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Food processing wastewater (FPW) contains a high level of oil and grease, requiring 

extensive treatment. The submerged dynamic membrane in anaerobic digestion (AD) 

treatment offers cheap and complete biological and physical separation of solid-liquid. 

Dynamic membrane (DM) developed onto cheap support material can replace the 

expensive conventional membranes. Although promising DM utilization in AD 

treatment has been reported, scarce research focused on the DM formation to explain its 
performance and fouling control. Thus, this study's objectives were to evaluate the 

submerged dynamic membrane two-stage anaerobic bioreactor (DAnMBR) 

performance in treating FPW and assess the DM characteristics and development 

mechanism.  

 

 

The batch biodegradability test assays were used to determine the best performance of 

substrate (FPW) to inoculum (anaerobic digester sludge) ratio (S/I) at 1.0, 1.5 and 2.0. 

A two-stage anaerobic digester (named acidogenic and methanogenic reactors) with two 

submerged 20 µm woven filter cloth as the supporting material (DAnMBR) in the second 

tank was used in this study. Successful start-up using synthetic wastewater and then 

acclimatization by adding FPW in steps up to 100% FPW was achieved when 90% of 
chemical oxygen demand (COD) were removed. Treatment using support material 

commenced thereafter. The treatment performance utilizing APHA methods was 

evaluated at different hydraulic retention time (HRT) of 0.4-1.3 days and organic loading 

rates (OLR) of 3.5, 5.0, 6.5, and 7.0 g COD/L.d.  

 

 

Best OLR was used to assess the DM formation until fouling occurred, and the cake 

layer samples were taken for characterization periodically. S/I 1.0 ratio performed best 

with COD, biochemical oxygen demand, total solids (TS) and volatile solids (VS) 

removals of 96.9, 96.6, 75.8, and 65.2%, respectively. The bioreactor presented a good 
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performance at OLR 5.0 g COD/L.d with removals of 97.5% COD and 99% total 

suspended solids at HRT of 0.5 day. The methane gas production yield achieved a 

maximum of 0.40 L methane/g COD added at OLR 3.5 and 5.0 g COD/L.d with the 

same HRT 0.5 day on both OLRs. The average permeate flux in these studies was around 

60 L/m2 h. Fouling occurred at 35 days during the DM development and characterization 
study with a final flux of 2.5 L/m2.hr and transmembrane pressure of 0.7 bar. The cake 

layer thickness increased slightly from day 14 to 28 but sharply at the fouled stage, 

agreeing with the treatment performance. Protein to polysaccharide ratio (PN/PS) of the 

extracellular polymeric substances (EPS) increased significantly compared to soluble 

microbial product PN/PS ratio; thus, it is the main contributor to the membrane fouling. 

High-through-put 454 pyrosequencing of total DNA revealed that Proteobacteria, 

Bacteroidetes and Methanosaeta were abundant in bacterial and archaeal communities, 

which played an important role in the DAnMBR system. In conclusion, following the 

results obtained in this study, DM technology achieved a stable and high-quality 

permeate. Thus, DAnMBRs can be used as a reliable and satisfactory treatment 

technology to treat high strength wastewaters.    
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Air buangan pemprosesan makanan (FPW) mengandungi tahap tinggi minyak dan gris 

yang memerlukan rawatan yang intensif. Membran dinamik terendam dalam rawatan 

pencernaan anaerobik (AD) menawarkan pemisahan biologi dan fizikal pepejal-cecair 

yang murah dan lengkap. Membran dinamik (DM) yang dikembangkan ke bahan 

sokongan yang murah dapat menggantikan membran konvensional yang mahal. 

Walaupun menjanjikan, penggunaan DM dalam perawatan AD, penyelidikan yang 
jarang difokuskan pada pembentukan DM untuk menjelaskan prestasi dan 

pengotorannya. Oleh itu, objektif kajian ini adalah untuk menilai prestasi bioreaktor 

anaerobik dua peringkat (DAnMBR) membran dinamik tenggelam dalam merawat FPW 

dan menilai ciri DM dan mekanisme pengembangan.  

 

 

Ujian biodegradabiliti kumpulan digunakan untuk menentukan prestasi terbaik nisbah 

substrat (FPW) hingga inokulum (enapcemar pencernaan anaerob) (S/I) pada 1.0, 1.5 

dan 2.0. Pencernaan anaerobik dua peringkat (dinamakan reaktor asidogenik dan 

metanogenik) dengan dua kain penapis tenunan 20 µm yang tenggelam sebagai bahan 

sokongan (DAnMBR) dalam tangki kedua digunakan dalam kajian ini. Permulaan yang 

berjaya menggunakan air sisa sintetik dan kemudian aklimatisasi dengan menambahkan 
FPW dalam langkah hingga 90% FPW dicapai apabila 90% permintaan oksigen kimia 

(COD) dikeluarkan. Rawatan menggunakan bahan sokongan dimulakan selepas itu. 

Prestasi rawatan yang menggunakan kaedah APHA dinilai pada masa sewa hidraulik 

(HRT) yang berbeza dari 0.4-1.3 hari dan kadar pemuatan organik (OLR) 3.5, 5.0, 6.5, 

dan 7.0 g COD/L.hari.  

 

 

OLR terbaik digunakan untuk menilai pembentukan DM sehingga pencemaran berlaku 

dan sampel lapisan kek diambil untuk pencirian secara berkala. Nisbah S/I 1.0 

menunjukkan prestasi terbaik dengan COD, permintaan oksigen biokimia, penyingkiran 
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pepejal total (TS) dan pepejal mudah alih (VS) masing-masing 96.9, 96.6, 75.8, dan 

65.2%. Bioreaktor menunjukkan prestasi yang baik pada OLR 5.0 g COD/L.hari dengan 

penyingkiran 97.5% COD dan 99% pepejal terampai. Hasil pengeluaran gas metana 

mencapai maksimum 0.40 L metana/g.COD yang ditambahkan pada OLR 3.5 dan 5.0 g 

COD / L hari. Fluks meresap purata dalam kajian ini adalah sekitar 60 L / m2.jam. 
Fouling berlaku pada 35 hari semasa kajian pengembangan dan pencirian DM dengan 

fluks akhir 2.5 L / m2.jam dan tekanan transmembran 0.7 bar. Ketebalan lapisan kek 

meningkat sedikit dari hari ke-14 hingga ke-28, tetapi secara tajam pada tahap kekotoran 

setuju dengan prestasi rawatan. Nisbah protein ke polisakarida (PN/PS) bahan polimer 

ekstraselular meningkat dengan ketara berbanding dengan nisbah PN / PS produk mikrob 

larut; oleh itu, ia adalah penyumbang utama pembuangan kotoran. Pyrosequencing 454 

dari jumlah DNA yang tinggi menunjukkan bahawa Proteobacteria, Bacteroidetes dan 

Methanosaeta banyak terdapat dalam komuniti bakteria dan archaeal, yang memainkan 

peranan penting dalam sistem DAnMBR. Kesimpulannya, berikutan hasil yang 

diperoleh dalam kajian ini, teknologi DM mencapai permeate yang stabil dan berkualiti 

tinggi. Oleh itu, DAnMBR dapat digunakan sebagai teknologi rawatan yang boleh 

dipercayai dan memuaskan untuk rawatan air buangan berkekuatan tinggi.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of the study 

Malaysia is one of the rapidly developing countries in Asia, and its industrialization 

program has dramatically increased the amount of wastewater need to dispose of and 

suitable treatments are required. However, the ability to receive water to accept the 

increasing inorganic and organic loads remains the same, resulting in a rapid 

deterioration of surface water quality. The emerging problems have prompted concerned 

government agencies to introduce and implement more stringent legislation. Industries 
are searching for the least cost options to reduce their pollution load and the latest 

wastewater treatment technology (Chernicharo, 2007).  One or more effective treatment 

processes would be required for effluent consistency, land availability, construction, 

operating costs, and operational simplicity. 

Malaysia has a population of 28.3 million based on the Report of Census 2010 by the 

Department of Statistics (Department of Statistics, 2010). The estimated volume of 

wastewater generated by municipal and industrial sectors is 2.97 billion cubic meters per 

year. The large volume of domestic and industrial wastewater produced in Malaysia must 

be treated to prevent pollution to the environment and protect public health by 

safeguarding water supplies. Aerobic treatment systems were the primary biological 

treatment methods of wastewater until the 1970s. The aerobic process needs oxygen to 

degrade pollutants before discharging them into the water stream (Seow et al., 2016). 

However, the environmental debate and rise in energy prices in the 1980s have 

dramatically changed this scenario. Reusing and recycling waste have created 

considerable interest, and methane gas as an energy-produced anaerobic process has 

become a highly potential alternative (Gerardi, 2003). The anaerobic system is currently 

used worldwide for a broad spectrum of industrial wastewater treatment since the 

development of high rate anaerobic processes wastewater such as food processing 

effluents (Tedjani et al., 2012), textile wastewater (Yurtsever et al., 2020), landfill 

leachate (Jasni et al., 2020), paper mill wastewater (Chelliapan et al., 2012) and high 

strength lipid wastewater (Ramos et al., 2014).  

Conservation of energy in industrial processes has become an important issue, and 

anaerobic processes have quickly become an appropriate alternative. As a result, several 
reactor designs were developed to handle low, medium, and high-strength wastewater. 

In addition to being high-energy intensive, the introduction of aerobic processes as 

treatment options requires high capital investments alone. On the opposite, a low 

investment technology in the anaerobic system requires no aeration systems, reduced 

sludge disposal facilities, and the key benefit of methane gas recovery (Alkarimiah et al., 
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2011). The most cost-effective approach for organically contaminated industrial waste 

streams is through anaerobic wastewater treatment. The development of high-quality 

systems, in which hydraulic retention times are uncoupled to solid retention times, in 

particular, contributed to a global acceptance of anaerobic treatment. However, 

anaerobic biomass growth during start-up makes the process control fragile as the system 

recovery is prolonged when exposed to adverse environmental conditions. 

Nevertheless, with the expansion of research, high-rate anaerobic treatment systems 

have been developed to retain high amounts of biomass, even at low hydraulic retention 

times. Accordingly, high solid retention time is maintained at high hydraulic loads to the 

anaerobic system. The result is reactors with a lower volume than the conventional 

anaerobic digesters with a high degree of sludge stabilization (Chernicharo, 2007; Yee 

et al., 2019). 

Reactor configuration is vital in controlling the effluent quality. Staging the phases in 

AD will improve effluent quality and may be essential to produce anaerobic effluent that 

meets discharge quality standards. Furthermore, a staged reactor can accommodate toxic 

sludge more efficiently by slowly passing through the reactor system. The staged reactor 

will result in a much-abbreviated exposure of the biomass to the undiluted toxicants.  
Physical separation of the two anaerobic digestion phases, namely acidogenesis and 

methanogenesis, aims to satisfy the optimum environmental conditions for each type of 

microbial population in two separate reactors (Demirel et al., 2002). This so-called two-

stage process supports greater archaeal diversity's growth and performance than a single-

stage process (Srisowmeya et al., 2019). A significant limitation of anaerobic digestion 

of solid wastes in a single-stage system is during the first phase (acidogenesis phase) 

where rapid production of volatile fatty acids (VFA) occurs. Such acids will reduce the 

pH, which stresses and inhibits methanogenic bacteria’s activity. Conditions favourable 

to the growth of acid-forming bacteria, such as short hydraulic retention time (HRT) and 

low pH, are inhibitory to the methanogens (Maspolim et al., 2015). A two-stage reactor 

can optimize both species of bacteria's condition in the acidogenic and methanogenic 
groups (Ibrahim et al., 2013). During the acidogenic phase, the pH is usually maintained 

between 5.5 and 6.0 and HRT of less than five days. Anaerobic membrane reactors 

(AnMBRs) were developed based on aerobic MBRs concept within the last decade, with 

either external membrane or submerged in the reactor. Thus, coupling MBR with 

anaerobic digestion obviates the need for a sedimentation/clarifier tank. The advantages 

of MBR are complete biomass retention, low sludge production, increase treatment 

capacity, and lower operational cost (Mike & Shannon, 2014). In recent years, 

considerable attention has focused on developing a novel anaerobic process in which a 

membrane separation is incorporated in place of a settling system. To date, several 

investigators have studied two-phase anaerobic membrane processes for the treatment of 

wastewaters such as cheese whey (Saddoud et al., 2007), sugarcane vinasse (Mota et al., 

2013), sewage sludge (Joo et al., 2016), synthetic molasses-based wastewater (Wijekoon 
et al., 2011), vinasse wastewater (Silva et al., 2020), synthetic wastewater (Chaikasem 

et al., 2014), municipal solid waste (Trzcinski & Stuckey, 2011), biodegradable 

municipal solid waste (Walker et al., 2009b), piggery wastewater (Lee et al., 2001), and 

starch wastewater (Yu et al., 2016). Based on their results, it can be inferred that in a 

two-stage anaerobic membrane bioreactor (2-AnMBR) where the methanogenic reactor 
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is coupled with a membrane module or the membrane is installed via side-stream 

configuration, the occurrence of acidogenesis in a preceding reactor could prevent 

acidogenic biomass growth in the methanogenic reactor, thereby enhancing sludge 

properties and filtration performance (Mota et al., 2013).  

Generally, cake layer formation on the membrane surface regulates aerobic and 
anaerobic MBRs membrane resistance (termed fouling). However, high membrane 

capital costs such as microfiltration (MF) and ultra-filtration (UF), high energy 

requirement and fouling problem become significant MBR technology problems. Its 

replacement with a low-cost macroporous material, starting in the middle of the 1990s, 

seems a more promising technology. Correspondingly, applying cheaper materials such 

as macroporous material including mesh, non-woven fabric and filter cloth as the filter 

instead of the expensive MF and UF is more promising in dynamic membrane (DM) 

technology (Ersahin et al., 2016b). The cake layer itself function as the filtration instead 

of just contributing to fouling. In most of the dynamic membrane bioreactors (DMBRs) 

experiments, if the transmembrane pressure (TMP) or the water head reached a certain 

level, the DM layer could easily be scoured off with air. DM formation involves multiple 

physicochemical and microbiological processes, such as the formation of gel layers and 
cake. The structure of DM in MBRs have not yet been fully understood (Liu et al., 2009). 

Limited information on the cake layer's characteristics on the supporting layers, such as 

fabric or mesh is available (Ersahin et al., 2012). 

Since 2008, the extensive use of anaerobic dynamic membrane bioreactors (DAnMBRs) 

is still in the early stage. The key issues include the development of DAnMBRs for the 

treatment of various wastewaters, process efficiency and system optimization, and 

sludge properties (Alibardi et al., 2014, 2016; An et al., 2009; Quek et al., 2017; Xie et 

al., 2014; Zhang et al., 2010, 2011). DM formation and mechanism, DM layer 

characterization, and the production and collection of biogas have received little 

attention (Hu et al., 2018; Saleem et al., 2016). 

1.2 Problem statement 

There are scarcity of anaerobic treatment of high strength real wastewater. Industrial 

wastewater has poor biodegradability and a high level  of toxicity, possing difficulties 

for AnMBR, such as long start-up time and low biogas output (Dereli et al., 2012). There 

have been few reports based on FOG pilot-scale or bench scale co-digestion in 
continuous fluid digesters, which is likely to be due to the variety of operational 

challenges of FOG co-digestion, such as  process inhibition, substrate transport 

restrictions, digester floatation and foaming, and massive problem with digestion 

pipeline system blocking and clogging (Li et al., 2013).MBRs have wide-scale industrial 

application but the majority of DM studies were bench-scale applications treating 

synthetic or municipal streams (low strength wastewater) (Alibardi et al., 2016; Hu et 

al., 2016; Saleem et al., 2016; Xiong et al., 2016). Although high-strength wastewater 

(such as industrial wastewater or landfill leachate) can be effectively treated with high 

biogas production using DAnMBR, potential obstacles have been mostly induced by 

toxics and other non-biodegradable compounds (Berkessa et al., 2020; Xie et al., 2014). 
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Due to the option of performing the phases in distinct settings, two-stage AD appears to 

be particularly well suited for substrates with a high insoluble COD content, such as fruit 

and vegetable wastes (Colussi et al., 2014) . This method of operation improves the 

stability, efficiency, and conversion rate. Hydrolysis can be accelerated by inoculating 

the reactor with microorganisms that produce substrate-specific hydrolytic enzymes (Joo 
et al., 2016; Maspolim et al., 2015). Despite these advantages, two-stage AD processes 

are not widely used in commercial applications, most likely because more 

comprehensive studies are required to justify larger plant investment. Thus, the present 

research aims at assessing the performance of DAnMBR with phase separation treating 

FPW at mesophilic temperature (35°C).  

The majority of prior research has focussed on the effect of sludge characteristics and 

operating parameters on membrane fouling. There is scarcity of information on the 

analysis of cake layer formation. A detailed examination of the cake layer formed on the 

membrane surface will aid in determining the optimal operating parameters for the 

DAnMBR. Hence, controlling membrane fouling can be facilitated by knowledge of the 

cake layer characteristics. One of the most critical challenges in DAnMBR is to keeping 

DM's thickness within an acceptable range (efficient DM layer) to ensure that the 
treatment is effective (Ersahin, 2015). The analysis is a prerequisite for achieving stable 

high permeate quality and preventing an unforeseen increase in TMP. This study aimed 

to characterize the DM layer and elucidate its role in the biological removal performance 

of particulate and soluble organic matter. This approach would help to understand the 

cake layer formation that enables a stable operation in DAnMBR. In addition, most of 

the studies about cake layer formation (a mechanism) were conducted in conventional 

AnMBRs rather than DAnMBRs. The formation phases of filtration cake on the micro-

membrane surface had been suggested by (Jiang et al., 2003) based on the increasing 

characteristics of membrane resistance in MBR. However, due to the variable nature of 

dynamic membranes, the formation mechanism and structure of dynamic membranes in 

DMBR are still unknown (Liu et al., 2009).  

This research’s findings are expected to fill the knowledge gap and provide new insights 

into staging the anaerobic digestion process into two separate phases for more efficient 

AD treatment. DM utilization as a cheap method for post-treatment of the AD treatment 

of high FOG wastewater may overcome the commercialization problem of utilizing 

membrane in AnMBR processes. It is possible to treat wastewater post anaerobic 

digestion by replacing the costly microfiltration (MF) or ultrafiltration (UF) membranes, 

using cheap materials via the developed cake layer on the polypropylene woven filter 

cloth.  

1.3 Research objectives 

This study aims to assess the potential of two-stage submerged anaerobic dynamic 

membrane bioreactor (DAnMBR) in treating food processing wastewater (FPW). 

Specific objectives to achieve the main aim are listed as follows: 
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(i) To investigate anaerobic biodegradability of food processing wastewater in a 

two-stage anaerobic bioreactor based on BMP analysis  

(ii) To evaluate the efficiency of the submerged dynamic membrane anaerobic 

bioreactor (DAnMBR) treating food processing wastewater at different HRT 

and OLR. 
(iii) To assess the characteristics of the dynamic membrane formed on the support 

material and elucidate its development mechanism. 

 

 

1.4 Scope of study and limitation 

This study mainly focuses on the development of a two-stage DAnMBR system and its 

performance. During the start-up period, synthetic wastewater containing yeast and meat 

extract was used, and real food processing wastewater was used to investigate the reactor 

system's full performance. The fed process was done in stages. A polypropylene woven 

filter cloth with a pore size of 20 µm was used as the supporting materials for DM 

formation. This pore size was selected based on preliminary study done on different pore 

sizes of 20, 40 and 60 µm to treat food processing wastewater using DMBR.  Based on 

the results (duration of 4 days), the 20 μm pore size monofilament filter cloth was found 

most suitable for the cake layer development. The results also demonstrate that the 

biofilm composed of the cake layer of the DM on smaller pore size significantly concurs 
with the high treatment efficiency compared with the larger pore size (Mahat et al., 2020). 

The maximum COD removal achieved was more than 80% for the smaller pore size filter 

cloth (20 μm), but only 70% for larger pore size (60 μm) filter cloth. The smallest pore 

size (20 µm) of the supporting material was selected for the cake layer development 

throughout the study because it showed the best cake layer development and 

performance (turbidity and ammonia-nitrogen removals of 99.0 and 98.0%, respectively). 

During the treatment phase, organic loading rate intervals were increased in a 1.5 step 

increment (3.5 – 7.5 g COD/L.d). The applied increment is not too high or too low in 

order to get the optimum results for DAnMBR performance. For the 1.5 step increments, 

it is indicated the addition of 1.5 in each new OLR from 3.5 gCOD/L.d to 5.0 gCOD/L.d 

and lastly for 7.5 gCOD/L.d. During the last application of the highest OLR (6.0-7.5), 

we want to test whether the system can survive on the maximum feed COD of 9,000 
mg/L (possibility of inhibition) in different HRT. The OLR resulted in the best 

performance was selected to assess the mechanism of the cake layer development. In this 

study, the highest OLR applied was 9.0 g COD/L.d but the severe pH fluctuation resulted 

in reduced performance due to the inhabitation of biomass and accumulation of higher 

volatile fatty acids (organic shock loading of higher concentration substrate). 

Throughout the treatment, although oil and grease (O&G) removal were possible with 

the DM, an operational problem was observed in the acidogenic reactor (AR) tank. 

Accumulation of solids (scum) caused pipe clogging required manual cleaning 

periodically. Although the methanogenic reactor (MR) tank was not obstructed due to 

the less frequent floating solid material presence, it was also subjected to the same 

cleaning process, albeit less frequent compared to the AR tank. Hence, it is possible the 
treatment performance for all parameters (COD, BOD, methane yield, ammoniacal 

nitrogen etc.) do not entirely reflect the actual result.  
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1.5 Significant of research 

The cheap materials for the dynamic supporting membrane potentially provide improved 

flux rates cost-effectively at low transmembrane (TMP) pressure (Ersahin et al., 2012). 

For a two-phase system food processing effluent, Tedjani et al. (2012) observed a COD 

removal efficiency of 65% when no membranes were used, compared to 80-90% when 

a membrane was used in the DAnMBR (2nd tank). A number of studies have shown that 

co-digestion with municipal or food industry waste fats, oil, and grains used as a co-

substrate will boost production of methane as FOG requires lower mass loading per unit 

of methane production and has shown more significant biogas production potential than 

other organic waste (Li et al., 2013). 

1.6 Thesis layout 

This thesis consists of five chapters. The introduction in Chapter 1 first gives the 

background of the study and the problem statement and ends by stating the research's 
objectives and scope. Chapter 2 covers the literature review with the discussion focusing 

on supporting material, dynamic membrane application in wastewater treatment to 

remove organic matters and solids. Chapter 3 covers the preparation of substrates, 

membranes, types of analytical equipment used, and analytical methods by the Standard 

Methods for the Examination of Water and Wastewater. Chapter 4 presents the results 

and discussion on the start-up development and performance of DAnMBR through 

different HRT and OLR. Additionally, the mechanism of DAnMBR is discussed within 

this chapter with the in-depth characterization of the DM layer. Finally, Chapter 5 wraps 

up the thesis with a conclusion and recommendations for future work. 
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