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Basal stem rot (BSR), caused by a white-rot fungus Ganoderma boninense is a 
destructive disease that causes tremendous losses in the oil palm industry. The 
primary route of the disease infection is through root that has contact with 
Ganoderma boninense inoculum in the soil. The use of planting materials 
(seedlings) that are resistant to Ganoderma boninense could prevent the spread 
of BSR disease in the plantation. A manual census is used commonly by 
nurseries to monitor the progress of the disease development associated with 
various treatments. This common nursery practice is usually conducted every 
two to four weeks. An irregular monitoring leads to delays in detecting the 
disease occurrence. This study, therefore, is focused on the use of a sensor 
network to obtain soil data to diagnose the Ganoderma boninense infection 
using the internet of things (IoT) platform. This approach could lead to a possible 
early infection detection methodology since rapid monitoring can avoid missing 
data.  The objectives of the research include studying the potential use of soil 
properties as the indicators for BSR disease, analyzing temporal changes of 
infected seedlings, and developing the Ganoderma boninense disease detection 
model using soil properties. A total of 40 oil palm seedlings aged five months old 
were used in the study. They consisted of 20 healthy and 20 infected seedlings.  
The infected seedlings were prepared by artificially inoculating the tree roots with 
the Ganoderma boninense rubber woodblock. The seedlings were placed in the 
greenhouse with controlled environmental temperature and humidity. Three soil 
sensors were buried at 8 cm depth in each seedling's growth medium to measure 
the amount of soil moisture content (MC) in volumetric water content (in %), soil 
electrical conductivity (EC) (in µS/cm), and soil temperature (T) (in °C). The soil 
parameters data was collected every hour daily for 24 weeks (six months). 
These data were stored in the cloud (ThingSpeak) and available for real-time 
monitoring and data extraction for further analysis. The results of soil analysis 
revealed that more than 80% of monitored weeks in all parameters yielded 
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significant differences (P-value < 0.05) between healthy and infected seedlings 
when tested using a t-test at 5% significance level. Detail analysis was later 
conducted to check on how soon these changes can be observed by analyzing 
its temporal data based on a daily, weekly, and monthly basis. The temporal 
data collected showed the same fluctuation pattern of healthy and infected 
seedlings, however, among all the parameters, only EC responded to the 
fertilizer application activities in both categories. In general, based on the daily 
and weekly monitoring basis, the values of MC, EC, and T for healthy seedlings 
are higher than infected seedlings in the whole 24 weeks and the first 15 weeks, 
respectively. For the monthly monitoring basis, the values of MC and EC gave 
the same trend, while the values of T for infected seedlings were higher than 
healthy seedlings in the last two months of the six months monitoring period. 
Detection models were developed using seven classifiers of machine learning 
algorithms. The optimization process was conducted by analyzing the possibility 
of reducing the number of soil parameters and reducing the number of temporal 
data. In general, the results showed that the use of all soil parameters performed 
better in all weeks compared to the reduced soil parameters and PC data. The 
results also showed that the model with 6 hours of input data collected every 
three days at 2 – 7 am gave the most accurate results with an average accuracy 
of 98.3%. The Fine k-Nearest Neighbors (Fine kNN) algorithm was identified as 
the best classifier to differentiate between healthy and infected seedlings. 
Among 414 models developed using reduced data, 269 (65%) of the models 
with the highest accuracy obtained using Fine kNN. It can be concluded that the 
major contribution of the study is on the development of the machine learning 
model suitable for detection of Ganoderma boninense infection in an oil palm 
seedling as early as 12th weeks after infection using the rapid soil sensing data 
through the IoT platform. The proposed method, hopefully, can help in better 
management of the disease and thus, increase the oil palm yield. 
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Reput pangkal batang (RPB) yang disebabkan oleh kulat reput putih 
Ganoderma boninense adalah penyakit yang merosakkan yang menyebabkan 
kerugian besar dalam industri kelapa sawit. Laluan utama jangkitan penyakit ini 
adalah melalui akar yang mempunyai sentuhan dengan inokulum Ganoderma 
boninense di dalam tanah. Penggunaan bahan tanaman (anak pokok) yang 
rintang terhadap Ganoderma boninense mampu mengekang penularan RPB di 
dalam ladang. Bancian secara manual biasanya dipraktikkan di tapak semaian  
untuk memantau perkembangan pembentukan penyakit yang terkait dengan 
pelbagai rawatan. Amalan bancian di tapak semaian ini kebiasaannya dilakukan 
setiap dua ke empat minggu. Pemantauan yang tidak berkala membawa kepada 
kelewatan dalam mengesan kejadian penyakit. Oleh itu, kajian ini berfokus 
kepada penggunaan jaringan penderia bagi mendapatkan data tanah untuk 
mendiagnos jangkitan Ganoderma boninense menggunakan platform internet 
pelbagai benda (IPB). Pendekatan ini memungkinkan kaedah pengesanan awal 
jangkitan kerana pemantauan secara pantas dapat mengelakkan kehilangan 
data. Objektif-objektif  kajian termasuk untuk mengkaji potensi penggunaan sifat 
tanah sebagai petunjuk penyakit RPB, untuk menganalisis perubahan berkala 
yang berlaku pada pokok yang telah dijangkiti dan untuk membina model 
pengesanan penyakit menggunakan sifat-sifat tanah. Sebanyak 40 anak pokok 
yang berusia lima bulan digunakan dalam kajian. Ianya terdiri daripada 20 anak 
pokok sihat dan 20 anak pokok yang dijangkiti. Teknik inokulasi buatan 
digunakan bagi menyediakan sampel anak pokok yang dijangkiti. Teknik ini 
dilakukan dengan melekatkan akar anak pokok dengan blok kayu getah 
Ganoderma boninense. Anak pokok tersebut diletakkan di dalam rumah hijau 
yang dikawal suhu dan kelembapan persekitarannya. Tiga penderia tanah 
diletakkan dalam medium pertumbuhan anak pokok sawit pada kedalaman 8 cm 
untuk mengukur jumlah kandungan kelembapan (KK) tanah dalam unit isipadu 
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kandungan air (dalam %), konduktiviti elektrik (KE) tanah (dalam µS/cm), dan 
suhu (S) tanah (dalam °C). Pengambilan data tanah dilakukan setiap jam setiap 
hari selama 24 minggu (6 bulan). Data-data ini disimpan di dalam awan 
(ThingSpeak) dan sedia ada untuk pemantauan waktu sebenar dan 
pengekstrakan data bagi tujuan analisis lanjut. Keputusan analisis tanah telah 
menunjukkan bahawa lebih 80% daripada minggu pemantauan dalam semua 
parameter telah memberikan perbezaan yang signifikan (nilai-P < 0.05) antara 
anak pokok yang sihat dan yang dijangkiti apabila diuji dengan menggunakan 
ujian-t pada tahap signifikan 5%. Analisis lanjut kemudiannya dilakukan untuk 
mengesan bilakah perubahan ini boleh dilihat dengan menganalisis data berkala 
secara harian, mingguan dan bulanan. Walaupun anak pokok yang sihat dan 
yang dijangkiti memberikan pola turun-naik yang sama, namun, antara kesemua 
parameter, hanya KE yang memberikan maklumbalas terhadap aktiviti 
pembajaan dalam kedua-dua kelas. Secara umumnya, berdasarkan kepada 
pemantauan secara harian dan mingguan, nilai KT dan KE; dan S untuk anak 
pokok sihat adalah lebih tinggi berbanding anak pokok yang dijangkiti masing-
masing disepanjang 24 minggu dan 15 minggu yang pertama. Bagi pemantauan 
secara bulanan, Nilai KK dan KE memberikan pola yang sama, manakala nilai 
S bagi pokok yang dijangkiti adalah lebih tinggi pada dua bulan yang terakhir 
daripada enam bulan pemantauan. Model pengesanan telah dibangunkan 
dengan menggunakan tujuh algoritma pengelasan Pembelajaran Mesin. Proses 
pengoptimuman telah dilakukan dengan mengurangkan bilangan parameter 
dan mengurangkan bilangan data berkala. Secara umumnya, keputusan 
menunjukkan bahawa penggunaan semua parameter tanah memberikan 
keputusan yang lebih baik dalam semua minggu dibandingkan dengan 
parameter tanah yang dikurangkan dan data KP. Keputusan juga menunjukkan 
model yang dibina dengan input data 6 jam yang diambil setiap hari tiga hari 
pada pukul 2 - 7 pagi telah memberikan keputusan yang paling tepat dengan 
purata ketepatan adalah 98.3%. Model k-Jiran-jiran Terdekat halus (kJD halus) 
dikenalpasti sebagai pengelas terbaik untuk membezakan antara anak pokok 
sihat dan anak pokok sakit. Antara 414 model-model yang dibina menggunakan 
data yang dikurangkan, 269 (65%) daripada model-model tersebut diperolehi 
dengan menggunakan kJD halus. Ianya dapat disimpulkan bahawa sumbangan 
utama kajian adalah pada pembangunan model pembelajaran mesin yang 
sesuai untuk pengesanan jangkitan Ganoderma boninense pada anak pokok 
sawit seawal 12 minggu selepas jangkitan menggunakan penderian tanah yang 
pantas melalui platform IPB. Kaedah yang dicadangkan diharap dapat 
membantu dalam pengurusan penyakit yang lebih baik seterusnya mampu 
meningkatkan hasil kelapa sawit.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Research background 

Oil palm (Elaeis guineensis) is the most planted commodity crop in Malaysia that 
yielded millions of tons of crude palm oil per year. Malaysia is the second-largest 
palm oil producer and exporter in the world (after Indonesia), with approximately 
18 million tons exported per year. The United States, the European Union, 
China, India, and Pakistan are among the major importers of Malaysian palm oil 
(May, 2012).  

The oil palm production in Malaysia is threatened by Basal Stem Rot (BSR) 
disease caused by the wood-rotting fungus named Ganoderma boninense, 
which reduces oil palm production (Idris et al., 2000). According to Chong et al. 
(2017), yearly losses in Malaysia due to this disease can be up to RM 1.5 billion. 
The disease is considered to be the biggest threat to the palm oil industry in 
Malaysia (Idris et al., 2000).   

Infected oil palm trees mostly recognizable by visual inspection on the trees' 
foliar, stem, and trunk i.e., the presence of unopened spear leaves, yellowish 
fronds, fronds hanging downward, small canopy size, rot at the basal part of the 
stem, and the existence of fruiting bodies on the trunks (Gurmit, 1991; Ariffin et 
al., 2000; Kandan et al., 2010). The infection causes damage to the internal 
tissue of trees, which consequently disrupts the water and nutrient uptake to the 
trees (Rees et al., 2009). It could also affect the ability of the trees to perform 
normal photosynthesis due to water deficiencies and foliar symptoms (Haniff et 
al., 2005).  

The disease can attack oil palm trees at nurseries and plantations. Ganoderma 
boninense is a soil-borne fungus that survived in the soil before invading its host.  
The primary route of infection appears to be through root contact with inoculum 
sources in the soil (Rees et al. 2009). It was proven through studies in oil palm 
seedling. The infection of the disease in oil palm seedlings through root contact 
with Ganoderma inoculum was also confirmed by Alexander et al. (2017). High 
incidences of infection were recorded in locales where many old oil palm trees 
were felled and the stumps left to rot on the ground. Thus, creating a friendly 
environment for fungi to grow on a wounded host in the soil. Subsequently, the 
disease spreads from a plant to another either by roots or spores (Paterson, 
2007). When the fungi invaded the roots (Rees et al, 2009), it damaged the 
structure of the roots (Alexander et al., 2017) and as a result disturbed the 
operational function of water and nutrient uptake by roots (Fitter, 1991).  
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Generally, the survival of a soil-borne fungal is significantly related to soil 
moisture content (Eastburn and Butler, 1991; Garret, 1938; Gill et al., 2001; 
Chang, 2003), nutrient content (Yadav et al., 2011; Rashid et al., 2016) and 
temperature (Nawawi and Ho, 1990; Saremi and Burgess, 2000; Rees et al., 
2007), either directly or indirectly (Liddell, 1992). The high moisture content of 
coastal soils invigorates Ganoderma boninense to grow (Gurmit, 1991). The 
BSR disease favors soils with poor drainage and high water retention capacity. 
However, this report contradicted the report by Chang (2003) that suggested 
flooding the infected area as a way to control the spread of the disease. This is 
based on the notion that the high soil moisture content makes it harder for 
Ganoderma boninense to survive. This condition was tested based on laboratory 
conditions. Therefore, we can conclude that perhaps there exists a certain range 
of soil moisture content that favors the occurrence of Ganoderma boninense 
disease, but not due to a high or low value of soil moisture content. Under 
laboratory conditions, Nawawi and Ho (1990) reported that Ganoderma 
boninense were found to grow at an optimum soil temperature between 27-30°C. 
Gurmit (1991) reported that high salinity appeared to suppress the disease's 
spread. Soil electrical is a measure of the amount of salt in the soil. It is an 
important indicator of soil health.  

The proliferation of internet usages in the wide spectrum of industries and the 
innovation of the Internet of Things or IoT have also positively impacted 
agriculture practices. A wide range of applications was developed to assist the 
agricultural industry and amongst them is plant disease detection and prediction. 
Foughali et al. (2018) used the IoT platform to monitor the environmental 
temperature and humidity to predict the potential attack of the fungal infection in 
potatoes. Based on the environmental data, the risk of the disease occurrence 
was measured and predicted by a parameter called "Blight units". When the 
defined threshold of Blight units reached favorable values for the disease 
occurrence i.e., humidity > 90% for a day and average temperature at 15 – 21 
°C, the system notifies the farmers via SMS to begin treatment. A similar 
approach was adopted by Patil and Thorat (2016), Truong et al. (2017), and 
Materne and Inoue (2018) to predict the occurrence of disease due to fungal 
attacks in various types of plants. While Sarangdhar and Pawar (2017), Nandhini 
et al. (2018), Mathana and Nagarajan (2020), Pan and Wang (2021), 
Sowmyalakshmi1 et al. (2021), and Devi et al. (2021) used IoT platform and 
images to detect the disease occurrence in various types of plants. As a 
conclusion, along with the environmental conditions and/or leaves images 
monitoring, some research deployed soil sensors to measure soil moisture 
content, electrical conductivity, and temperature as additional data.   

1.2 Problem statement 

The impact of diseases in plants can be reduced through proper management 
of cultural practices, agronomic, and phytosanitary. However, it should be 
implemented with the use of planting materials (seedlings) which are resistant 
to Ganoderma boninense (Turnbull et al., 2014) to prevent the spread of BSR 
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disease in the plantation and eventually economic losses (Idris, 2009; Turnbull 
et al., 2014). A comprehensive study to determine the level of resistance or 
susceptibility of the planting materials to disease is an important aspect to be 
looked at before any development of a successful breeding program and for the 
sustainability of this crop, particularly in Southeast Asia (Breton et al., 2009). 
Breeding programs to develop planting materials resistant to Ganoderma 
boninense involves long-term studies if it only involves field trials. This is 
because the environmental conditions and other extraneous variables in the field 
are much difficult to control than the glasshouse or nursery due to the spatial 
variability in the field. These uncontrollable environmental conditions can affect 
the optimum growth of the plants (Rebitanim et al., 2020). Distinguishing plants' 
different levels of susceptibility and resistance to the disease is of utmost 
importance hence, it is crucial to conduct an artificial inoculation of the pathogen 
at the nursery level to create an early screening test (Breton et al., 2009).   

In common nursery practices, a manual census used to monitor the progress of 
the disease development associated with various treatments (Parker et al., 
2007; Chung, 2012) was done by a human. It is normally conducted every two 
to four weeks. This irregular monitoring leads to delays in detecting the disease 
occurrence. Furthermore, human inspection relied heavily on the visible 
symptoms of the disease. It is prone to error due to a lack of experience and 
subjective judgements. Laboratory-based methods provide high accuracy of 
detection, however, it is time-consuming, complicated, labour intensive, and 
costly (Naher et al., 2013). Researchers had proposed various types of remote 
sensing approaches with different levels of detection accuracies. However, none 
of them provide a regular and rapid monitoring approach which can cause delays 
in detecting the disease occurrence.  

Based on the literature, there is conclusive evidence that regular and rapid 
monitoring of disease development in a plant using an IoT platform could lead 
to early detection as possible missing of useful data could be avoided. The 
approach used in this study shows the potential use of rapid monitoring for soil-
borne disease detection due to Ganoderma boninense infection. Furthermore, 
an intensive study can be performed to understand the Ganoderma boninense 
infection in oil palm seedlings associated with soil properties. 

1.3 Objectives 

The general objective of this thesis is to study the capability of a soil sensing 
network to detect the changes of the soil properties due to the Ganoderma 
boninense infection in oil palm seedlings. The specific objectives of this thesis 
are:  
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1. To determine the relationships between soil moisture content, soil 
electrical conductivity, and soil temperature in oil palm seedlings. 

2. To identify the optimum interval of monitoring time for BSR disease 
detection by analysing temporal changes of soil moisture content, soil 
electrical conductivity, and soil temperature in relation to Ganoderma 
boninense infection. 

3. To develop a model for Ganoderma boninense infection detection using 
an optimal dataset and machine learning approach. 

 
 
1.4 Scope and limitation 

The study was conducted at a transgenic greenhouse under the management 
of the Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti 
Putra Malaysia. The seedlings were grown in a greenhouse under controlled 
environmental temperature and humidity. A suitable environmental temperature 
and humidity are important for the optimum growth of the seedlings in the 
greenhouse. It is difficult to control the environmental condition if the seedlings 
are grown in an open area in the plantation or estate. Oil palm seedlings used 
in this study are from the tenera (dura x pisifera) variety. A drip irrigation system 
was used to supply water to the seedlings. A fertilizer with NPK ratio of 15:15:15 
was used to grow the seedlings. Soil properties parameters measured in this 
study were soil moisture content measured as a percentage of volumetric water 
content (%), soil temperature (⁰C) and, salinity measured as electrical 
conductivity in units of micro Siemens per centimetre (µS/cm). The monitoring 
period was six months or 24 weeks. The eminence penetration or invasion of 
Ganoderma boninense into the roots or bowl system of the seedlings was 
verified through laboratory analysis using the PCR (Polymerase chain reaction) 
method by taking two random samples of seedlings after two months of 
inoculation. If the PCR test analysis on all inoculated seedlings shows positive 
results then those seedlings were assumed to be infected by Ganoderma 
boninense inoculum. 

1.5 Structure of the thesis  

Chapter 2 presents a literature review that covers topics like oil palm growth, 
economic value, BSR disease that affects the production of the oil palm, soil 
properties associated with the soil-borne fungi growth and control, and the 
available methods used for the disease detection. The application of the Internet 
of Things in agriculture and a review on temporal monitoring applied in oil palm 
seedling for monitoring the artificial inoculation progress was also described. 
This chapter also covers a review of the technique of the machine learning 
application employed for BSR and other various diseases in agriculture.  
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Chapter 3 presents a proposed method used for the Ganoderma boninense 
disease detection in oil palm seedlings. The chapter gives a brief overview of 
the study area and the facilities available in the greenhouse. It is followed by a 
brief explanation of the method of inoculating artificial Ganoderma boninense to 
the plants and the experimental design of the fieldwork. A standard lab-based 
method used to confirm the infection of the Ganoderma boninense is discussed. 
Then this chapter gives a detailed explanation of the system sets up – a sensing 
network used to collect data and store it in the cloud for online monitoring. It 
includes hardware and software integration to develop the system. Statistical 
analysis then used to find the relationship between each parameter and pattern 
of its temporal changes over time were also presented. Finally, it presented the 
technique of machine learning used to classify the seedlings.  

Chapter 4 presents the results and discusses the findings of the study. The result 
of the study presents the significance of soil properties to be used to detect the 
Ganoderma boninense infection. This chapter also cites the results of soil 
properties' relationship with each other concerning the Ganoderma boninense 
infection. Then, the chapter divulges details of temporal analysis of the soil 
parameters reading in monthly, weekly, daily, and hourly. Results of the multi-
temporal analysis were then used to select the more significant data as input 
data for the classification model development. The last subtopic in this chapter 
analysed and discussed the development of the classification model using 
machine learning. The models developed using different types and selection of 
data were compared to get the best model.  

Finally, the conclusions of the study were presented in Chapter 5. This chapter 
describes the main contributions of the study and some suggestions on the 
future work to be undertaken. 
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