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Battery technology is one of the most promising technology for next-generation 
portable electronics, electric vehicle (EV), hybrid electric vehicles (HEV) and 
stationary energy storage systems. In this aspect, Li-ion batteries are the most 
attractive power-source candidate due to their superior high energy density as a 
comparison to the available rechargeable batteries. High energy density mainly 
depends on a high voltage and high specific capacity. Novel electrode materials 
research, specifically cathode plays an essential role in the development of 
advanced lithium-ion batteries. The electrochemical performance of active 
electrode material mainly relies on the crystal size and morphology. In the 
present study, various nanostructured cathode materials were synthesized to 
improve the energy density by using sol-gel assisted pechini, coating and ball 
milling techniques. Research reveals that nanomaterial-based cathode materials 
are preferable due to various advantages such as dimension reduction, faster 
ionic (Li+) and electronic (e-) transport and mechanical stability as compared to 
traditional solid-state synthesis-based materials.  
 
 
First, spinel-based cathode LiMn2O4 and carbon composite were studied in Li-
ion battery application due to eco-environment, natural abundance, low cost with 
high operating potential, theoretical capacity and power density properties. In 
this work, step potential electrochemical spectroscopy (SPECS)/galvanostatic 
intermittent titration technique (GITT) is conducted on three-electrode systems, 
including spinel prepared by solid-state and sol-gel methods. SPECS 
experimental data has been fitted with planar, double planar, spherical, and 
Cottrell diffusional model, to elucidate the diffusional mechanisms and obtain 
accurate diffusivities for these materials. Theoretical models clearly illustrate that 
both spherical and double plane diffusion models are in excellent agreement 
with experimental data. LMOSS exhibits better diffusivity, with an average 
diffusivity closer to 10-13 -10-11 cm2/s as compared to 10-13-10-9 cm2/s for 
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LMOSG. This work aims to develop a more comprehensive analysis technique 
for future work. The crystal structure, materials morphology and elemental 
composition were characterized by x-ray diffraction (XRD), field emission 
scanning electron microscopy (FE-SEM), energy dispersive x-ray spectroscopy 
(EDS), and high-resolution transmission electron microscopy (HR-TEM). These 
experiments reveal the potential benefits of understanding Li-ion diffusion of 
spinel LiMn2O4 for high-power lithium-ion batteries (LIBs) storage performance.  
 
 
Secondly, anion substitution of fluorine into spinel cathode material was designed 
by using the sol-gel assisted pechini method. Fluorinated based spinels show 
better electrochemical performance as compared to pristine spinel. The fluorine 
doped spinels LiMn2O3.8F0.2 and LiMn2O3.9F0.10 showed improved capacity 
retention of around 94% and 90% respectively as compared to 90% for the 
pristine LiMn2O4 at 0.1C.  Finally, Electrolytic reduction of molten carbonates 
(Li/K/Na) has been suggested as a practical approach improving the performance 
of lithium-ion batteries as anode material. Herein, novel carbonaceous materials 
were synthesized by using molten carbonates as an exciting new method of 
producing tuned carbons for battery applications. The electrodeposited carbon 
anode displays the highest specific capacity with 334 mAh g-1 at 0.1 C with 
coulombic efficiency of 95.70% and 255 mAh g-1 at 1C with a capacity retention 
(coulombic efficiency) of 85.8 % (100%) after 100 cycles in the potential window 
of 0.01-2V (vs Li/Li+). The electrochemical properties as measured using 
Galvanostatic charge-discharge, cycle ability, rate performance, cyclic 
voltammetry and electrochemical impedance spectroscopy were observed to be 
greatly enhanced by using the carbonate-derived anode as compared to the 
commercial graphite 
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Teknologi bateri adalah salah satu teknologi yang paling menjanjikan untuk 
elektronik mudah alih generasi berikutnya, kenderaan elektrik (EV), kenderaan 
elektrik hibrid (HEV) dan sistem penyimpanan tenaga pegun. Dalam aspek ini, 
bateri Li-ion adalah calon sumber tenaga yang paling menarik kerana 
ketumpatan tenaga tinggi yang unggul sebagai perbandingan dengan bateri 
boleh dicas semula yang sediaada. Ketumpatan tenaga tinggi bergantung 
terutamanya pada voltan tinggi dan kapasiti spesifik tinggi. Penyelidikan bahan 
elektrod baru, khususnya katod memainkan peranan penting dalam 
pengembangan bateri lithium-ion canggih. Prestasi elektrokimia bahan elektrod 
aktif bergantung pada ukuran kristal dan morfologi. Dalam kajian ini, pelbagai 
bahan katod berstruktur nano disintesis untuk meningkatkan ketumpatan tenaga 
dengan menggunakan teknik pechini yang dibantu oleh sol-gel, salutan dan 
penggilingan bola. Penyelidikan menunjukkan bahawa bahan katod berasaskan 
nanomaterial lebih disukai kerana pelbagai kelebihan seperti pengurangan 
dimensi, pengangkutan ionik (Li +) dan elektronik (e-) lebih cepat dan kestabilan 
mekanikal berbanding dengan bahan sintesis berasaskan keadaan pepejal 
tradisional.  
 
 
Pertama, katod berasaskan spinel LiMn2O4 0 dan komposit karbon dikaji dalam 
aplikasi bateri Li-ion kerana persekitaran eko, kelimpahan semula jadi, kos 
rendah dengan potensi operasi yang tinggi, keupayaan teori dan sifat 
ketumpatan kuasa. Dalam projek ini, langkah spektroskopi elektrokimia 
berpotensi (SPECS) / teknik titrasi intermiten galvanostatik (GITT) dilakukan 
pada sistem tiga elektrod, termasuk spinel yang disediakan dengan kaedah 
keadaan pepejal dan sol-gel. Data eksperimen SPECS telah dilengkapi dengan 
model diffusional planar, double planar, spherical, dan Cottrell, untuk 
menjelaskan mekanisme penyebaran dan mendapatkan nilai penyebaran yang 
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tepat untuk bahan-bahan ini. Model teori dengan jelasnya menunjukkan bahawa 
kedua-dua model penyebaran satah sfera dan satah ganda sangat berpadanan 
dengan data eksperimen. LMOSS menunjukkan penyebaran yang lebih baik, 
dengan purata penyebaran mendekati 10-13-10-11 cm2/s berbanding dengan 10-

13-10-9 cm2/s untuk LMOSG. Projek ini bertujuan untuk mengembangkan teknik 
analisis yang lebih komprehensif untuk kerja masa depan. Struktur kristal, 
morfologi bahan dan komposisi unsur dicirikan oleh pembelauan sinar-x (XRD), 
mikroskop elektron pengimbas pelepasan medan (FE-SEM), spektroskopi sinar-
x dispersi tenaga (EDS), dan mikroskop elektron transmisi resolusi tinggi (HR) -
TEM). Eksperimen ini mendedahkan potensi manfaat untuk memahami 
penyebaran Li-ion spinel LiMn2O4 untuk prestasi penyimpanan bateri lithium-ion 
berkuasa tinggi (LIB). 
 
 
Kedua, penggantian anion fluorin menjadi bahan katod spinel dirancang dengan 
menggunakan kaedah pechini yang dibantu sol-gel. Spinel berasaskan fluorinasi 
menunjukkan prestasi elektrokimia yang lebih baik berbanding dengan spinel 
yang asli. Spinel dop fluorin LiMn2O3.8F0.2 dan LiMn2O3.9F0.10 menunjukkan 
peningkatan pengekalan kapasiti sekitar 94% dan 90% masing-masing 
berbanding dengan 90% untuk LiMn2O4 asal pada 0.1C. Akhirnya, pengurangan 
elektrolit karbonat lebur (Li/K/Na) telah dicadangkan sebagai pendekatan praktikal 
untuk meningkatkan prestasi bateri lithium-ion sebagai bahan anod. Di sini, bahan 
karbonat baru disintesis dengan menggunakan karbonat lebur sebagai kaedah 
baru yang menarik untuk menghasilkan karbon untuk aplikasi bateri. Anod karbon 
yang dimendap elektro menunjukkan kapasiti spesifik tertinggi dengan 334 mAh 
g-1 pada 0.1 C dengan kecekapan coulombic 95.70% dan 255 mAh g-1 pada 1C 
dengan pengekalan kapasiti (kecekapan coulombic) 85.8% (100%) selepas 100 
kitaran dalam tetingkap berpotensi 0,01-2V (vs Li/Li+). Sifat elektrokimia yang 
diukur menggunakan pelepasan muatan Galvanostatik, kemampuan kitaran, 
prestasi kadar, voltammetri siklik dan spektroskopi impedans elektrokimia dapat 
dipertingkatkan dengan menggunakan anoda yang dihasilkan dari karbonat 
berbanding dengan grafit komersial. 
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CHAPTER 1  

1 INTRODUCTION 

1.1 General Introduction to Energy 

Global warming, CO2 emission, climate change and depletion of fossil fuels are 
the major problems due to increasing demands for energy consumption 1, 2. The 
gradual increase in global energy demand in various types of energy such as 
coal, natural gas, petroleum, other renewables, biomass, hydropower and 
nuclear from 2011-2040 as shown in Figure.1.1. As a consequence, to protect 
our planet from greenhouse gas emission, it is important to consider novel 
renewable energy and clean energy power systems such as solar photovoltaic 
cells, fuel cells, battery, and supercapacitors. There are different kinds of energy 
storage systems such as thermal energy 4, nuclear energy 5, solar energy 6 and 
electrochemical energy systems 7. Electrochemical energy sources 
(rechargeable batteries) are the most efficient form of energy conversion directly 
from chemical to electrical energy 1. There are several advantages by using 
electrochemical energy storage systems such as (1) Pollution free (2) high 
energy density (3) commercial applications such as electric vehicles (EV’s) and 
hybrid electrical vehicles (HEV’s) (4) compact and robust. There is still a need 
for optimization of current battery technology such as (1) power density for 
vehicles industry (2) energy density for cell phones (3) micro battery for medical 
applications. The electrochemical characteristics of lithium ion batteries (LIBs) 
depend on chemical and structural properties of electrodes materials.  

1.2 Energy Storage Devices 

 

Figure 1.1 : Global energy demand between 2011 till 2040  
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Figure 1.2 : Classification of various electrical energy storage 
technologies  
 
 
Classification has been done on several electrical energy storage technologies 
in term of response time, functioning and, energy storage time 8. The widely used 
electrical energy storage devices classified into mechanical, electrochemical, 
electrical, thermochemical, chemical and thermal energy storage as shown in 
Figure.1.2. Mechanical energy storages such as pumped hydroelectric, 
compressed air energy storage and flywheels; Thermal energy storages such 
as solar thermal storage integration and thermal storage for heating, ventilation, 
and air conditioning (HVAC); Chemical energy storages such as using hydrogen 
or other chemicals as an energy storage systems; Electrical and electrochemical 
energy storage systems such as capacitors, supercapacitors, superconducting 
magnetic, secondary batteries, flow battery and fuel cells. 

The main purpose of current work is based on electrochemical energy systems. 
A Ragone plot for various electrochemical energy storage systems such as fuel 
cells, batteries, capacitors, and supercapacitors is shown in Figure.1.3. 
Batteries, fuel cells, and capacitors will perform different functions within any 
system requiring both power and energy, with capacitors providing burst power 
or power smoothing, and batteries/fuel cells providing long-term power11.  

The demand for batteries technologies is increasing rapidly globally and 
specifically Li-ion batteries. The main reason behind for Li-ion batteries demand 
globally is its application in next-generation electric vehicle systems12. Li-ion 
batteries production demand for electric vehicles batteries trend from 2008-2020 
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is shown in Figure.1.4. The expectation is nearly 100 GW of Li-ion batteries to 
overcome the need of consumer as well as electric vehicles powered 
technology14. Moreover, Li-ion batteries will be used to smooth the energy 

available on the grid. These fluctuations arise, in general, from changes in 

energy demand and the variable production capacity of renewables.  That is, 
excess energy is stored when there is an abundance of energy on the grid, and 
utilized when there is a deficit.  It is important that the energy storage 
technologies such as batteries and capacitors utilized to couple both high power 
density and high energy density. Large-scale application of Li-ion batteries such 
as grid will require the low-cost production of batteries.  

 

Figure 1.3 : Ragone plot showing various energy storage systems, where 
red line indicates the complete discharge time for the energy storage 
devices  

 
 

 

Figure 1.4 : Demand for Li-ion batteries for electric vehicles batteries 
technologies trend 2008-2020 
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The amount of energy stored by batteries depend on discharge current I(dis); it 
can be achieved by measuring time t given by15: 

𝐼(dis) =
𝑑𝑞

𝑑𝑡
     (Eq.1.1) 

 
 

where dq represents the state of charge/discharge. The energy is expressed as 
the product of I(dis) and voltage V summing over the charge/discharge time15 i.e:  

Energy = ∫ V𝐼(dis)𝑑𝑡
𝑡

0
    (Eq.1.2) 

 
 
where the total charge Q per unit weight (Ah/g) depends on the current 
transferred by discharge state given by15:  

 Q = ∫ I(dis)dt
t

0
     (Eq.1.3) 

 
 
Q is also known as capacity (mAh g-1); Q is a function of I and the reason is that 
it mainly depends on the amount of ion transferred across electrode/electrolyte 
interface which becomes diffusion limited at high current density15.   

1.3 Current Status and Future Challenges in Li-ion Batteries Research  

Li-ion batteries witnessed great contribution in last two decades to consumable 
electronics based on reliable energy storage systems such as computers16, 
smart phones17, grid stabilization18, electric vehicles and plug-in hybrid electric 
vehicles19

. Next generation batteries will require lightweight batteries, long cycle 
life, and high energy density as well power density. In general, batteries are 
facing challenges like high energy density with long cyclic efficiency, fast 
charge/discharge rate, eco-environmentally, aging effect, safety risk and 
material cost for high production of batteries for 100% electric vehicle 
technology20, 21. Safety and cost aspect of Li-ion batteries research by increasing 
voltage vs energy density by keeping safety at the expense of cost is shown in 
Figure 1.5. Furthermore, fabricating low voltage 2V-3V systems like 
LiBOB/Li4Ti5O12/LiFePO4

22
 means reducing cost and safety simultaneously, but 

the other drawback of this system is low energy density. Electrode-electrolyte 
research should be focussed if we move to high specific energy having high 
energy and high voltage (5V) nanomaterial either cathode/anode. Future 
generation of solid-state Li-ion batteries which relying on dry polymers/inorganic 
electrolytes material will bring to zero risk22.    
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1.4 Research Importance  

The primary focus of this Ph.D. thesis revolves around existing and advanced 
lithium-ion batteries (LIBs) fabrication based on nanomaterial. Nanostructures 
are a vital ingredient for the development of many novel advanced materials and 
electronic devices. The overall battery performance relies on several factors 
such as synthesis route, chemical composition and surface area of the electrode.  

1.4.1 Research Gap 

 

Figure 1.5 : Safety and cost aspect of Li-ion batteries research 
 
 
Following are the gaps identified based on the literature discussed in section 2.3 
of chapter 2 : 
 

• Research gap to combine various synthesis routes both wet and dry 
chemistry, 

• Gap in material characterization like electronic conductivity, and titration 
techniques,  

• Gap in research combining basic battery performance and advance 
electroanalytical models for lithium-ion diffusion studies, 

• Gap in combining lithium-ion battery application by using three electrode 
reference electrochemical cell. 
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1.4.2 Contribution 

Following are the contribution of doctoral research based on the literature gap 
identified:  
 

• To fabricate nanomaterials such as cathode spinels LiMn2O4, fluorine 
doped spinels LiMn2O4-xFx (0≤x≤0.2), by combining various 
experimental techniques such as sol-gel, sol-gel assisted pechini 
method, solid-state synthesis,  

• To fabricate novel carbonaceous anode nanomaterials synthesized by 
molten carbonates as exciting new method of producing tuned carbons 
for lithium ion batteries,  

• To optimize the discharge capacity (cycle life) as well as to improve the 
working voltage of the cathode spinels and anode carbonaceous 
electrode materials, 

• To combine battery performance with advanced electrochemical 
diffusion properties using galvanostatic intermittent titration technique 
(GITT) and step potential electrochemical spectroscopy (SPECS), 

• To compare various lithium-ion diffusion electroanalytical models based 
on SPECS and GITT,  

• To construct two-electrode coin cell CR2032 for battery performance,  

• To construct three-electrode Swagelok type electrochemical cell with 
both counter and reference electrode as lithium metal for studying 
kinetic as well as diffusion properties. 

 
 
1.5 Research Objective and Structure  

The main objective of the current thesis is to optimize the energy density, 
operating voltage, rate capability and cycle life as well as the power density of 
existing cathode and anode material for lithium-ion batteries (LIBs). The overall 
goal is to fabricate novel nanomaterials for lithium-ion batteries by using various 
experimental techniques such as sol-gel, sol-gel assisted pechini method solid-
state synthesis. The physical characterization followed by electrochemical 
energy storage lithium-ion battery application. Further investigation has been 
conducted on conductivity and lithium-ion diffusion in above-developed 
materials using electrochemical impedance spectroscopy (EIS) Nyquist plots. 
The main scope of the current research was as follows: 
 

• Literature review of the state-of-the-art nanostructured Li-ion batteries 
and mechanistic properties by understanding various diffusion models 
(CH: 2),  

• To compare spinel LiMn2O4 prepared by solid state and sol-gel methods 
with commercially available cathode spinel LiMn2O4 material. The 
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crystal structure, materials morphology and elemental composition were 
characterized by x-ray diffraction (XRD), field emission scanning 
electron microscopy (FE-SEM), energy dispersive x-ray spectroscopy 
(EDS), and high-resolution transmission electron microscopy (HR-
TEM). By using electrochemical characterization techniques for battery 
performance such as cyclic voltammetry (CV), galvanostatic charge-
discharge (GCD), cycle ability (CA), rate capability (RC). Also, novelty 
is in diffusion properties were studied by step potential electrochemical 
spectroscopy (SPECS) and via glvanostatic intermittent titration 
technique (GITT) (CH: 3)    

• To synthesize anion doped nanocomposite spinels LiMn2O4 using sol-
gel synthesis route. To investigate the effect of Fluorine with different 
concentrations in spinel material LiMn2O4-xFx (0≤x≤0.2) with (x=0.05, 
0.1, 0.2), in order to understand the physical, structure morphology, 
conductivity, and electrochemical properties of the developed cathode 
materials (CH: 4), 

• Novel carbonaceous materials were synthesized by using molten 
carbonates as exciting new method of producing tuned carbons as 
anode for Li-ion battery applications. Electrodeposited carbonaceous 
materials morphology and elemental composition were characterized by 
x-ray diffraction (XRD), field emission scanning electron microscopy 
(FE-SEM), energy dispersive x-ray spectroscopy (EDS). The 
electrochemical properties were measured using Galvanostatic charge-
discharge (GCD), cycle ability (CA), rate performance, cyclic 
voltammetry (CV) and electrochemical impedance spectroscopy (EIS) 
(CH: 5), 

• Finally, a summary of the doctoral project and the future 
recommendation were made for improvement as well as enhancement 
of the cathode/anode material for Li-ion battery applications. (CH: 6).  
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