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Ferrites are the most common materials for microwave absorbing applications 
that widely used to eliminate undesired or stray radiated electromagnetic signals 
which could interfere with a system’s operation. This project investigates using 
the recycled Ferrite (Fe2O3) jointly with biodegradable oil palm empty fruit bunch 
fiber (OPEFB) as fillers and Polytetrafluoroethylene (PTFE) as the host matrix 
for microwave shielding applications. Hematite (Fe2O3) fillers were recycled from 
the steel waste (mill scale waste) material and the particle sizes decreased to 
11.3 nm after six hours of high energy ball milling. Four different batches of 
composites were fabricated as follows: Fe2O3-PTFE (batch 1), OPEFB-PTFE 
(batch 2), OPEFB-PTFE (batch 3), and Fe2O3-OPEFB-PTFE (batch 4) 
composites. The materials composition, complex permittivity, complex 
permeability, scattering parameters, density, structural, thermal, and tensile 
properties of prepared samples were investigated. The COMSOL software 
based on finite element method (FEM) was used to calculate the scattering 
parameters and visualize the electric field distribution in the nanocomposites. 
The coefficient of thermal expansion (CTE) of PTFE sample and 25%Fe2O3 (A) 
nanocomposite was respectively 65.28×10-6/ ᵒC and 39.84×10-6/ ᵒC, therefore, 
the recycled Fe2O3 nanofiller enhanced the thermal properties of the 
nanocomposites. The density increased from 2.2 g/cm3 to 2.54 g/cm3 when the 
content of Fe2O3 increased from 5 wt.% to 25 wt.% while it decreased from 2.08 
g/cm3 to 1.5 g/cm3 when OPEFB increased 5 wt.% to 25 wt.%.  At 10 GHz, the 
complex permittivity of Fe2O3-PTFE nanocomposites increased from (2.2 – j × 
0.10) to (3.1 – j × 0.22), while, the complex permeability increased from (1.03 – 
j × 0.017) to (1.1 – j × 0.038) when the percentage of Fe2O3 increased from 5% 
to 25%. The transmission coefficients |S21| of the nanocomposites decreased 
with increasing Fe2O3 content. The |S21| values of Fe2O3-OPEFB-PTFE 
nanocomposites ranged from 0.84 to 0.62, while, the values of Fe2O3-PTFE  



© C
OPYRIG

HT U
PM

ii 
 

nanocomposites varied from 0.86 to 0.74 at 8.2 GHz. The |S11| values of Fe2O3-
OPEFB-PTFE nanocomposites ranged from 0.52 to 0.63, while, the values of 
Fe2O3-PTFE nanocomposites varied from 0.50 to 0.62 at 8.2 GHz. The 
comparison between the measured and calculated scattering parameters 
showed a very good agreement. In addition, the total shielding effectiveness 
(SE) values increased with increasing the content of Fe2O3 nanofiller. At 10 GHz, 
the range of total SE values for Fe2O3-PTFE nanocomposites was from 12.8 dB 
to 18.3 dB, while, the range of Fe2O3-OPEFB-PTFE nanocomposites was from 
15.6 dB to 19.6 dB. The prepared nanocomposites can therefore be used as 
promising alternatives for microwave shielding applications due to their shielding 
effectiveness, low density, low cost, and biodegradability. The recycled Fe2O3 
nanoparticles can be used as fillers in polymeric composites for microwave 
shielding applications due to their low cost, good thermal stability and high 
shielding effectiveness. 
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Ferit adalah bahan yang sering digunakan sebagai penyerap mikrogelombang 
yang diguna secara meluas untuk menghapuskan isyarat sinaran elektromagnet 
sesat yang boleh mengganggu operasi sistem. Kajian ini menggunakan bahan 
kitar semula Ferit (Fe2O3) digabung dengan serat tandan buah kelapa sawit 
kosong (OPEFB) sebagai pengisi dan Politetrafluoroetilena (PFTE) sebagai 
matriks perumah bagi aplikasi pemerisaian mikrogelombang.  Pengisi Hematit 
(Fe2O3) yang dikitar semula daripada bahan sisa keluli (sisa sisik besi) dan saiz 
zarah mengecil sehingga 11.3nm selepas enam jam pengisaran bola bertenaga 
tinggi. Empat kelompok komposit yang berlainan difabrik seperti berikut: 
komposit Fe2O3-PTFE (kelompok 1), OPEFB-PTFE (kelompok 2), OPEFB-
PTFE (kelompok 3), dan Fe2O3-OPEFB-PTFE (kelompok 4). Kandungan bahan, 
ketelusan kompleks, kebolehtelapan kompleks dan parameter penyebaran, 
ketumpatan, struktur, haba dan sifat tegangan sampel telah dikaji. Perisian 
COMSOL berdasarkan kepada kaedah unsur terhingga (FEM) digunakan untuk 
mengira parameter serakan dan menggambarkan taburan medan elektrik dalam 
nanokomposit. Pekali pengembangan terma (CTE) bagi sampel PTFE dan 
nanokomposit 25%Fe2O3 (A) masing-masing adalah 65.28×10-6/ ᵒC dan 
39.84×10-6/ ᵒC. Oleh itu, pengisi nano kitar semula Fe2O3 meningkatkan sifat 
terma nanokomposit. Ketumpatan meningkat daripada 2.2 g/cm3 kepada 2.54 
g/cm3 ketika kandungan Fe2O3 meningkat daripada 5 wt.% kepada 25 wt.% 
sementara ia menurun daripada 2.08 g/cm3 kepada 1.5 g/cm3 ketika OPEFB 
meningkat 5 wt.% kepada 25 wt.%.  Pada 10 GHz, ketelusan kompleks 
nanokomposit Fe2O3-PTFE meningkat daripada (2.2 – j × 0.10) kepada (3.1 – j 
× 0.22), manakala, kebolehtelapan kompleks meningkat daripada (1.03 – j × 
0.017) kepada (1.1 – j × 0.038) apabila peratus Fe2O3 meningkat daripada 5% 
kepada 25%. Pekali pemancaran nanokompsoit |S21| menurun dengan 
peningkatan kandungan Fe2O3.  Nilai |S21| nanokomposit Fe2O3-OPEFB-PTFE  
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berjulat antara 0.84 hingga 0.62, manakala, nilai nanokomposit Fe2O3-PTFE 
berbeza daripada 0.86 hingga 0.74 pada 8.2 GHz.  Nilai |S11| bagi nanokomposit 
Fe2O3-OPEFB-PTFE berjulat antara 0.52 hingga 0.63, manakala, nilai 
nanokomposit Fe2O3-PTFE berbeza daripada 0.50 hingga 0.62 pada 8.2 GHz. 
Perbandingan antara parameter serakan yang diukur dan dikira menunjukkan 
keseragaman. Tambahan lagi, jumlah nilai keberkesanan pemerisaian (SE) 
meningkat dengan peningkatan kandungan pengisi nano Fe2O3. Pada 10 GHz, 
jumlah julat nilai SE bagi nanokomposit Fe2O3-PTFE adalah dari 12.8 dB hingga 
18.3 dB, manakala, julat nanokomposit Fe2O3-OPEFB-PTFE adalah dari 15.6 
dB hingga 19.6 dB. Oleh itu, nanokomposit Fe2O3-OPEFB-PTFE boleh 
digunakan sebagai alternatif terbaik bagi aplikasi pemerisaian mikrogelombang 
disebabkan oleh keberkesanan perisainya, ketumpatannya yang rendah, kos 
rendah, dan keterbiodegradasikan. Nanozarah Fe2O3 yang dikitar semula boleh 
digunakan sebagai pengisi  dalam komposit berpolimer bagi  aplikasi 
pemerisaian mikrogelombang kerana ia mempunyai kestabilan haba yang baik, 
berkos rendah dan mempunyai keberkesanan perisai yang tinggi. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
Chapter one contains six sections. The electromagnetic interference and 
absorbing materials are discussed in sections one and two, respectively. The 
third section focuses on the mechanism of materials interaction with 
microwaves. The fourth section presents the problem statements. Finally, the 
last two sections focus on this study objective and the study scope.  
 
 
1.1  Introduction 
 
 
The electromagnetic interference (EMI) which is commonly known as an 
electromagnetic (EM) pollution has increased to greater levels due to the quick 
development in the technology and electronic products. The demand to use the 
EM energy for different miniaturized and complex devices is still increasing in 
many important fields such as industrial, commercial, aerospace, and military. 
In addition, this increment in EM pollution is able to cause severe interference 
consequences and it also can negatively affect the near living beings and electric 
devices. Therefore, the electronic systems operations must be protected using 
an optimum shielding material. The use of lossy materials (dielectric or 
magnetic) is one of the solutions to solve the EMI problems because they can 
protect the electronic devices from the undesired and stray EM radiation by 
reflection and absorption (Maruthi et al., 2021).  
 
 
In general, metals are considered the most conventional materials used to solve 
the EMI problems because they have an outstanding EMI shielding 
effectiveness (SE). Nevertheless, metals are generally expensive, rigid, heavy, 
and corrosive. The production of metal is high-priced and hard to process. In 
recent times, the conductive polymer composites are widely used as EMI 
shielding materials because of their lightweight, low cost, simple processability, 
strong resistance to corrosion, broad absorption and bandwidth properties 
comparing with conventional metal materials. In general, the polymer 
composites are simply fabricated by adding the conductive fillers into the 
conducting or insulating polymer matrix using a preferred fabrication method 
(Sankaran et al., 2018).  
 
 
The microwave absorbing materials (MAMs) basically can attenuate the energy 
of electromagnetic (EM) waves or dissipate it via interference-effect or 
converting it into thermal energy. In addition, the electromagnetism parameters 
such as complex permeability and permittivity basically play a very significant 
role in the reflection and transmission of EM waves.  The real parts of 
permeability and permittivity represent the storage capacity of the microwave 
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energy in absorbing material, while, the imaginary parts of the aforementioned 
parameters symbolize the energy loss ability. Therefore, higher values of the 
imaginary parts of permittivity and permeability are usually expected to achieve 
better microwave absorbing performance. The ferrites have recently grabbed a 
great attention for their outstanding magnetic property, low cost remarkable 
chemical, and thermal stability. Many previous studies have revealed that the 
combination of magnetic and dielectric components can successfully improve 
the microwave absorbing performance of hybrids; therefore, the ferrites are 
usually composited with polymer to enhance the microwave absorption 
performance (Yin et al., 2020).  
 
 
1.2  Absorbing Composites  
 
 
The wide consumption of communication devices such as radar systems, local 
area network systems and telecommunications presently cause an enormous 
amount of EM energy everywhere including the living space of humans. The 
emission of EM waves can cause severe problems of EMI that not only can 
destroy the sensitive electronic apparatuses, but it also can affect physical health 
in an extraordinary negative manner. Many efforts are made on the EMI 
shielding applications to solve EMI problems which means to blockage the 
unwanted EM waves so that the waves cannot pass through the EMI shield. 
Nevertheless, the shielding materials cannot to totally dissipate the EM emission 
because of the reflection principle of the incident EM waves and these waves 
can reproduce repeated EMI pollution. The pragmatic and effective functions 
can be achieved using the MAMs with high absorption and low reflection, these 
type of materials have recently grabbed the attentions. It is because MAMs 
intrinsically dissipate EM waves through destructive interference or convert the 
EM energy into thermal energy. To fulfil the applications requirements, an 
eligible absorber should be designed with several characteristic features, 
including being thin and lightweight, with wide frequency bandwidth and 
powerful absorption. The microwave absorption and EMI shielding are two 
known strategies to resist the interference of incident EM signals, but they are 
evaluated with different measurement models because of their distinct concerns 
(Wang et al., 2017). 
 
 
Since complex permittivity and permeability of the microwave absorbers usually 
play very important roles in controlling the properties of microwave absorption, 
two kinds of microwave absorbing materials are extensively investigated: the 
first one is materials with magnetic loss such as ferrite, the second one is 
dielectric loss materials like carbon-based materials. The improvements of 
microwave absorption materials with thin matching thickness and light weight 
are highly required (Li et al., 2015). 
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1.3  Interaction of Materials with Microwaves 
 
 
The microwaves represent a section of the electromagnetic spectrum which 
move at the speed of light with a wavelength range from 1 mm to 1 m, which 
corresponds to the range of frequency from 300 GHz to 300 MHz (Sun et al., 
2016). Moreover, Microwaves are electromagnetic waves which consist of a 
magnetic and electric fields orthogonal to each other (Mishra and Sharma, 
2016).  
 
 
The dielectric material can store the energy if an electric field (external) is 
applied. The polarizations can be caused by the orientation of the ions-atoms of 
the material and/or the tiny displacements of the ions-atoms. Therefore, the 
dielectric constant is an expressions of how a  certain material is usually 
polarized (Webb, 2011) 
 
 
The microwaves immediately interacted with the nuclei and atoms when they 
appeared in the merge of the universe for the first time. The microwaves can 
interact with molecules, nuclei, electrons, protons, atoms, and the clusters of 
molecules. Moreover, the microwaves can interact with all types of materials (in 
the macroscopic scale) such as dielectrics, clouds, gases, rocks, liquids, 
plasmas, metals, magnetic matter, and ionosphere.  
 
 
The microwaves get absorbed, transmitted, and reflected. Moreover, the 
microwaves can cause a rotational excitation in the atoms and they also can 
make the dipoles of electric charges frenetically jiggle. The microwaves are able 
to heat the electric dipoles when they are part of a certain dielectric material. 
Moreover, microwaves can cause a rotation in the magnetic dipoles and they 
also can make a jump in the states of magnetic energy. However, free electrons 
can absorb microwaves in metallic objects. 
 
 
In addition, microwaves can microscopically interact with materials through the 
atomic magnetic dipoles, atoms, and the conduction electrons. The microwaves 
impact on materials are macroscopically described by Maxwell equations and 
the electrodynamic characteristics of materials: σ (electrical conductivity),  
(magnetic permeability), and ε (electric permittivity) (Ulloa et al., 2019).  
 
 
1.4  Problem Statement 
 
 
Microwave materials with good absorption are in very high demand to solve the 
electromagnetic interference (EMI) problems in commercial and industrial 
electronics. Hematite is one of the most common materials usually used to solve 
EMI problems in electronic and microwave devices because of their excellent 
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electromagnetic characteristic’ at microwave frequency range. Nevertheless, 
hematite is often obtained using chemical methods that can be expensive, 
complicated, and multi-staged. Therefore, this study presents an effective 
technique to decrease the cost of hematite microwave shielding applications by 
using the recycled hematite with natural and biodegradable fiber. This technique 
includes the retrieval of hematite (Fe2O3) from the mill scale waste and the 
consequent enhancement of the loss factor and dielectric constant by 
decreasing the particles size into nano-size using high energy ball milling 
(HEBM). Polytetrafluoroethylene (Teflon or PTFE) is classified as a 
thermoplastic polymer, it is also considered as the greatest solvent and chemical 
resistant among the thermoplastics. The characteristics of Teflon such as 
chemical inertness, low moisture absorption and high operating temperature are 
very important for various microwave applications (Wu et al., 2013). 
Nevertheless, Teflon has particular drawbacks such as high coefficient of 
thermal expansion (CTE) (Murali et al., 2009) (Chen et al., 2003), low relative 
complex permittivity (ε*) (Xie et al., 2017), and its total shielding effectiveness 
tends to zero (Al-Ghamdi et al., 2021).  The recycled Fe2O3 powder have not 
been utilized as fillers in Teflon matrix for the microwave absorption applications. 
The recycled Fe2O3 can improve the thermal stability (Takeda et al., 2009), 
complex permeability and permittivity of PTFE matrix (Esa et al., 2015). 
Moreover, microwave absorbers should have high loss factor for better 
absorbing characteristics. In this study, OPEFB with 40 μm fiber size was 
embedded into Fe2O3-PTFE samples in order to enhance the absorption loss. 
OPEFB fibers are as lignocellulosic fibers where the cellulose and hemicellulose 
are reinforced in a lignin matrix similar to other natural fibers materials (Hassan 
et al., 2010). However, OPEFB is classified a waste of lignocellulosic agriculture 
which usually has a negative impact on the environment (Rosazley et al., 2016). 
OPEFB is conventionally composted to organic fertilizer, burned, or disposed of 
in land fields. Burning OPEFB is not a good solution and it is not recommended 
because it causes air pollution. Therefore, it is very crucial to optimally use 
OPEFB fiber in order to find solutions for the aforementioned problems and use 
the resource for valuable products at the same time (Ishola et al., 2012). OPEFB 
fiber is considered as a good potential to be highlighted in polymer composites 
because of its several advantages such as biodegradability,  easy processing, 
relatively high in hardness, real strength, and low in density (Faizi et al., 2017). 
This research presents the fabrication and characterization of Fe2O3-PTFE, 
OPEFB-PTFE, and Fe2O3-OPEFB-PTFE composites for microwave shielding 
applications.   
 
 
1.5  Research Objectives 
 
 
The main objectives of this research are as follows: 
 

1. To synthesize the Fe2O3 powder from the mill scale waste and decrease 
the particles size to nano-size using the high energy ball milling (HEBM) 
and characterize their structural properties.  
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2. To investigate the effect of nano-size Fe2O3 content on dielectric, 
magnetic, mechanical, structural, and thermal properties of Fe2O3-PTFE 
samples.  

3. To investigate the impact of OPEFB percentage and fiber size on 
mechanical, structural, dielectric properties of OPEFB-PTFE 
composites 

4. To determine the total shielding effectiveness and visualize the electric 
field distribution of Fe2O3-PTFE and Fe2O3-OPEFB-PTFE 
nanocomposites using rectangular waveguide technique.  
 
 

1.6  The Scope of Study 
 
 
In this research, Fe2O3 powder will be synthesized from mill scale waste and the 
particles size reduced into nanosize using HEBM technique for six hours. Four 
different batches of composites will be fabricated using recycled Fe2O3 nanofiller 
and OPEFB fiber as fillers and PTFE as a matrix. Fe2O3-PTFE nanocomposites 
(batch 1) will be fabricated with varying recycled Fe2O3 nanoparticles content (5-
25 % wt.)  in nanocomposites while OPEFB-PTFE composites (batch 2) will be 
fabricated with varying OPEFB content (5-25 % wt.)  in composites. OPEFB-
PTFE composites (batch 3) will be fabricated using different particle sizes of 
OPEFB (40 μm, 106 μm, 150 μm, 180 μm, and 250 μm). Moreover, Fe2O3-
OPEFB-PTFE (batch 4) will be fabricated depending on different recycled Fe2O3 
content (5-25 % wt.) and constant percentage of OPEFB (5% wt.). The complex 
permittivity of all batches will be determined using the open ended coaxial probe 
(OECP) and the rectangular waveguide (RWG) respectively. The complex 
permeability, reflection |S11| and transmission |S21| coefficients of batch 1 and 4 
will be determined using the rectangular waveguide. The frequency ranges of 
OECP and RWG measurements will be 1-12 GHz and 8.2-12.4 GHz, 
respectively. The microstructural and morphological measurements of the 
samples will be carried out using techniques such as HRTEM, XRD, FESEM, 
and EDX. 
 
 
The COMSOL software based on finite element method (FEM) will also be used 
to calculate the reflection and transmission coefficients and also to simulate the 
electromagnetic waves propagated through the samples.  The results of |S21| 
and |S11| obtained from measurements and simulation will be compared. Error 
analysis of the comparison between simulation and measurements will be 
determined. Finally, the visualization of electric field in the samples will be 
conducted using COMSOL software in order to provide a clear understanding 
about the material’s interaction with electromagnetic waves.   
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