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Ion sensing is a significant challenge in both clinical diagnosis and 
environmental monitoring. Ion transfer reactions at liquid | liquid interfaces 
allow detection of substances that are not easy to oxidise/reduce or that 
undergo significant interference in these reactions. In addition, it offers the 
advantages of simplicity of instrumentation, easily of miniaturisation and 
portability. However, very few sensing applications have been reported for the 
quantitative analysis of organic molecules, including drugs. This study 
discussed the characterisation, and application of ion transfer at the interface 
between two immiscible electrolyte solutions (ITIES) using cyclic voltammetry 
(CV) and differential pulse voltammetry (DPV). Early studies have relied on the 
exploration of the electrochemical behaviour of diclofenac anion (DCF-) and 
dibucaine cation (DIC+) via water|1,6-dichlorohexane (1,6-DCH) at such regular 
ITIES and in particular examination of the pH of the aqueous phase. Both ions 
were found to undergo ion-transfer voltammetry at the liquid | liquid interface. 
Some of the analytical parameters, such as standard transfer potential, the 
Gibbs energy of transfer and the partition coefficient, for DCF- and DIC+ were 
determined. Subsequently, essential modifications to the ITIES by micropores 
silicon nitride membrane were brought to enhance the analytical performance 
and lower the detection limits. The micro-ITIES array formed with 2500 
micropores arranged in a cubic close-packed (CCP) arrangement, with a 
diameter of 2.5±0.09 μm, a pore centre-to-centre separation of 12.65±0.13 μm 
and 100 nm membrane thickness, was electrochemically characterised by ion 
transfer of the model analyte, tetramethylammonium cation (TMA+), across the 
water | 1,6-DCH interface. The resulting voltammogram has showed the linear 
diffusion dominance within the arrays, suppressing the radial diffusion at the 
edge of the arrays, due to overlapping diffusion profiles at adjacent micro-ITIES 
resulted in lower experimental current. The analytical performance of micro-
ITIES to drug molecules (DCF- and DIC+) detection in the aqueous phase was 
investigated, with the limits of detection (LODs) in the ranges of 8–56 μM and 



© C
OPYRIG

HT U
PM

 

ii 
 

4–24 μM were calculated to be 1.5±0.05 μM and 0.9±0.06 μM for DCF- and 
DIC+, respectively. In addition, the influence of possible interfering substances 
(ascorbic acid, sugar, amino acid, urea, and metal ions) on the detection of 
DCF- and DIC+ was investigated. Finally, the ability to use electrochemistry at 
liquid | liquid micro-interface for direct determination of the targeted drugs in 
bio-mimic fluids (serum and saliva) and in a realistic mixture (human urine) 
were assessed. Both drugs could be detected in biological matrices, despite of 
deproteinisation of samples is required for detecting DCF in artificial serum. 
The LODs were 12.9±.5 μM and 1.4±0.02 μM in artificial serum, 1.8±0.2 μM 
and 1.5±0.14 μM in artificial saliva and 2.6±0.2 μM and 1.2±0.12 μM in human 
urine sample for DCF- and DIC+, respectively. 
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Penderiaan ion adalah cabaran penting dalam diagnosis klinikal dan 
pemantauan alam sekitar. Tindak balas pemindahan ion pada antara muka 
cecair | cecair membolehkan pengesanan bahan yang tidak mudah teroksida 
/ terturun atau yang mengalami gangguan yang ketara dalam tindak balas ini. 
Di samping itu, ia menawarkan kelebihan instrumentasi yang ringkas, mudah 
dikecilkan dan dialih. Walau bagaimanapun, sangat sedikit aplikasi 
penderiaan telah dilaporkan untuk analisis kuantitatif molekul organik, 
termasuk ubat-ubatan. Kajian ini membincangkan pencirian dan aplikasi 
pemindahan ion pada antara muka di antara dua larutan elektrolit tak terlarut 
(ITIES) menggunakan voltametri berkitar (CV) dan voltametri pembezaan 
denyutan (DPV). Kajian awal telah bergantung kepada penerokaan tingkah 
laku elektrokimia bagi anion diklofenak (DCF-) dan kation dibukain (DIC+) 
melalui air|1,6-diklorohexana (1,6-DCH) pada ITIES biasa tersebut dan 
khususnya pemeriksaan pH bagi fasa akueus. Kedua-dua ion itu didapati 
menjalani voltametri pemindahan ion pada antara muka cecair | cecair. 
Beberapa parameter analisis, seperti keupayaan pemindahan piawai, tenaga 
pemindahan Gibbs dan pekali pembahagian untuk DCF- dan DIC+ telah 
ditentukan. Seterusnya, pengubahsuaian penting pada ITIES oleh membran 
silikon nitrid mikroliang telah dilakukan untuk meningkatkan prestasi analisis 
dan menurunkan had pengesanan. Tatasusunan mikro-ITIES yang terbentuk 
dengan 2500 mikroliang yang diatur dalam susunan kiub tertutup padat 
(CCP), dengan diameter 2.5±0.09 μm, pemisahan pusat ke pusat liang 
12.65±0.13 μm dan ketebalan membran 100 nm telah dicirikan secara 
elektrokimia oleh pemindahan ion bagi analit model, kation 
tetramethylammonium (TMA+), pada antara muka air | 6-DCH. Voltamogram 
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yang terhasil menunjukkan penyebaran linear yang dominan, mengurangkan 
penyebaran jejaripada hujung jajaran disebabkan oleh pertindihanprofil 
penyebaran bersebelahan dengan mikro-ITIES yang menghasilkan arus 
eksperimen yang rendah. Prestasi analisis mikro-ITIES kepada pengesanan 
molekul ubat (DCF- dan DIC+) dalam fasa akueus telah disiasat, dengan had 
pengesanan (LOD) dalam julat 8–56 μM dan 4–24 μM dikira sebagai 1.5±0.05 
μM dan 0.9±0.06 μM untuk DCF- dan DIC+, masing-masing. Sebagai 
tambahan, pengaruh bahan gangguan yang mungkin (asid askorbik, gula, 
asid amino, urea, dan ion logam) pada pengesanan DCF- dan DIC+ telah 
disiasat. Akhirnya, keupayaan untuk menggunakan elektrokimia pada antara 
muka mikro cecair | cecair untuk penentuan langsung ubat yang disasarkan 
dalam cecair bio-mimik (serum dan air liur) dan dalam campuran realistik (air 
kencing manusia) telah dinilai. Kedua-dua ubat boleh dikesan dalam matriks 
biologi, walaupun penyahproteinan sampel diperlukan untuk mengesan DCF 
dalam serum tiruan. Nilai LOD adalah 12.9±1.5 μM dan 1.4±0.02 μM dalam 
serum tiruan, 1.8±0.2 μM dan 1.5±0.14 μM dalam air liur tiruan dan 2.6 ±0.2 
μM dan 1.2±0.12 μM dalam sampel air kencing manusia untuk DCF- dan 
DIC+, masing-masing. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1. Liquid | Liquid Interface Electrochemistry 
 

1.1.1. Background of the Study 
 

Liquid surfaces and liquid | liquid interfaces have great significance in the real 
world, especially in the biological system. The interfaces between two 
immiscible liquid electrolyte solutions (ITIES) are present in cells and tissues 
of all living organisms. The primary reason for the study of the electrochemical 
nature of ITIES is the use of aqueous electrolyte solution as one of phase of 
such interfaces (Koczorowski, 2001). 
 

The ITIES is formed when two liquid solvents of a low (or ideally zero) mutual 
miscibility, usually less than 1% in weight, are brought into contact, each 
behaving as an electrolyte. Typically, water is one of these solvents that 
behave as the aqueous phase, the other phase is a polar organic solvent, 
such as 1,2-dichloroethane (1,2-DCE), 1,6-dichlorohexane (1,6-DCH) or 
nitrobenzene (NB), which allows for at least partial dissociation of dissolved 
electrolyte(s) into ions (Samec, 2004). For an aqueous |organic interface 
system, the aqueous phase solvent usually contains a hydrophilic electrolyte 
salt (typically LiCl or Li2SO4), while the polar organic phase solvent contains a 
hydrophobic electrolyte salt (commonly bis(triphenylphosphoranylidene) 
ammonium tetrakis(4-chlorophenyl) borate, (BTPPA+TPBCl-). This study 
employed the BTPPA+TPBCl-, a hydrophobic cation and anion pair, both of 
which are difficult to transfer into the aqueous phaseThe presence of 
electrolytes in both phases to cause the potential difference between them, 
which is the force that drives the ions to move from one phase to another 
when the transition energy is available (Molina et al. 2012; Arrigan, 2008; 
Vanýsek & Ramírez, 2008; Samec, 2004). 
 

1.1.2. The Electrical Double Layer of the Liquid | Liquid 
Interface 

 

The structure of the liquid | liquid interface was proposed for the first time by 
Verwey and Niessen (1939) based on Gouy-Chapman theory, which 
described an electric double layer as two back-to-back electric double layers 
with opposite charges separated by a continuous geometric boundary (Figure 
1.1 (a)). However, the first experimental report dealing with the interfacial 
structure was given by Gavach et al. (1977) almost 40 years later, that proved 
the presence of specific adsorption, which was explained in terms of ion pair 
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formation at the liquid | liquid interface by measuring the interfacial tension 
versus the concentration of different tetraalkylammonium ions. 
 

One year later, Gros et al. (1978) proposed what is known today as the 
'modified Verwey-Niessen' model (MVN) (Figure 1.1 (b)). The experimental 
approach consisted of control of interfacial Galvani potential difference 
between a sodium bromide aqueous solution and a tetraalkylammonium 
tetraphenylborate organic solution tetraalkylammonium bromide to the 
aqueous phase and subsequent interfacial tension measurement, giving the 
electrocapillary curve. The electric double layers at the ITIES contain an 
organic-phase diffusion layer, an aqueous-phase diffusion layer, and an ion-
free inner layer between two phases. The distribution of the potential drop 
across the interface when the latter is electrified can be separated into three 
major contributions: the potential drop across the aqueous diffuse layer (∅ ), 
the potential drop across the organic diffuse layer (∅ ),  and the potential drop 
across the inner layer for aqueous and organic phases (∅  and ∅ ). 
Furthermore, Girault & Schiffrin (1983 & 1984) demonstrated the formation of 
a mixed solvent layer at the interface through excess water surface at the 
interface between organic solvents of different polarity, which in turn has 
suggested that the surface excess of water at the liquid | liquid interface was 
not enough to form a monolayer and these ions penetrate the interfacial 
region (Figure 1.1 c) (Poltorak, 2015). 
 
 
 
 

 
 
Figure 1.1: Different models for the ITIES structure. a) Verwey-Niessen 
model, b) modified Verwey-Niessen and c) mixed solvent layer model. 
Black solid lines correspond to potential distribution across the 
polarised liquid | liquid interface (Source: Poltorak, 2015). 
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1.1.3. The Applications and Limitations at Liquid | Liquid 
Interfaces 

 

The application of ion transfer voltammetry at the ITIES overcomes the 
drawbacks of the solid  | liquid (electrode  | electrolyte) interface, where non-
redox-active species may not be detected via conventional electroanalytical 
methods (Arrigan, 2008). Electrochemistry of liquid | liquid interfaces have 
developed significantly in its applications during the last quarter of the 20th 
century (Volkov, 2001), where its studies have covered charge transfer 
(Amemiya et al. 2003; Senthilkumar et al. 2007), ion-pairing (Kontturi et al. 
1995), the voltammetric and amperometric detection of ions (Arrigan et al. 
2004; Wilke et al.1992; Lee et al. 2000), adsorption-desorption (Amemiya et 
al. 2003; (Alvarez and Arrigan, 2012), extractions and separation (Berduque 
et al. 2005; Berduque & Arrigan, 2006), phase-transfer catalysis (Liu et al. 
2011; Tan et al. 1994) and drug release and delivery in pharmacology (Ortuno 
et al. 2007; Ribeiro et al. 2013; Collins & Arrigan, 2009; Collins et al., 2008).   
 

Electrochemical processes at ITIES have aroused the interest of many 
researchers for two reasons. First, the electrochemical reaction at ITIES 
represents a significant aspect of diverse practical applications in chemistry. 
Second, the biomimetic features of these processes have been a concern for 
over one century. (Samec, 2004). Electrochemistry at the ITIES has 
developed from the transfer of small ions such as model ions to the detection 
of biologically important species such as proteins (Alvarez & Arrigan, 2012; 
Herzog et al., 2009), peptides (Yuan & Amemiya, 2004; Scanlon et al., 2008), 
amino acids (Chen et al.,2004), ionised drugs (Ortuño et al., 2007; Collins et 
al., 2008 &2009; Ribeiro et al., 2013; Alemu, 2004; Ulmeanu et al., 2003; 
Ortuño et al., 2007), neurotransmitters (Beni et al., 2005; Berduque et al., 
2008; Zhan et al., 2004), food additives (Herzog et al., 2008), carbohydrates 
(Guo et al., 2005) and deoxyribonucleic acid (DNA) (Osakai et al., 2007). In 
addition, electrochemical sensing built on ion transfer via the ITIES has 
examined the detection of a wide range of inorganic species such as alkali, 
alkaline earth, heavy metals and anions (Lee et al., 1998; Hossain et al., 
2012; Samec et al., 1988; Lagger et al., 1998). Thus, it plays a vital role in 
pharmaceutical chemistry, medicine, pharmacology. 
 

The conventional experimental studies with ITIES have limitations, so several 
strategies have been developed to overcome these limitations and broaden 
their scope of application. Firstly, the issue of the volatility of the organic 
phase was solved by replacing the conventionally used solvents 
(nitrobenzene and 1,2-dichloroethane) with 2-nitrophenyl octyl ether (NPOE), 
which encompasses excellent properties such as low vapour pressure, low 
mutual miscibility with water and medium permittivity (Molina et al., 2012). 
Recently, ionic liquids are being used as organic phase solvents to 
demonstrate low vapour pressure and high electrical conductivity (Silvester & 
Arrigan, 2011). Secondly, the problem of mechanical    instability of the liquid | 
liquid interface is solved by partial solidification of the organic phase 
(dissolving a polymer such as poly (vinyl chloride) (PVC) in it (Scanlon et al., 
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2010; Ortuño et al., 2007) and supporting the organic solution within micro- or 
nanopore arrays (Zazpe et al., 2007; Scanlon et al., 2010). Finally, the issue 
of the reduced width of the potential window is solved through proper 
selection of the electrolytes dissolved in both phases (for example, highly 
hydrophobic organic ions and highly hydrophilic aqueous ions), and an 
organic phase constituted by mixed solvents (for example 1:1 mixture of 1,2-
DCE: cyclohexane), which can lead to a broader potential window of up to 1.3 
V (Cousens & Kucernak, 2011). 
 

1.1.4. Miniaturisation of Liquid | Liquid Interface 
 

Similar to conventional electrochemical methods, miniaturisation of the ITIES 
offers some benefits over their macro counterparts, such as smaller size and 
portability, increased mass transport rates, reduced ohmic drop and charging 
currents, ease of data analysis and integration into complementary techniques 
(Scanlon & Arrigan, 2011; Compton et al., 2008; Davies & Compton, 2005; 
Arrigan, 2004). The feature lies in the interfacial surface area, which 
decreases as the system decreases, lowering the capacitance current and 
improves detection limits (Arrigan et al., 2013; Liu et al., 2011; Shao & Mirkin, 
1997). Moreover, reducing the size of the ITIES improves the sensitivity as a 
reason of increased mass transfer to a solid | liquid or the liquid | liquid 
interface arising from radial diffusion zone geometry (Henstridge & Compton, 
2012; Scanlon & Arrigan, 2011; Scanlon et al., 2010; Shao & Mirkin, 1997). 
Utilizing a single micro- and nano- ITIES has significantly enabled 
voltammetric measurements in media without supporting electrolytes or low 
polarity media (Laforge et al., 2006; Sun et al., 2005 & 2007).  
 

The miniaturisation of the ITIES also offers prospects for measurements in 
microenvironments (e.g., the study of living cells) and as a probe for scanning 
electrochemical microscopy (SECM) (Shao & Mirkin, 1997; Solomon & Bard, 
1995). In addition, it assists in simplifying the electrochemical measurement 
instrumentation on the introduction of a two-electrode potentiostat set up to 
replace the conventional four-electrode setup (Liu et al., 2011). To date, two 
approaches for establishing micro-ITIES have been reported (Arrigan et 
al.,2013; Strutwolf et al.,2008; Zazpe et al., 2007). The first is based on the 
use of micropipettes in which the liquid | liquid interface is created at the tip of 
a pulled glass pipette (Tong et al., 2001; Shao & Mirkin, 1998). These 
micropipettes suffer from a high electric resistance but also from being highly 
asymmetric, which strongly influences the diffusion of species at the interface. 
The second is based on placement of the aqueous and organic phases on 
either side of membranes containing arrays of micron-sized pores or holes 
(Zazpe et al., 2007). Furthermore, preparing several miniaturised ITIES in 
parallel as arrays creates micro or nano-ITIES arrays, which are beneficial to 
amplify the electroanalytical current signal and improve the mechanical 
stability (Arrigan et al., 2013; Scanlon & Arrigan, 2011; Scanlon et al., 2010). 
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1.1.5. Fabrication of Solid-State Membranes 
 

Membrane science and technology has evolved from basic applications in the 
laboratory to high impact industrial utilisation. Membrane processes offer a 
diverse range of applications in modern society, including in the areas of 
chemical sensor, biosensor, food and pharmaceutical industries processing, 
desalination, gas separation and so on (Strathmann, 1981). Currently, various 
approaches have been investigated in the challenge to fabricate solid-state 
micro and nano pores with real dimensions. On the other hand, these 
techniques involve more complex and lengthy procedures, requiring several 
additives, subtractive, and reactive ion etching (RIE) through a template 
structure processes to accomplish pore transfer (Desormeaux et al.,2014). 
The fabrication materials generally used in the creation of the solid-state 
micropore membranes have been well characterised voltammetry at the ITIES 
such as polymers (polyimide, polyester, polyethylene terephthalate (PET) and 
cellulose) ((Lee et al., 1997; Kralj & Dryfe, 2001; Wilke et al.,1997&1998; 
Sladkov et al., 2004; Josserand et al.,1999; Dryfe, 2006) and silicon ((Scanlon 
et al., 2008; Zazpe et al., 2007; Lhotsky et al., 1996). Cellulose was observed 
to be unsuitable as it became swollen when in contact with the aqueous 
phase, while polyester, which is chemically inert in the aqueous and organic 
phases, is suitable (Peulon et al., 2001). Although silicon nitride (Si3N4) and 
silicon oxide (SiO) are the most widely used materials of solid-state 
nanopores structures generated by focused ion beam (FIB) and electron-
beam lithography (EBL) (Sairi, 2014). However, no information on these 
engineered microporous Si3N4 membranes that are commercially available for 
utilising as platforms for micro-ITIES and electrochemical drug sensing, which 
provide the platform for this study. The advantages of using porous silicon 
nitride membrane for ITIES-based sensor system include commercially 
availability in pore sizes appropriate micro and nanoscale and its ready 
preparation by established methods from micromachining technologies, 
providing the time for complicated procedures and the cost of fabrication 
technologies (Desormeaux et al.,2014). 
 

1.2. Problem Statement  
 

Based on literature review, the problem statement of this study is defined as 
following: 
  
The fabrication of solid-state micro and nano pores with the techniques 
currently established involves more complex, lengthy procedures and high 
cost of materials, requiring several additives, subtractive, and RIE through a 
template structure processes to accomplish pore transfer. Furthermore, no 
information on electrochemical characterisation for microporous Si3N4 
membranes that are commercially available in pore sizes appropriate for 
utilising micro-ITIES array. Therefore, the application of an electrochemical 
sensor at microporous Si3N4 membrane provides a new platform for forming 
liquid | liquid micro-interface arrays as a basis for electrochemical sensing. 
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In both clinical diagnosis and environmental monitoring, ion sensing is a 
significant challenge. There are several works reported for studying transfer 
reactions of various ionisable drugs via the ITIES. However, very few reports 
demonstrated the design of ITIES as a sensing platform for the quantitative 
analysis of drugs, in particularly, drug anion sensing compared to drug cations 
sensing. 
 

Due to clinically common use of diclofenac and dibucaine drugs and the 
complexity of the biological matrices such as blood and plasma, application to 
develop simple, sensitive, and economical methods to improve the precision 
and efficiency of these frequently used procedures in various biological 
matrices is still a challenging task. 
 
 
1.3. Scope and Objectives of the Study 
 
 
The core work is based on utilising liquid | liquid electrochemistry to 
investigate the behaviour of diclofenac anion (DCF-) and dibucaine cation 
(DIC+) molecules at such regular ITIES, and in particular examination of the 
pH ranges of the aqueous phase in which the targeted drugs are ionised and 
thus amenable to study at the interface (Chapter 4). Subsequently, important 
modifications to the ITIES are brought in in order to enhance the analytical 
performance and lead to lower detection limits and better sensitivities. This 
miniaturisation of the interface to micrometer scale (Chapter 5) will lead to 
enhanced diffusion rates for molecules in the aqueous phase, yielding better 
sensitivity and detection limits (Chapter 6). Finally, the ability to use 
electrochemistry at ITIES for direct determination of the targeted 
benzodiazepines in bio-mimetic (artificial serum and saliva) and biological 
fluid (human urine) will be assessed (Chapter 7). This will entail study of the 
influence of individual components of biological fluids on micro-interfaces as 
well as the concerted influence of realistic mixtures. Together, all of these 
studies will lead to new data and knowledge on the analytical chemistry of 
pharmaceutical substances. The study presented in this thesis aims to 
explore the electrochemical performance of microporous membranes at the 
liquid | liquid interface as a basis for sensor technologies.  
 
 
The specific objectives of this research are:  
 

a) To characterise the fundamental behaviour of ion transfer of 
diclofenac anion and dibucaine cation at liquid | liquid interfaces. 

b) To characterise the microporous membrane supported-ITIES arrays 
by morphological and electrochemical methods. 

c) To evaluate the electrochemical performance of miniaturised liquid | 
liquid interface towards its sensitivity for drug detection. 

d) To assess the direct detection of targeted drugs in bio-mimic fluids 
and biological samples at micro-interfaces. 
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1.4. The limitations of the Study 
 

The handling of the electrochemical cell requires special attention, skill, and 
experience, especially, keeping the interface in a stable position for the two 
Luggin capillaries approaching the interface from both sides.  
 
 
The detection of ions across the ITIES is limited by Gibbs energies of their 
transfer within the available potential window, which is defined by transferring 
background electrolyte species from one phase to the other at the limits of the 
potential window. Therefore, hydrophilic anionic species usually require high 
Gibbs energies of transfer and makes it difficult to implement the ITIES as a 
sensing tool. The disadvantage of this system is that the chloride ions limiting 
the potential window interfere with diclofenac transfer and could distort the 
measured limiting current. For this reason, another drug molecule, dibucaine, 
was studied using the modified interface to confirm the methodology used 
here is valid. 
 
 
Although the Si3N4 membrane surface has been proven to be hydrophobic, 
the organic phase could not permeate the micropore walls, thus no contact 
with the aqueous phase occurs. Accordingly, the aqueous phase was 
assumed to fill the pores, resulting in a recessed interface.  

 
The mathematical treatment is complicated in the case recessed interface 
with the possibility of overlap between the individual diffusion layers 
established at each pore on the aqueous side and/or the organic side of the 
membrane. As result, ion transfer at micro-and nano-ITIES are usually treated 
via numerical simulations and including simplified hypotheses (Molina et al., 
2017). 
 
 
1.5. Novelty and Motivation of Research 
 
 
For first time, the objective work is to present the kinetic methodology for 
studying charge transfer reactions at the liquid | liquid interface via 
experimental facilities at Universiti Putra Malaysia. Initially, this involved 
applying some of the classical methodologies mentioned above to the simple 
ion transfer case and later using a microscale interface. Current changes 
associated with target drug ion transfer processes across a polarized ITIES, 
also being a linear function of the drug concentration, can be powerfully used 
for developing drug sensitive or selective sensors. Similarly, the application of 
an electrochemical sensor using microporous Si3N4 membrane provides a 
new platform for forming liquid | liquid micro-interface arrays as a basis for 
drugs sensing. Additionally, this electrochemical sensor could be used as an 
alternative way to the solid | electrolyte interface method to avoid 
interferences and secondary products from redox reactions. 
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The quantification of ionisable drugs transfer processes across ITIES can be 
an important alternative for understanding drug lipophilicity and sensing 
purposes (Kim et al., 2015; Goh & Lee, 2016). The efforts of using supportive 
membranes or substrates with micro-interface features, as well as gelating 
one of the liquid phases, have enabled great advances in transforming ITIES 
to a field potentially applicable for instrument incorporated sensing devices for 
determining a wide range of charged inorganic, organic, drug and even 
protein species. However, there are still many challenges including selectivity 
and sensitivity to tackle when using ITIES for developing drug ion sensors. 
 
 
The investigations to be undertaken here will provide new knowledge on the 
behaviour of the targeted drug molecules at electrified liquid | liquid interfaces, 
on the behaviour of such drugs at micro-scale interfaces and the direct 
detection of these drugs in bio-mimetic and biological fluids. These results will 
pave the path to future sensing technologies, which will be aimed toward 
monitoring of therapy while bringing on board some of the advantages of 
electrochemistry at the microscale to achieve desirable detection limits. 
Therefore, liquid | liquid electrochemistry can play an important role in the areas of 
pharmaceutical chemistry, medicine, and pharmacology (Collins & Arrigan, 2009).  
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