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For over the past decades, the basic layout of the wing-box configuration was 
found relatively similar and has not been drastically changed. Nevertheless, with 
recent advancement in additive manufacturing technology, a much complex 
structural design can now be manufactured with an efficiency that cannot be 
acquired by the conventional manufacturing process. From the conducted 
literature reviews, the variable ribs’ orientation concept turns out to be one of the 
possible options whereby several previous studies have shown that significant 
improvement in aeroelastic characteristics can be acquired without any 
increment in weight. Nevertheless, the previous works were limited to an equally 
ribs spacing as well as for a certain type of wing-box planforms. Hence, the 
current effort is to provide a much wider overview on this concept by considering 
a various type of wing-box planforms including the case of increasing rib’s 
spacing. Three variants of wing-box planforms were considered in the current 
work, namely untapered-unswept, untapered-sweptback, and tapered-
sweptback configurations. In addition, an equal and increasing rib’s spacing 
arrangement for a total of 10 and 13 ribs were also taken into account. A 
programming routine was developed and integrated with the finite element solver, 
hence allowing the parametric study to be conducted in a much systematically 
manner. Finite element solutions of flutter analysis and normal mode analysis 
have been employed, with the flutter speed parameter serves as a sole cost 
function for the parametric investigation. Further insight was also made with 
respect to the variation in modal characteristics as well as the distribution in 
strain energy. The finding shows that the variable ribs’ orientation concept 
enables significant impact to any modes that incorporate with torsional 
characteristic, regardless of whether it is dominant or subdominant in torsional 
shape. As a result, the frequency gap between the flutter modes can be altered 
hence enables the possibility to further delay the flutter speed. Significant 
improvement in flutter speed was acquired within a range of 91%-93% for 
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untapered-unswept cases, 78%-92% for untapered-sweptback cases and 56%-
78% for tapered-sweptback cases when compared to their respective baseline 
wing-box planforms. In addition, it was also found that for all the considered 
cases, the optimal rib’s orientations were characterized by a zigzag profile.  
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Fakulti  : Kejuruteraan 
 
 
Selama lebih beberapa dekad yang lalu, susun atur asas konfigurasi kotak sayap 
adalah serupa dan tidak berubah secara drastik. Walaubagaimanapun, dengan 
kemajuan terkini dalam teknologi pembuatan aditif, rekabentuk struktur yang lebih 
kompleks kini dapat dihasilkan dengan kecekapan yang tidak dapat diperolehi 
melalui proses pembuatan konvensional. Daripada tinjauan literatur yang 
dilakukan, konsep orientasi rusuk boleh ubah menjadi salah satu pilihan yang 
mungkin di mana sebilangan kajian sebelumnya telah menunjukkan peningkatan 
yang ketara dalam ciri aerokekenyalan dapat diperolehi tanpa peningkatan dalam 
berat. Walaubagaimanapun, kajian tersebut terbatas bagi jarak rusuk yang sama 
dan juga bagi bentuk pelan sayap-kotak tertentu. Oleh itu, usaha semasa adalah 
untuk mendapatkan gambaran yang lebih meluas mengenai konsep ini dengan 
mempertimbangkan pelbagai jenis bentuk pelan kotak sayap dan juga bagi kes 
peningkatan jarak rusuk. Tiga varian bentuk pelan kotak sayap telah 
dipertimbangkan, iaitu konfigurasi “tidak tirus-tidak terentang”, “tidak tirus-
terentang ke belakang”, dan “tirus-terentang ke belakang”. Selain itu susunan 
jarak rusuk yang sama dan meningkat bagi sejumlah 10 dan 13 rusuk juga diambil 
kira. Rutin pengaturcaraan dibangunkan dan disepadukan dengan penyelesaian 
unsur terhingga bagi membolehkan kajian dijalankan secara sistematik. 
Penyelesaian elemen terhingga iaitu analisis kibaran dan mod normal digunakan 
dengan parameter halaju kibaran berfungsi sebagai fungsi kos tunggal untuk 
penyiasatan parametrik. Perincian lebih lanjut juga dibuat berkenaan perubahan 
pada ciri-ciri modal dan taburan tenaga terikan. Hasil kajian menunjukkan bahawa 
konsep orientasi rusuk boleh ubah memungkinkan kesan yang signifikan bagi 
sebarang mod yang mempunyai ciri kilasan, tidak kira sama ada ia dominan atau 
subdominan dalam bentuk kilasan. Kesan daripada ini, jurang frekuensi antara 
mod kibaran dapat diubah dan memungkinkan untuk menundakan lagi kelajuan 
kibaran. Peningkatan yang ketara dalam kelajuan kibaran diperolehi dalam julat 
91% -93% untuk kes “tidak tirus-tidak terentang”, 78% -92% untuk kes “tidak tirus-
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terentang ke belakang” dan 56% -78% untuk kes “tirus-terentang ke belakang” 
apabila dibandingkan dengan konfigurasi dasar masing-masing. Di samping itu, 
didapati bagi semua kes yang dipertimbangkan, orientasi rusuk yang optimum 
dicirikan oleh profil zigzag. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Since the first flying machine by the Wright brothers back in 1902, the wing 
design has been evolving significantly whereby advancement in aerodynamic 
shape, and material technology play an important role in idealizing nowadays 
design of the wing. Conventionally, the internal structures of an aircraft wing are 
mainly consisting of spars, ribs and stingers as shown in Figure 1.1 with the wing-
box is represented by the structural center between the leading and trailing spars 
and basically it is almost similar for all the types of aircraft.  

The key function of the wing box is to provide sufficient strength to the wing in 
order to withstand both static and dynamic aeroelastic conditions during the flight. 
With regards to static aeroelastic condition, the deflection of the wing occurs as 
a result of lift force that are generated over the wing due to the pressure 
difference between the top and bottom surfaces as the airflow passing over it. 
This force leads to the deflection of the wing in terms of bending and twisting 
displacement. On the other hand, for the dynamic aeroelastic condition, it is 
mainly due to the bending and torsional modes of an aeroelastic system 
including their interaction and coupling characteristics. These static and dynamic 
aeroelastic conditions could respectively lead into a divergence and flutter 
instabilities which are among the three most common aeroelastic phenomena 
instead of reversal instability.  

Figure 1.1: Internal wing structure and wing box [1]  
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In most of the cases, the flutter instability occurs earlier than any other types of 
aeroelastic instability [2] and it is considered as one the critical flight conditions 
when deriving the safety envelope of the aircraft. Besides, the flight flutter testing 
is part of the certification process that is mandatory to be conducted in order to 
ensure the design is free from the flutter instability [3]. Hence, there are much 
research effort that seeking possible solution to further delay the flutter instability 
which is one of the driven notions in aircraft design. 

Considerable research effort has been devoted to modifying the internal 
structures of wing-box configuration in order to improve the performance of the 
wing as well as to seek possibility in weight reduction. Moreover, with recent 
introduction of disruptive technologies such as additive manufacturing of metal 
structure, provide the way for complex wing-box designs to be manufactured 
without significant impact in weight and cost. Hence this permits a number of 
innovation efforts to be performed in venturing a new concept of wing box model 
such as; curvilinear rib, spar and stringer [4, 5]; material and thickness grading 
on spar and rib [6, 7, 8]; and variable ribs’ orientation [2, 9]. From these studies, 
the findings show that significant improvement in flutter speed could be acquired 
due to the alteration of bending-torsional modes characteristic offered by the 
innovative wing-box design. Hence, this allows the flutter instability to be further 
delayed as well as offering possible reduction in weight. 

1.2 Problem Statement 

Previous studies [2, 5, 9, 10, 11, 12] have shown that the variable ribs’ orientation 
concept turns out to be one of the possible solutions for an innovative topology 
wing-box design, whereby significant improvement in flutter speed can be 
acquired without any weight penalty. Nevertheless, the studies were limited to 
an equally ribs spacing as well as for certain types of wing-box planforms. Hence, 
the current work is a continuation from the previous work [11] with the effort to 
seek further understanding on this concept. Three baseline wing box planforms 
of (1) untapered and unswept wing (2) untapered and sweptback wing (3) 
tapered and sweptback were considered, including an equal and increasing rib’s 
spacing arrangement cases. These parametric variables were considered in 
order to allow a much wider overview on this concept to be drawn with respect 
to flutter and modal characteristics. It should be noted that, the selected wing-
box planforms were following the notion of other innovative wing-box design 
studies such as in untapered-sweptback model [9, 13] and tapered-sweptback 
configuration of NASA common research model [14, 15].  
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1.3   Aim and Objectives 
 
 
The primary aim of the study is to enable a much wider investigation on the effect 
of variable ribs’ orientation with respect to flutter performance. Three wing-box 
planforms were considered namely (1) untapered and unswept wing (2) 
untapered and sweptback wing (3) tapered and sweptback. In addition, effects 
of number of ribs and ribs spacing were also considered in this work. This aim is 
idealized via the following objectives: 
 

1. To conduct a parametric study of three different wing-box planform 
designs by varying the number of ribs, rib's spacing and the orientation 
angle of the selected single rib  

2. To evaluate and compare the flutter and modal characteristics of the 
various considered wing-box planform designs 

 
 
1.4   Research Questions 
 
 

1. How to deal with the parametric study that have a number of parametric 
cases efficiently? (Objective 1)  

2. What types of finite element analysis that need to be employed for the 
investigation of the study? (Objective 1) 

3. What are the effects of variable ribs orientation with respect to its modal 
properties? (Objective 2) 

4. What are the optimal ribs’ configuration for all the considered wing 
planforms and cases? (Objective 2) 

5. What are the effects of variable ribs orientation with respect to its flutter 
instability? (Objective 2) 

 
 
1.5   Scope of Work and Limitation 
 
 
Numerous parametric studies had been conducted by other researchers for 
flutter improvement on various type of wing-box planform for innovative topology 
wing-box design, such as untapered-sweptback model [9, 13], tapered-
sweptback configuration of NASA common research model [14, 15], and other 
wing configuration [16]. Hence, following this trend, three baseline wing box 
planforms of (1) untapered and unswept wing (2) untapered and sweptback wing 
(3) tapered and sweptback are considered in this work. All the considered 
baseline wing-box planforms were referred and projected from the wind tunnel 
wing model of unswept rectangular straight wing developed by previous research 
[2]. The maximum sweep angle of 35° and taper ratio of 0.23 were referring to 
the wing-box parameter of the NASA Common Research Model [17], which is a 
representative of a widebody commercial transport aircraft.  
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This study was limited to the low subsonic region where the compressibility effect 
and nonlinearity of flow are not considered. The aeroelastic model is formed by 
the linear structure which coupled to a two-dimensional computed aerodynamic 
panel of doublet lattice method. The method is an extension of the steady Vortex-
Lattice method to unsteady flow [18]. In general, the free stream speed varies 
from 5m/s to 100m/s whereby the flutter speed was expected to occur between 
this range. Since the analysis was conducted at the sea level condition only, 
hence the Mach number and Reynolds number will be depending on the variation 
of the free stream speed.  
 
 
The overall weight was made constant for all the parametric wing-box 
configurations by altering the thickness of the rib. The study only highlighted on 
the investigation of varying ribs’ orientation with respect to flutter instability since 
the divergence instability occurs later than flutter in all cases as stated from the 
previous study [2]. It should be noted as well that the buckling effect are not 
accounted in this study. 
 
 
1.6   Arrangement of Thesis 
 
 
Chapter 1 provides general overview of the conventional configuration and 
current research progress on internal wing structure which lead into the 
derivation of the problem statement, objectives, research questions including 
scope of work and limitation. 
 
 
Chapter 2 encompasses the literature review that are related to the proposed 
study on the variable ribs’ orientation concept. An underlying principle of 
structural dynamics and aeroelasticity was also covered in this chapter. 
 
 
Chapter 3 provides description on the parametric consideration of variable ribs’ 
orientation concept including the simulation’s procedure of normal mode and 
flutter analyses. 
 
 
Chapter 4 presents the results. for all the parametric consideration of variable 
ribs’ orientation concept. An assessment was made with respect to their modal 
properties and flutter performance. 
 
 
Chapter 5 concludes the important findings of the study including 
recommendation for future work 
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