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Electric power is an expensive and scarce resource and the concept of modern 
life is not possible without the continuous uninterrupted supply of it. Therefore, 
a lot of efforts have been made in past to conserve and optimize the use of 
electric power so that it could be efficiently distributed to all consumers. The 
efforts to conserve the energy include government and other organizations' 
sponsored awareness campaign for public to encourage them to use the best 
practices while the efforts for optimizing its use are led by the researchers and 
industries. The electrical appliances and equipment are developed in a way that 
optimize the use of energy. In this direction, one of the important inventions 
was the use of standby mode for the electrical appliances which is employed 
when the appliance is plugged-in but not in active use. The standby mode helps 
optimize electric power use yet it causes some power leakage. This study strives 
to forecast the appliances' state (standby or running) in next minutes to prevent 
the power leakage during the standby mode: by accurately forecasting the 
standby burst the appliance could be put in off state during the forecasted burst 
duration. This work proposes a technique to model power consumption data 
and presents a comparative study of five different machine learning algorithms 
to study their suitability to forecast an appliance's state and standby burst. The 
proposed approach achieved around 90 percent accuracy and very good 
indications over precision, recall and F1-Score for models built using Decision 
Tree, Logistic Regression, Support Vector Machine (SVM), K- Nearest Neighbor 
(KNN), and Multilayer Perceptron (MLP). 
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Tenaga elektrik adalah sumber yang mahal dan langka dan konsep kehidupan 
moden tidak mungkin berlaku tanpa bekalan berterusan tanpa gangguan. Oleh 
itu, banyak usaha telah dilakukan di masa lalu untuk menjimatkan dan 
mengoptimumkan penggunaan tenaga elektrik sehingga dapat diedarkan 
secara efisien kepada semua pengguna. Usaha untuk menjimatkan tenaga 
termasuk kempen kesedaran yang ditaja oleh kerajaan dan organisasi lain untuk 
orang ramai untuk mendorong mereka menggunakan amalan terbaik 
sementara usaha untuk mengoptimumkan penggunaannya dipimpin oleh para 
penyelidik dan industri. Peralatan dan peralatan elektrik dikembangkan 
dengan cara yang mengoptimumkan penggunaan tenaga. Ke arah ini, salah satu 
penemuan penting adalah penggunaan mod siaga untuk peralatan elektrik 
yang digunakan semasa alat dipasang tetapi tidak digunakan secara aktif. Mod 
siap sedia membantu mengoptimumkan penggunaan kuasa elektrik namun ia 
menyebabkan kebocoran kuasa. Dalam kajian ini, kami berusaha untuk 
meramalkan keadaan perkakas (siaga atau berjalan) dalam beberapa minit 
berikutnya untuk mengelakkan kebocoran daya semasa mod siap sedia: dengan 
meramalkan secara tepat letusan siap sedia, kita dapat meletakkan alat dalam 
keadaan mati selama jangka waktu letupan yang diramalkan. Karya ini 
mencadangkan teknik untuk memodelkan data penggunaan tenaga dan 
menyajikan kajian perbandingan lima algoritma pembelajaran mesin yang 
berbeza untuk mengkaji kesesuaian mereka untuk meramalkan keadaan dan 
letupan siap sedia alat. Pendekatan yang dicadangkan kami mencapai sekitar 
90 peratus ketepatan dan petunjuk yang sangat baik mengenai ketepatan, 
penarikan balik dan Skor F1 untuk model yang dibina menggunakan 
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Keputusan Pohon, Regresi Logistik, Mesin Vektor Sokongan (SVM), K Nearest 
Neighbor (KNN), dan  Multilayer Perceptron (MLP). 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Energy is one of the most scarce and expensive resource. The cheapest and 
cleanest energy is that which is not used. Using energy efficiently, conserving 
energy and materials will reduce energy usage, greenhouse gas emissions and 
is the focus of Energy Management (Susanne & Hiroshi, 2007). 

Recent environmental problems as a global issue has attracted great attention 
for energy saving. As a result efforts are being made for energy saving and 
governments are devising policies that encourage the distribution of energy 
saving systems, including individual households who voluntarily install energy 
saving systems to reduce electric power consumption (Jinsung et al., 2013). For 
the last few decades, various alternatives to conventional sources of energy like 
solar, wind, hydrokinetic and biomass energy have been explored. However, 
attention must also be given to the best utilization of energy, improvement in 
energy efficiency and optimum management of energy resources. In-fact, 
energy management deals with already existing sources and actual 
consumption. It includes planning and operation of energy related production 
and consumption units (M. Reyasudin et al., 2016). Energy management is the 
best solution for direct and immediate reduction of energy consumption. 

An energy saving system refers to a system that saves energy consumed by 
cutting off wasted electric power such as standby power (Jinsoo et al., 2009). 
Factors that are involved in the wastage of energy include consumer 
carelessness, line and supply losses, distribution and standby mode loss. 

1.2 Problem Statement 

Many works have been carried out to forecast the power consumption in various 
settings, such as household, commercial building, city, etc., as well. However, to 
the best of our knowledge, no work has been carried out to forecast the standby 
mode switching time and burst at an appliance level with a fine temporal 
granularity such as minute. In this work, the problem to predict the state of an 
appliance and determine the suitability of various machine learning algorithms, 
namely Decision Tree, Logistic Regression, KNN classifier, MLP, and SVM, for 
predicting the state of an appliance at a given instance of time is addressed. 
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1.3 Objectives of the Study 

This work aims to achieve the following objectives. 
 

1. To propose an appliance state (standby or running) forecast model, and  
2. Study the suitability of Decision Tree, Logistic Regression, KNN 

classifier, MLP, and SVM to predict the burst.  
 
 
1.4 Hypothesis of the Research 

Using machine learning algorithms (e.g. Decision Tree, Logistic Regression, 
KNN classifier, MLP, SVM, etc.), the standby mode switching time and the burst 
(interval an appliance would remain in this mode) could be forecasted and 
hence used in power conservation. 

1.5 Scope of the Study 

This research work is limited to study existing machine learning algorithms to 
effectively forecast the standby switching time and burst. The study uses 
published online datasets (https://www.refitsmarthomes.org/datasets/) of 
household power consumption, as detailed in Chapter 3, and does not use on 
purpose collected data. In this work, only cooling devices (fridge, refrigerator, 
freezer, fridge-freezer, etc.) are used as these are the ones which are 
continuously plugged in and need to be automatically switched on-off, rather 
than going to standby mode, after a certain period of time. This fact makes these 
devices an interesting case of study for stand-by burst forecast, unlike other 
electric/electronic devices such as computer, kettle, microwave, etc. which are 
switched on/off or put on stand-by mode as per the need of the user. 

1.6 Research Contribution 

This work comprises of all the steps as mentioned above, in Section 1.4. 
However, it’s main contributions are: 
 

i. Data preparation to remove the consistencies in the data sets such as, 
irregular peaks, null values, and missing data. The appliance profiling 
was also performed to categorize the power consumption is running 
and standby mode. 
 

ii. The primary contribution of this work resides at the data modelling 
stage. It proposes to model the available time series data in a tabular 

https://www.refitsmarthomes.org/datasets/
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form as past events representing the independent variables while the 
current event is the dependent variable. The problem is modeled as a 
classification problem and it is shown that such modeling technique 
gives very accurate results with accuracy of machine learning 
algorithms reaching close to 100 percent. 

 
iii. This work uses the most suitable machine learning algorithms (Decision 

Tree, Logistic Regression, KNN classifier, MLP, and SVM) to build the 
forecast models and evaluated them using the most appropriate 
evaluation metrics (accuracy, precision, recall, F1 score). Findings of the 
chosen algorithms are documented that produce very promising 
results. 

 
 
1.7 Thesis Layouts 

Chapter 1 discusses the background and motivation for this study. This chapter 
also provides the hypothesis and formally state study problem. The objectives, 
scope and contributions of the study are also outlined here. 

Chapter 2 analyzes the related work and discusses the state-of-the-art standby 
power consumption management. 

Chapter 3 details the methodology and procedures of the study including the 
data sets and the analysis performed. Rationale to choose the selected machine 
learning methods is also detailed in the same chapter. 

In Chapter 4, results obtained from the analysis are presented and it is discussed 
that how useful could they be in standby power management. 

Chapter 5 summarizes the work and puts whole of this study into a nutshell. It 
also discusses the important future directions that can lead from this work. 
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