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With the advancement of aviation industry, the use of energy has increased 
and its environmental consequences have become more significant. The 
energy efficiency of the aircraft has been the major interest to restrain the 
energy consumption increment. Since the energy prices are rising worldwide, 
the idea of increasing energy efficiency is a continuous challenge for the 
industry. This is the reason why waste heat recovery (WHR) process is chosen 
to improve the energy efficiency of aircraft engine. By reusing this waste heat 
from the engine, the fuel consumption was reduced. Due to its unique features, 
Organic Rankine Cycle (ORC) is a powerful potential for this purpose. This 
thesis focused on the analysis of the Organic Rankine Cycle (ORC) from 
thermodynamics and sustainability aspects. The performance analysis was 
divided into two conditions of fluid which were subcritical and supercritical by 
including preheater or superheater. The new ORC system was then integrated 
to an aircraft turbofan engine. For a set of values of the initial parameters, the 
thermodynamic cycle of the system was solved in the MATLAB software to 
attain the net power output, thermal efficiency and the mass flow rate of 
working fluid. The integration of ORC to a turbofan engine was performed and 
the Thrust-Specific Fuel Consumption (TSFC) along with the fuel burn were 
evaluated. From the results, it was noted that a better fuel consumption could 
be accomplished by applying the ORC system to the turbofan engine with the 
aid of superheater at both subcritical and supercritical conditions which were 
noted as Case B and Case D. Taking into account the extra weight that can be 
added to the engine, the fuel burn reduction were 7.68% for Case B and 
10.74% for Case D. The exergetic sustainability index has emerged to be a 
crucial method in determining the sustainability of a system. From this study, 
the two best cases, Case B and Case D demonstrated exceptional 
exergetic sustainability index at 0.474 and 0.470 respectively. The greater the 
value of sustainability index, the better it is for the practical applications. Both of 
the cases B and D showed a percentage improvement of 2.16% and 1.29% 
respectively compared to the turbofan engine without ORC system. By 
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analyzing the thermodynamic performance and sustainability index of the 
system, this research indicated that ORC as waste heat recovery system is 
compatible and beneficial to the turbofan engine, as it improves the engine’s 
fuel consumption and overall performance. 
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Seiring dengan kepesatan industri penerbangan, penggunaan tenaga 
meningkat dan juga kesannya kepada alam sekitar lebih ketara. Kecekapan 
tenaga pesawat menjadi keutamaan dalam mengekang kenaikan penggunaan 
tenaga. Memandangkan berlakunya peningkatan harga tenaga di seluruh 
dunia, cadangan untuk meningkatkan kecekapan tenaga adalah cabaran 
berterusan bagi industry penerbangan. Oleh itu, pemulihan haba sisa (WHR) 
adalah penting bagi meningkatkan kecekapan tenaga enjin pesawat. Dengan 
menggunakan semula sumber haba dari enjin ini, penggunaan bahan api dapat 
dikurangkan. Disebabkan oleh ciri-ciri uniknya, Kitaran Rankine Organik (ORC) 
berpotensi tinggi untuk tujuan ini. Tesis ini bertujuan untuk menganalisis 
Kitaran Rankine Organik (ORC) dari aspek termodinamik dan kemampanan. 
Subkritikal dan superkritikal adalah dua keadaan yang dikaji dengan cara 
memasukkan prapemanas atau pemanas lanjut. Sistem Kitaran Rankine 
Organik yang baru diintegrasikan kepada enjin turbofan pesawat. Bagi satu set 
nilai untuk parameter awal, kitaran sistem termodinamik diselesaikan 
menggunakan perisian MATLAB untuk mencapai hasil kuasa bersih, 
kecekapan haba dan kadar jisim bendalir bekerja. Integrasi antara enjin 
turbofan dan sistem ORC telah dilaksanakan dan Penggunaan Bahan Api 
Khusus Tujahan (TSFC) bersama-sama dengan bahan api terbakar telah 
dinilai. Kesimpulannya, penggunaan bahan api yang lebih baik boleh dicapai 
dengan menggunakan sistem ORC bersama enjin turbofan dengan bantuan 
pemanas lanjut dalam kedua-dua keadaan iaitu subkritikal dan superkritikal 
yang diklasifikasikan sebagai Kes B dan Kes D. Mengambilkira berat tambahan 
yang ditambah kepada enjin, pengurangan pembakaran bahan api adalah 
sebanyak 7.68% untuk subkritikal, Kes B dan 10.74% untuk superkritikal, Kes 
D. Indeks kemampanan eksergi telah muncul sebagai kaedah penting untuk 
menentukan kemampanan sistem. Daripada kajian ini, kedua-dua kes terbaik 
iaitu Kes B dan Kes D menunjukkan indeks kemampanan bertenaga yang luar 
biasa masing-masing pada 0.474 dan 0.470. Jika nilai indeks kemampanan 
semakin tinggi, maka aplikasi praktikal akan menjadi lebih baik. Kedua-dua 
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Kes B dan D menunjukkan peningkatan peratusan sebanyak 2.16% dan 1.29% 
berbanding enjin turbofan tanpa sistem ORC. Dengan menganalisa prestasi 
termodinamik dan indeks kemampanan sistem, kajian ini membuktikan bahawa 
ORC sebagai sistem pemulihan haba sisa adalah bersesuaian dan bermanfaat 
kepada enjin turbofan, kerana ia memperbaiki penggunaan minyak enjin dan 
keseluruhan prestasi enjin.  
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CHAPTER 1 
 

INTRODUCTION 
 

Overview 
 

Nowadays, the engineering industries are demanding to decrease the 
emissions of greenhouse gas and enhance the efficiency of the sites. This is 
due to the increasing in fuel prices along with the rising concern on the global 
warming. Therefore, the waste heat recovery is identified as one of the 
approaches to solve the matter of energy savings. Here, the proposed waste 
heat recovery method is the Organic Rankine Cycle (ORC). As an overview, 
the waste heat recovery concept and its advantages will be first introduced, 
including some examples which are currently being developed by research 
across the globe. Then, to ensure the sustainability of the proposed waste heat 
recovery method, the system will be evaluated through an exergy analysis, 
which will be briefly at the end of the chapter. 
 

1.1  Research Background  
 

1.1.1 Energy and Environment 
 

In general, one third of energy consumption is charged to the industrial sector, 
including more than fifty percent eventually wasted as heat [1]. The waste heat 
is hard to be detected and evaluated in the areas of quality and quantity, as it is 
not clearly noticeable as material waste. Due to the responsibility for the global 
energy interests and in opposition to the rising consumption and decreasing 
energy-rich fossil-based fuels, the future aims to contribute to energy price 
increment. 
 

In conjunction with the interest in this energy saving issue, the Waste Heat 
Recovery method has been introduced. Fundamentally, the concept of energy 
recovery is that the energy is never consumed, but it is being transformed into 
another form where it is exploiting as an energy supply. 
 

Waste heat is described as the unused heat generated during the phase of 
chemical reaction or combustion process that is drained into the atmosphere 
instantaneously. There are a lot of benefits of a conversion of exhaust heat into 
useful power such as enhancing fuel consumptions, improving engine power 
density, further decreasing carbon dioxide (CO2) and other harmful exhaust 
emissions subsequently. 
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Waste heat can be dismissed at unspecific temperature. Typically, the quality 
of waste heat recovery increases when the temperature increases. Therefore, it 
is crucial to classify the greatest quantity of recoverable waste heat from a 
process and to obtain the greatest efficiency of the system of waste heat 
recovery. 
 

The advantages of the waste heat recovery are as follows: 
 

I. Decreases energy costs 

This is because the purchased energy instantly restored by waste heat that 
have been recovered. 
 

II. Decreases capital equipment costs and operating costs 

The heat recovery cost can be saved because it requires smaller energy 
conversion equipment capacity. 
 

III. Decreases environmental impact 

Since the waste heat recovery instantaneously restores purchased energy, the 
environmental impact on water and air can be decreased. 
 

IV. Decreases Green House Gas (GHG) emissions 

This process helps to decrease the emission of GHG related to industrial 
operation. 
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Table 1.1 below shows the type of waste heat recovery along with the 
temperature and examples: 
 

Table 1.1: The types of waste heat recovery 
 

Types of waste heat 
recovery 

Temperature (℃) Examples 

Low grade < 100 Bricks and ceramics 
industries glass, iron and 
steel, nonferrous metals. 

Medium grade 100 – 400 Food and drink and other 
process industries, building 
utilities and chemicals 

High grade > 400 Hot water system and 
ventilation 

 

Most of the heat is recovered from and passed to material in a gas or liquid 
phase due to its difficulty to recover heat from solid materials. Hence, the 
temperature and material phase play important roles when selecting the heat 
exchanger. 
 

With the advancement of aviation industry, the energy use and environmental 
consequences have increased. The energy efficiency of the aircraft has been 
the major interest to restrain the energy consumption increment. Aircraft 
designers and engineers have taken steps to increase fuel efficiency by 
modifying aircraft structures and fuel types. The reduction in fuel usage gives 
advantages to the economy and also helps to improve the environment. 
 

Since the energy prices are rising worldwide, the concept of rising energy 
efficiency is a continuous challenge for industry. By 2030, in conjunction with 
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the National Transformation 2050, the National Green Technology Master Plan 
(GTMP) intends to decrease the CO2 emissions to 192.3 million tonnes 
eq/year. This is the reason why waste heat recovery (WHR) is significantly 
improves heating efficiency by reusing this heat sources, which resulting in 
lower fuel used. Due to its unique features, Organic Rankine Cycle (ORC) is a 
powerful potential for this purpose. 
 

1.1.2 Organic Rankine Cycle  
  

One form of WHR, the Organic Rankine cycle, operates on the Rankine Cycle 
theory, where a working fluid is rotated through four basic parts in a closed-
loop system. This enables the waste heat to convert into mechanical or 
electrical power. While ORC has many limitations, like the fluids used in ORC 
cycle are flammable, and in the case of leakage, an environmental issue could 
occur, and despite that ORCs are more costly, compared to the steam cycle, 
the use of organic fluids over water adds a number of benefits to the system. 
Based on their thermophysical characteristics, such as low boiling temperature, 
low critical point, and high molecular mass, the probability of turning low 
temperature heat into usable electrical energy is high and can be effective. 
Below shows the advantages of the ORC system: 
 

• Conducive to apply in lower temperature 

• Does not require operators due to its compatibility and automated 

• The flexibility of the design with the alternative to 
exploit the most productive working fluid available 

• The correlated costs are low 

• The simplicity and reliability of system maintenance 

• Less heat is needed during the evaporation process 

• The evaporation process takes place at lower pressure and 
temperature 
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There are four basic components of Rankine Cycle which are working fluid 
pump, a condenser, an evaporator, and a turbine as illustrated in Figure 1.1. 
 

 

 

 

    

 

 

 
Figure 1.1: The schematic diagram of ORC 

 

Figure 1.1 shows the process of Organic Rankine Cycle. The cycle begins from 
the condenser where the liquid organic working fluid is pumped into the 
evaporator and then it is transformed into saturated or superheated vapor. 
Then, the organic vapor expands in the turbine to generate power. Afterwards, 
the generator converted the power into electricity. Then, in condenser, the 
exhaust gas from the turbine is condensed to liquid through cooling water to 
start the process again. 
 

In subcritical ORC, the saturated working fluid is stimulated to the heat 
exchanger. Here, it is heated, vaporized, even superheated by a heat source. 
Then, the vapor at saturated or superheated state is passed into the turbine 
linked with an electrical generator, where the electricity is produced. At the 
turbine exit, the working fluid is cooled down and condensed by a heated sink 
in the condenser before entering the pump to complete and start again the 
cycle. 
 

In supercritical ORC, the vapor is expanded in the turbine at saturated or 
slightly superheated condition. In spite of that, the study of supercritical fluid 
parameters is crucial. Higher efficiencies have been demonstrated to be more 
attractive for waste heat applications [2]. 
 

At the exit of the condenser, the working fluid is directly pumped from saturated 
liquid to the supercritical pressure. Then, the heating process is performed in 
the higher temperature heat exchanger by heat absorption of working fluid 

Turbine 

Condenser 

Cooling water 

Evaporator 

Generator 

Pump 
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from the heat source. In contrast to subcritical ORC, the healing process does 
not pass- through two-phase region. This results in a better thermal match in 
the heat exchanger with lower irreversibility. 
 

In jet engine application, the ORC system is applied in between the low-
pressure turbine and exhaust nozzle. The hot fluid from the exhaust nozzle will 
act as the heat source for this model and will exchange heat with the working 
fluid of the ORC which act as the cold fluid. The proposed idea of the 
implementation is using a small-scale ORC model for about 408 kg [3]. Here, 
the ORC is said to be the most promising solution due to its possibility to 
recover the engine’s exhaust heat and reuse it to produce useful power. 
 

1.1.3 Sustainability Analysis 
 

As mentioned in the beginning of this chapter, due to the concern of 
sustainability of this waste heat recovery system, the ORC with the system 
integrated will be evaluated through an analysis based on their exergy 
performance. 
 

Exergy analysis is a feasible approach to measure the worthiness of energy 
conversion or distribution process and system. The energy conversion system 
performance cannot be assessed precisely and efficiently with only an energy 
analysis. Hence, this exergy analysis will lead to enhance the energy analysis. 
 

Exergy analysis identifies accurately the margin available to design more 
efficient energy systems by reducing inefficiencies. Many engineers and 
scientists suggest that the thermodynamic performance is best evaluated using 
exergy analysis because it provides more insights and is more useful in 
efficiency improvement efforts than energy analysis. 
 

1.2 Problem Statement 
 

The growth of the world’s population has led to the increasing consumption of 
primary fossil fuels and extensive dismiss of pollutants which eventually the 
extending energy demands. Therefore, the energy shortfall and environmental 
destruction are the primary concerns that the world must face. It gives impact 
to the industries which waste a huge amount of energy. Recently, for these 
justifications, the consciousness of reusing the low and medium temperature 
heat sources has captivated many studies around the world. 
 

With the advancement of aviation industry, the energy use and environmental 
consequences have increased. The energy efficiency of the aircraft has been 
the major interest to restrain the energy consumption increment. Aircraft 
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designers and engineers have taken steps to increase fuel efficiency by 
modifying aircraft structures and fuel types. The reduction in fuel usage gives 
advantages to the economy and also helps to improve the environment. The 
Organic Rankine Cycle (ORC) is a powerful candidate to recover the waste 
heat from the turbofan engine core jet exhaust and uses it to produce electrical 
power due to its benefits. 
 

However, according to some researchers, in order to allow more waste heat to 
be extracted, the performance of ORC has to be further improved. Therefore, 
to increase the output power produced by the ORC, research has to be done. 
For an aircraft engine, the main objective is not only to generate power, but 
also to reduce a considerable amount of fuel consumption. 
 

One of the approaches to enhance this power and ultimately the engine’s fuel 
consumption is to include extra heat exchanger device and to find this heat 
exchanger’s best design configuration capability in the ORC system. Some of 
the studies done by previous researchers did not measure the additional fuel 
consumption due to the additional weight of the waste heat recovery units. 
There were also studies that perform work only with the additional preheater. 
Hence, the net power output is insufficient. 
 

Another concern that may require to be discussed is that organic fluid mass 
flow rate used is normally higher than the mass flow rate of water or steam 
Rankine cycle. This will trigger the ORC to have a larger feed pump. This is 
why the analysis of supercritical fluid parameters is crucial. It is proven to 
perform higher efficiencies which are more attractive for waste heat application. 
In supercritical condition, the ORC thermal efficiency could be improved by 10-
30% due to the increasing specific work output, since the heat is added to the 
working fluid at supercritical pressure [4- 6]. As a result, the loss in exergy will 
eventually become lower. However, the challenge lies in the unpredictable 
process of heat transfer in the evaporator since the properties of the fluid are 
variable to the temperature. Many researchers have done comprehensive work 
to boost the ORC’s performance. Even so, the ORC design areas of additional 
heat exchangers and the use of organic fluids in supercritical condition have 
not yet been investigated and this part is the crucial elements of a waste heat 
recovery system to enhance the power output. 
 

Lastly, based on previous studies, the main problem that causes loss of exergy 
in aircraft engine is found within the combustion chamber and exhaust nozzle 
and these parts have the highest improvement potential rate among all the core 
engine’s components. However, the area related to the improvement of the 
exhaust nozzle component and the evaluation of aircraft engine’s sustainability 
based on exergy are still very lacking. 
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1.3 Hypothesis 
 

The addition of the heat exchangers is expected to increase the power output 
thus aiding the turbofan engine to further recover waste heat and produce 
greater power than a simple ORC system. Due to increase in power output, the 
mass flow rate of ORC is affected. Working fluid in supercritical condition 
needs lower mass flow rate compared to in a subcritical condition. Thus, it is 
expected that less feed pump is needed when using supercritical fluid. 
 

1.4 Research Objectives 
 

• To analyze power output and efficiency of ORC by using preheater and 
superheater with subcritical and supercritical fluid. 
 

• To investigate the effect of integrating ORC to a turbofan engine fuel 
consumption by calculating the Thrust-Specific Fuel Consumption. 
 

• To evaluate the sustainability of waste heat recovery system using 
ORC by sustainability index analysis. 

 

1.5 Research Questions 
 

• What is the best technique of design configuration of heat exchanger in 
the ORC  
 

• What is the effect of integrating ORC to the turbofan engine 
performance? 
 

• How does this novel condition of ORC help the turbofan engine to 
generate more power and be sustainable for environment? 

 

1.6 Scope of the Study 
 

The crucial issues that the world must deal with are the energy shortage and 
the environmental deterioration. One of the factors comes from the transport 
sectors. The main focus in this study is on the airspace applications, 
specifically the civil aviation industry. The selected case study is the CFM56-
7B27 turbofan engine which focused on the exhaust nozzle. 
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The study begins with the development of the Organic Rankine Cycle 
mathematical model and the data will be written in MATLAB programming. The 
thermodynamic analysis is done based on two main approaches, the energy 
analysis and the sustainability analysis. The performance analysis is divided 
into subcritical and supercritical conditions with the additional preheater and 
superheater. 
 

The analysis tried to explore the heat transfer throughout the evaporator for the 
purpose of determining the ORC output power, and thermal efficiency, as well 
as the mass flow rate of the working fluid. Here, the effect of additional 
preheater or superheater to the ORC system is identified. 
 

Finally, the ORC system will be integrated to turbofan engine performance by 
evaluating the Thrust-Specific Fuel Consumption (TSFC) as well as fuel burn. 
The sustainability analysis will be performed to ensure the waste heat recovery 
system using ORC gives better power output that can contribute to the 
environment and boost expansion of Malaysia’s green technology sector. 
 

1.7 Thesis Structure 
 

Chapter 1 consists of the research background on the energy and environment, 
with the introduction of Waste Heat Recovery (WHR) along with its concept. 
Then, the ORC has been proposed as the WHR method that will be applied in 
this study. It includes the working principle. Besides that, there is also the 
introduction of the sustainability analysis. At the end of this chapter, the 
problem statements, research objectives, research questions, scope of the 
study and thesis structure are presented. 
 

Chapter 2 represents the literature review from the previous researched which 
are related to ORC and sustainability analysis. The literature review includes 
the needs of WHR, the types of WHR, the applications of ORC from various 
fields, the optimization of ORC, and the sustainability analysis from previous 
studies. The summary of the literature review shows the parameters that will be 
used as the guidelines for this research. 
 

Chapter 3 explains further the methods of doing this research. Firstly, it started 
with the flow chart of the research, followed by the introduction of the types of 
heat exchanger that will be used and also the types of ORC system along with 
the type of turbofan engine. Moreover, the calculating procedure of ORC is also 
presented in this chapter, together with the equations and parameters for 
energy analysis. For the sustainability analysis, the equations and parameters 
are also presented at the end of the chapters. 
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Chapter 4 shows the results of numerical solution for ORC system which have 
been validated with the previous studies. There are 4 cases studied in this 
research, with 2 conditions, which are subcritical and supercritical conditions. 
After the model is validated and verified, the results represented the variations 
of exhaust heat temperature against net power output, system thermal 
efficiency and mass flow rates of working fluids for 4 cases. 
 

Chapter 5 shows the results of the sustainability analysis for the ORC system 
after integrated to turbofan engine. The results include the exergy efficiency, 
exergy destruction, improvement potential, recoverable exergy, environmental 
effect factor and exergetic sustainability. 
 

Chapter 6 shows the conclusion and the recommendation for future work. 
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