fusants and 

their parental isolates. Regardless of its genetic basis, the diversity of progeny 

obtained through protoplast fusion in T. harzianum can be used as a source of 

improved strains for biological control. 
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PENGGABUNGAN PROTOPLAS 

OIeh 

WONG MUIYUN 

Januari 1999 

Pengerusi : Profesor Dr. Sariah Meon 

Fakulti : Pertanian 

Percubaan untuk memperbaiki aktiviti-aktiviti kawalan biologi oleh 

kulat Trichoderma harzianum Rifai terhadap dua patogen bawaan tanah 

Sclerotium rolfsii dan Ganodenna boninense melalui penggabungan protoplas 

telah dilakukan. Kultur miselium daripada tiga asingan tempatan yang di 

ambil dari rhizosfera kacang tanah (IMI 378843), cili (IMI 378844) dan kelapa 

sawit (IMI 378841) telah digunakan dalam kajian pengasingan dan 

penggabungan protoplas. Hasil kajian menunjukkan bahawa pembebasan 

optimum protoplas yang berdayasaing telah diperolehi apabila kultur 

miselium pada peringkat eksponen dieram selama 4 jam dalam Novozym 2.34 

(Sigma) sebagai enzim litik pada kepekatan 7 mg/ ml yang dilarutkan dalam 

0.7 M NaCl dan 0.6 M sorbitol. Keputusan praperlakuan miselium dengan 

0.01 M 2-mercaptoethanol menunjukkan perbezaan tidak ketara bagi hasil 

pemprotoplasan dari tiga asingan yang dikaji. Hasil pemprotoplasan yang 

diperolehi adalah di antara 1()6-108 protoplas/ml dan purata saiz protoplas 

adalah di antara 2.5-10.0 !.lm. 
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Penggabungan protoplas secara kimia dengan menggunakan 

'polyethylene glycol' (PEG) di antara tiga asingan tersebut menghasilkan 

sejumlah 12 'fusant'. Protoplas yang telah bergabung itu bercambah dan 

menghasilkan hifa 18 jam selepas pengeraman dalam media cecair 'Protoplast 

Regeneration Medium' (PRM). Di atas media pepejal PRM, 'fusant' 

mengalami regenerasi dan membentuk koloni tunggal di antara 24-48 jam 

selepas pengeraman. Daripada 12 'fusant' yang diperolehi, lima 'fusant' 

menunjukkan corak isozim yang berbeza dari induk mereka. Kelima-lima 

'fusant' ini kemudian dikaji lebih lanjut dalam aspek kultur dan morfologi, 

pertumbuhan 'biomass', aktiviti-aktiviti kawalan biologi terhadap S. rolJsii 

and G. boninense, toleransi terhadap racun kulat yang biasa digunakan dan 

keupayaan untuk menghasilkan dua enzim litik, '13-1,3-glucanase' dan 

, chitinase' . 

Walaupun corak isozim kelima-lima 'fusant' tersebut menunjukkan 

perbezaan dengan induk mereka tetapi aspek kultur dan morfologi adalah 

sarna. Dna' fusant' (D dan E), menunjukkan keupayaan kawalan biologi yang 

ketara (p<O.Ol) lebih baik terhadap kedua-dua S. rolfsii dan G. boninense 

daripada induk mereka. Kelima-lima 'fusant' menunjukkan tiada 

peningkatan dalam pertumbuhan 'biomass' dan toleransi terhadap 

Quintozene, Propiconazole dan Penconazole berbanding dengan induk 

mereka. Walau bagaimanapun, 'fusant' dan induk menunjukkan toleransi 

yang ketara (p<O.Ol) lebih baik terhadap racun-racun kulat ini berbanding 

dengan kedua-dua patogen tersebut. Penghasilan enzim litik '13-1,3-

glucanase' dan 'chitinase' dengan induksi menggunakan media substrat tidak 

dapat dikesan bagi 'fusant' dan induk mereka. Tanpa mengira asas genetik, 

kepelbagaian progeni yang diperolehi melalui penggabungan protoplas 

dalam T. harzianum boleh digunakan sebagai satu sumber untuk memperbaiki 

kulat ini bagi tujuan kawalan biologi. 
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CHAPTERl 

INTRODUCTION 

Modem agriculture is highly dependent on chemical pesticides. The 

repeated use of such chemicals has polluted the environment and encouraged 

the development of resistance among the target organisms. 1bis has resulted 

in the use of ever-increasing amounts of pesticides. The exposure of human 

populations and natural habitats to increasing levels of pesticides are 

becoming unacceptable, and have prompted the search for new strategies for 

pest and disease control that reduce or possibly eliminate the dose of 

pesticide required. Biological control has proven to be a potential alternative 

to the use of chemicals for the management of plant diseases although a small 

amount of chemicals is needed in certain biocontrol measures, for example, 

the use of chemicals for induced resistance in plants (Kuc, 1995). 

One approach to biological control has been the use of antagonistic 

microorganisms that compete with, or directly attack, the pathogen. However, 

with the exception of Bacillus thuringiensis, biological control has not found 

widespread use in commercial agriculture mainly because, to date, control of 

plant diseases with microbial agents has been less effective and reliable than 

synthetic fungicides. This is probably due to the less superior performance of 

the microbial agents. Thus, the increase use of biological control of plant 

diseases requires identification of highly effective strains and genetic 

improvement of these strains, as well as improved production and delivery 

methods. 

1 
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Fungi in the genus Trichoderma has been identified as a potential 

biocontrol agent against many phytopathogenic fungi. The antagonistic 

ability of Trichoderma was discovered more than 50 years ago (Weindling, 

1932). The potential of the fungus to serve as a biocontrol agent was already 

suggested at that early stage. However, only during the last two decades has 

a world wide effort been carried out to develop the fungus as a commercial 

preparation. Today, there is accumulating evidence that Trichoderma species 

which are easily isolated from soil and readily grown, are among the most 

promising biocontrol agents in terms of large-scale applications. 

Trichoderma harzianum Rifai is the most studied of the Trichoderma 

species identified for biological control, and is the most effective in disease 

suppression. T. harzianum is known to produce a wide array of extracellular 

lytic enzymes that are involved in the process of antagonism against 

pathogenic mycelia and sclerotia (Benhamou and Chet, 1996; Benhamou and 

Chet, 1993). Chitinolytic enzymes such as endochitinase and chitobiosidase 

(Lorito et al., 1993a) from T. harzianum are active against the broadest range of 

pathogens and show the highest degree of synergy with other enzymes, or 

with biological and chemical control agents (Goldman et al., 1994). 

A number of Trichoderma species have been shown to effectively 

controlled the following soilborne fungi : Sclerotium rolfsii Ginantana, 1995; 

Henis et al., 1984), Rhizoctonia solani, Pythium spp., Fusarium spp., Aspergillus 

niger (Lynch, 1987; Chet and Henis, 1985; Elad et al., 1983), Sclerotium 

cepivorum (De Oliveira et al., 1984) and others. Trichoderma has also been 

successfully sprayed against Botrytis spp. on strawberries (Ironsmo and 

Dennis, 1977) and apples (Ironsmo and Ystaas, 1980) in above-ground 

control. 
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Besides biocontrol activities, Trichoderma enhances germination of 

seeds and plant growth as measured by increases in weight, height and 

branch, and flower production (Baker et al. , 1984; Harm� 1982). This serves 

as a valuable factor in using Trichoderma as a biocontrol agent. Also, 

Trichoderma can be a very useful and efficient component in the integrated 

pest and disease management where the integration of isolates of Trichoderma 

resistant to low doses of pesticide can lead to a synergistic effect resulting 

from suppression of competitive soil microflora. Trichodenna was shown to 

tolerate fungicides such as methyl bromide, peNB, benomyl, captan, maneb 

and prothiocarb (Sivan et al., 1984; Ruppel et al., 1983; Papavizas et al., 1982; 

Hadar et al. , 1979; Munnecke et al., 1973). 

Trichoderma species possess great genetic variability. Some strains have 

a wide spectrum of biological activity, other strains may control only specific 

pathogens, while still others may have little or no biocontrol efficacy. Some 

strains may grow poorly under some environmental conditions, while others 

grow well under these same adverse conditions. Therefore, an alternate target 

for future research is on genetic manipulation to enhance the ability of the 

antagonist to control a '''ide range of diseases, to adapt to various 

environmental conditions, to be rhizosphere competent, to tolerate low doses 

of pesticides, and to be commercially viable. 

There are several different processes available for producing improved 

bioprotectants, namely mutagenesis, the use of recombinant DNA and 

protoplast fusion. Protoplast fusion is a method of choice for fungi lacking 

sexual stage such as Trichodenna where the occurrence of conventional sexual 

recombination is either too low or none. Protoplast fusion is a method which 

efficiently induces heterokaryosis where it allows the recombination in the 

progeny of different characteristics from two or more parental strains 
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following the removal of cell wall and exposing the protoplast membrane, 

processes that are less achievable or impossible with intact cells. 

Protoplast fusion has been successfully carried out using T. reesei 

(Toyama et al., 1984), T. koningii (Hong et al., 1984) and T. harzianum (Sivan 

and Harman, 1991; Stasz et al., 1988). However, it gave rise to great variability 

in biocontrol and mycoparasitic ability of the fusants (Migheli et al., 1995; 

Stasz and Harman, 1990). Therefore, there is still a need to produce superior 

Trichoderma strain which could be used as an effective biocontrol agent, 

particularly strains which are rhizosphere competent in the local 

environmental conditions. 

Research on indigenous isolates of T. harzianum and their potentials is 

still lacking in Malaysia. Recently, Jinantana (1995) had isolated a few isolates 

of T. harzianum from different rhizospheres at different locations in West 

Malaysia. Two isolates were identified to be potential antagonists against 

Sclerotium rolJsii based on in vitro screening methods but the proliferation rate 

of these isolates in the soil was poor. Moreover, the performance of these 

isolates in their tolerance to fungicides is not known. 

In this study, an attempt was made to enhance the biocontrol activities 

of the indigenous isolates of T. harzianum Rifai through protoplast fusion. 

Thus, the objectives of this study are as the following: 

1. To isolate and fuse protoplasts from isolates of Trichoderma harzianum. 

2. To characterize fusants through isozyme analysis, cultural and 

morphological analysis, biomass growth, tolerance to fungicides and the 

ability to produce f3-1,3-glucanase and chitinase. 

3. To evaluate fusants for their biocontrol activities against Sclerotium rolJsii 

and Ganoderma boninense. 



CHAPTER 2 

LITERATURE REVIEW 

Biology of Trichoderma 

In 1969, Rifai distinguished nine species aggregates of Trichoderma 

based on microscopic characters. They are T. pilulifentm, T. polysponlm, T. 

hamatum, T. koningii, T. aureoviride, T. harzianum, T. longibrachiatum, T. 

pseudokoningii, and T. viride. 

Trichoderma species are saprophytic soil fungi. Most species of 

Trichoderma are photosensitive, sporulating readily on many natural and 

artificial substrates in a concentric pattern of alternating rings in response to 

diurnal alternation of light and darkness, with conidia being produced during 

the light period. Exposure of agar cultures for 20 to 30 seconds to light of 85 

to 90 lux intensity is sufficient to induce sporulation. Maximum 

photoinduction activity occurred at around 380 and 440 nm, with sporulation 

not occuring below 254 nm or above 1,100 nm (Gressel and Hartmann, 1968). 

The photoinduced conidiation in Trichoderma can be inhibited by chemicals 

such as azaguanine, 5-fluorouracil, actinomycin D, cycloheximide, phenethyl 

alcohol and ethidium bromide (Betina and Spisiakova, 1976). 

An important aspect of sporulation almost completely disregarded in 

the last 50 years is the ability of Trichoderma to produce chlamydospores 

(papavizas, 1985). Although chlamydospores were routinely mentioned in 

taxonomy papers (Domsch et al. , 1980; Rifai, 1969), very little has been 

5 
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reported on the formation and ecological importance of these structures or 

their potential role in biological control. Previous reports (Lewis and 

Papavizas, 1984; Lewis and Papavizas, 1983) have demonstrated the 

formation of chlamydospores by T. hamatum, T. harzianum, and T. viride in 

both liquid and solid fermentation media, in sterile soil and soil extracts, and 

in natural plant debris and amended natural soil. Clamydospores are 

important structures which enable soil-inhabiting fungi to survive especially 

when under adverse conditions not conducive to the survival of the smaller, 

ephemeral, single-walled conidia. 

Molecular and biochemical processes involved in germination have 

largely been ignored and this is perhaps due to the ease with which conidia of 

Trichoderma germinate on many substrates (papavizas, 1985). The conidia 

require an external source of nutrients for germination in vitro and the 

response of conidia to nutrients is affected by the H-ion concentration, 'with 

germination being greater under acidic conditions than under neutral 

conditions (Danielson and Davey, 1973). 

Even less is known about the germination of chIamydospores in vitro . 

Although fresh chlamydospores germinate well (approximately 75% on 

nutrient agar (Lewis and Papavizas, 1983), only 13 to 31 % of chlamydospores 

from air-dried preparations germinate. This suggests that the dried 

chlamydospores (expected to be found in biocontrol preparations) may be 

dormant but become germinable under appropriate conditions. 

Trichoderma species produce toxic metabolites which act as fungistatic 

antibiotic on pathogenic fungi. These toxic metabolites are gliotoxin by T. 

lignorum, later stated to be G. fibriatum (Weindling, 1941), viridin by T. viride 

(Brian and McGowan, 1945), trichodermin by T. viride and T. polysorum and 

other peptide antibiotics by T. hamatum (Dennis and Webster, 1971a, b). 
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Papavizas et al. (1982) found that several UV-induced mutants of T. harzanium 

produce two unidentified metabolites, one heat-liable, the other heat-stable. 

Trichoderma species are not only good sources of various toxic 

metabolites and antibiotics, but are also good sources of various lytic 

extracellular enzymes such as exo- and endoglucanases, cellobiase, and 

chitinase (papavizas, 1985). 

Ecology of Trichoderma 

Trichoderma are widely distributed all over the world (Domsch et al., 

1980) and they occur in nearly all soils and other natural habitats, especially in 

those containing or consisting of organic matter. Individual species 

aggregates may be restricted in their geographic distribution and Trichoderma 

seems to be a secondary colonizer, as its frequent isolation from well­

decomposed organic matter indicates (Danielson and Davey, 1973). 

Trichoderma is also found on root surfaces of various plants (Parkinson et al., 

1963), on decaying bark especially when it is damaged by other fungi 

(Danielson and Davey, 1973), and on sclerotia or other propagules of other 

fungi (Wells et al., 1972). 

Certain strains of T. hamatum and T. pseudokoningii are adapted to 

conditions of excessive soil moisture, and that T. viride and T. polysporum are 

restricted to areas where low temperatures prevail, whereas T. harzianum is 

most commonly found in warm climatic regions, and T. hamatum and T. 

koningii are widely distributed in areas of diverse climatic conditions 

(Danielson and Davey, 1973). 
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Soil samples taken from agricultural regions show that the natural 

population of Trichoderma is rather low, usually not exceeding 1()2 CFU / g soil 

(Chet, 1987). Liu and Baker (1980) reported that soil suppressiveness is 

accompanied by a significant increase in T. harzianum propagule density. 

Chet and Baker (1981) reported that low pH apparently enhances the 

propagation of fungi in general, and Trichoderma in particular, and as a 

consequence, it is favorable for the development of suppressiveness. These 

findings confirmed a former study indicating that acidification of soil could 

induce suppressiveness by Trichoderma, which survives longer in moist soil 

than in dry soil (Uu and Baker, 1980). 

Caldwell (1958) was among the first to observe that chlamydospores 

survive in soil better than conidia. Lewis and Papavizas (1984) demonstrated 

the potential of various Trichoderma species aggregates to form 

chlamydospores readily and in great numbers in natural soil or in fragments 

of organic matter after the introduction of the fungus to the soil as conidia. 

Potential for Biological Control 

The potentials of the Trichoderma species for biological control include 

their ability to act as mycoparasite of hyphae and resting structures of plant 

pathogens (Cook and Baker, 1983; Hubbard et al., 1983), their ability to bring 

about suppressiveness of soil to soilborne plant pathogens (Cook and Baker, 

1983; Baker and Chet, 1982), and their ability to act as a strong rhizosphere 

competent (Sivan and Harman, 1991; Ahmad and Baker, 1988a). The fungi 

also demonstrated their potential to be incorporated into seed treatment 

system as an alternative approach to introducing them into soil (Harman et  

al., 1981), and their potential t o  control above-ground plant diseases (Ironsmo 

and Ystaas, 1980; Tronsmo and Dennis, 1977). 
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The ability of Trichoderma to act as mycoparasites of hyphae and resting 

structures of plant pathogens has been demonstrated not only in vitro (Cook 

and Baker, 1983) but also in natural soil (Hubbard et al. , 1983). Trichoderma 

species effectively control the following soilborne fungi: Sclerotium rolfsii 

Oinantana, 1995; Hems et al., 1984), Rhizoctonia solani, Pythium spp., Fusarium 

spp., Aspergillus niger (Lynch, 1987; Chet and Henis, 1985; Elad et  al. , 1983), 

Sclerotium cepivorum (De Oliveira et al., 1984) and others. Trichoderma has also 

been successfully sprayed against Botrytis spp. on strawberries (Tronsmo and 

Dennis, 1977) and apples (Tronsmo and Ystaas, 1980) in above-ground 

control. Since 1993, two Trichoderma species have been registered in the 

United States for use against plant diseases. They are Trichoderma harzianum 

registered as F-Stop and Trichoderma harzianum/polysporum as BINAB T. 

Soil suppressiveness is another important evidence of the importance 

of Trichoderma in the biological control of plant diseases. Their ability to bring 

about suppressiveness to soilborne plant pathogens has been studied 

extensively (Cook and Baker, 1983; Baker and Chet, 1982). T. hamatum and T. 

harzianum, isolated from composed hardwood bark were among the fungi 

most effective in inducing suppressiveness and capable of restoring 

suppressiveness to heat-treated media amended with composted hardwood 

bark (Nelson et al. , 1983). 

Mutation of wildtype T. harzianum isolates is successful in inducing 

rhizosphere competence (Ahmad and Baker, 1987). This attribute of 

rhizosphere competence has also been induced by protoplast fusion (Sivan 

and Harman, 1991). Rhizosphere competence of beneficial microorganisms 

applied to seeds results in secondary deployment of these bioprotectants 

along the root (Harman, 1990). Thus, proliferation and colonization of the 

developing roots by T. harzianum may prevent root infection by root-rot and 

wilt pathogens (Sivan and Chet, 1989; Sivan et al., 1987). Rhizosphere 
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competence also ensures that relatively high population densities of the 

biocontrol agents persist in the rhizosphere (Ahmad and Baker, 1987). 

The attribute of rhizosphere competence of T. harzianum not only 

contributes to the biological control of plant diseases, but also induces plant 

growth in terms of weight, height and yield, and significant increases in 

incidence of emergence of seedlings (Ahmad and Baker, 1988b; Chang et al. , 

1986). These studies suggest that the attribute of rhizosphere competence in a 

biocontrol agent potentially contributes to the enhancement of biocontrol 

efficiency, plant growth, and increased yield (Ahmad and Baker, 1988b). 

Harman et al. (1981) suggested applications of Trichoderma to seed as an 

alternative approach to introducing them into soil which requires smaller 

amounts of biological material than in-furrow or broadcast applications. Seed 

treatment is an attractive delivery system for either fungal or bacterial 

bioprotectants. Bioprotectants applied to seeds not only protect seeds (Sivan 

and Chet, 1986; Hadar et al., 1984) but also colonize and protect roots (Ahmad 

and Baker, 1987; Chao et al., 1986), and increase plant growth (Chet, 1987; 

Chang et al., 1986). 

Studies have been carried out on the use of Trichoderma to control 

above-ground plant diseases either through wound applications or spraying 

plants with conidia. Results of the efficacy of Trichoderma against diseases 

vary depending on the temperature, the inoculum concentration of conidia, 

and the timing of conidia application. Successful examples were 

demonstrated by Tronsmo and Dennis (1977) on the effectiveness of T. viride 

and T. polysporum against storage rot (Botrytis dnerea and Mucor mucedo) on 

strawberry, and by Tronsmo and Y staas (1980) on the effectiveness of T. 

harzianum against eyespot disease (B. dnerea) on apple. Furthermore, 

products containing two psychrophilic species aggregates, T. viride and T. 
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polysporum, for the control of silver leaf disease on trees and Vertidllium wilt 

on mushrooms have been registered for commercial use in France and the 

United Kingdom. 

Since Trichoderma, when applied with a foodbase or as a seed coating, 

can survive for long periods of time and even propagate in soil (Harman et al. , 

1980), its combination with chemical, cultural or physical methods (Chet et al., 

1982; Katan et  al. , 1976) can achieve a long-term controlling effect on soilborne 

plant pathogenic fungi. 

Mechanisms of Biological Control 

Possible mechanisms involved in Trichoderma antagonism are: (a) 

antibiosis, whereby the fungi produce volatile or non-volatile antibiotics 

(Dennis and Webster" 1971a,b); (b) competition, when space or nutrients (i.e. 

carbon, nitrogen, microelements) are limiting factors (Weller, 1988; Schippers 

et  al. , 1987); and (c) mycoparasitism, whereby Trichoderma attack another 

fungus by excreting lytic enzymes (such as proteases, glucanases and 

chitinases) that enable them to degrade the latter's cell walls and utilize its 

nutrients (Geremia et al., 1993; Chet, 1990; Ridout et al., 1988). Parasitism by 

Trichoderma spp. is destructive, causing the death of the host fungus (Barnett 

and Binder, 1973). Via these mechanism, Trichoderma antagonise other fungi, 

thereby serving as a potential biological control agent of plant diseases (Chet, 

1987, 1990; Baker, 1987). 

Many fungi produce fungistatic or fungicidal metabolites (antibiotics) 

which diffuse from hyphae and slow or stop the growth of competitors from 

some distance away. Inhibition by antibiosis is often species-specific and a 

response only occurs when appropriate species meet. Antibiosis phenomena 


