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In oil and gas industry the transportations of fluids such as oil, gas and petroleum in 

production plants are operated by pipeline networks. During regular operation, the 

pipeline wall faces various obstructions, debris, deposits and corrosions, which cause 

several damages to the pipelines. Therefore, regular maintenance, cleaning and 

inspections of the pipelines are necessary for continuous pipeline operations. Pipeline 

Inspection Gauge (PIG) is a device used for such purposes, which moves forward in the 

pipeline due to differential pressure of fluid around the PIG. However, the performance 
of PIG is greatly affected by the PIG speed as very high speed may cause several 

damages to pipelines wall and the PIG itself. Therefore, it is important to investigate the 

flow characterizations of the fluid around the PIG and the relation to the PIG speed as 

the PIG parameters and fluids vary. This study focuses on investigating the relationship 

between PIG speed and bypass opening percentages of disk bypass PIG with hole in disk 

for different fluids including water, crude oil and butane using computational fluid 

dynamics approach. The control volume method along with steady state Turbulent 𝑘-𝜖 

model was applied for simulation purposes by using ANSYS Fluent 19 software. Ten 

different geometries of disk bypass PIG with hole in disk with eleven different bypass 

opening percentages (2% to 20%) were considered in this study. Relationship for PIG 

speed, pressure loss around PIG section and a general correlation for bypass opening 
percentages were investigated for all considered cases of water, crude oil and butane. By 

using numerical data, a relationship between PIG speed and other parameters (fluid and 

PIG geometrical parameters) was developed to determine PIG speed, which provided 

good agreement with experimental results within maximum 2% standard deviation. The 

findings of this study showed that by increasing the bypass opening percentages from 

2% to 20% the PIG speed has reduced 102% to 189% in water medium, 21% to 52% in 

crude oil medium, and 85% to 139% in butane medium, respectively. Meanwhile, 

pressure loss has reduced 85% to 99% in water medium, 77 to 98% in crude oil medium, 

and 81% to 98% in butane medium for all cases, respectively. This study also developed 

a general correlation to determine the required bypass opening percentages at a certain 

PIG speed for water, crude oil and butane, which provided good agreement with 
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simulation and experimental results. The correlations developed in this study are 

important towards providing more valuable insights into improving pigging operations 

for oil and gas industries.  
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Bagi industri minyak dan gas, pengangkutan cecair seperti minyak, gas dan petroleum 

di kilang pengeluaran dikendalikan melalui rangkaian saluran paip. Semasa operasi, 

saluran paip menghadapi pelbagai halangan, serpihan, mendakan dan hakisan yang 

menyebabkan kerosakan pada saluran paip. Oleh itu, penyelenggaraan, pembersihan dan 

pemeriksaan saluran paip secara berkala adalah penting untuk pengoperasian saluran 

paip secara berterusan. Tolok pemeriksaan saluran paip (PIG) ialah alat yang digunakan 

untuk mencapai tujuan tersebut, yang bergerak di dalam saluran paip melalui perbezaan 
tekanan bendalir di sekeliling PIG. Namun, prestasi PIG sangat dipengaruhi oleh 

kelajuan PIG kerana kelajuan yang tinggi boleh menyebabkan kerosakan pada saluran 

paip dan juga PIG itu sendiri. Oleh itu, ciri-ciri aliran cecair di sekeliling PIG dan 

hubungan dengan kelajuan PIG amat penting untuk dikaji apabila parameter PIG dan 

bendalir berbeza-beza. Kajian ini memberi fokus kepada menyelidiki hubungan antara 

kelajuan PIG dan peratusan pembukaan pintas bagi PIG pintas cakera dengan lubang 

dalam cakera untuk cecair yang berbeza termasuk air, minyak mentah dan butana 

menggunakan pendekatan perkomputeran dinamik bendalir. Kaedah isipadu terkawal 

beserta model Gelora 𝑘- 𝜖 berkeadaan mantap digunakan untuk tujuan simulasi dengan 

menggunakan perisian ANSYS Fluent 19. Sepuluh geometri berbeza bagi PIG pintas 

cakera dengan lubang dalam cakera dan sebelas peratusan bukaan pintas yang berbeza 
(2% hingga 20%) telah dipertimbangkan dalam kajian ini. Hubungan antara kelajuan 

PIG, kehilangan tekanan di sekeliling bahagian PIG dan hubungkait umum untuk 

peratusan pembukaan pintas telah dikaji untuk semua kes yang diambilkira termasuk air, 

minyak mentah dan butana. Dengan menggunakan data berangka, hubungan antara 

kelajuan PIG dan parameter lain (bendalir dan parameter geometri PIG) telah 

dibangunkan untuk menentukan kelajuan PIG, yang memberi persetujuan baik dengan 

hasil eksperimen dalam sisihan piawai maksimum 2%. Hasil kajian ini menunjukkan 

bahawa dengan meningkatkan peratusan bukaan pintas dari 2% hingga 20%, kelajuan 

PIG masing-masing telah menurun 102% hingga 189% dalam medium air, 21% hingga 

52% dalam medium minyak mentah, dan 85% hingga 139% dalam medium butana. 

Sementara itu, kehilangan tekanan telah menurun masing-masing dari 85% hingga 99% 
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dalam medium air, 77% hingga 98% dalam medium minyak mentah, dan 81% hingga 

98% dalam medium butana untuk semua kes. Kajian ini juga telah membangunkan 

hubungkait umum untuk menentukan peratusan pembukaan pintas yang diperlukan pada 

kelajuan PIG yang tertentu untuk air, minyak mentah dan butana, yang memberi 

persetujuan baik dengan hasil simulasi dan eksperimen. Hubungkait-hubungkait yang 
dibangunkan dalam kajian ini adalah penting ke arah memberikan pandangan yang lebih 

bernilai dalam menambahbaik operasi ‘pigging’ untuk industri minyak dan gas. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

In oil and gas industry, pipeline networks are used to transport various fluids such as oil, 

gas and petroleum from the wells to production plants. During regular operation, pipeline 

walls face various obstructions, debris, deposits and corrosion, which affect production 

rate and pipeline condition. Therefore, regular maintenance, cleaning, and inspections 

are required for the continuous operation of the pipelines. For these purposes, the pigging 

technique is applied widely, which is mainly performed by the device called Pipeline 
Inspection Gauge (PIG). A PIG is generally driven by the differential pressure of fluids 

around the PIG section inside the pipeline. There are numerous types of PIG for various 

pipeline applications. The basic PIG such as utility PIG is applied for cleaning purposes 

while intelligent PIG and smart PIG are utilized for inspection and cleaning. Moreover, 

the physical state of the pipe is inspected by using a smart PIG. Few examples of PIGs 

are provided in Figure 1.1 and Figure 1.2. 

 
 

 

Figure 1.1 : Examples of bypass PIG (a) Liang, (2015) (b) Eureka Efektif Sdn. Bhd 

(a) 

(b) 
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Figure 1.2 : Example of (a) intelligent PIG (Guo et al., 2014) and (b) cleaning PIG 

(Liang, 2015) 

 

 

However, previous studies reported that PIGs would not be effective if it runs at high 

speed. The high speed of PIGs may create sudden damage or cracks in pipelines. The 

general standard speeds of utility PIGs are nearly 2-7 m/s for on-stream gas and 1-5 m/s 

for on-stream liquids (Cordell and Vanzant, 1999). By decreasing fluid speed, these risks 

can be overcome; however, this minimization of the fluid speed turns the production 

rates down. This issue can be solved by using PIGs that have fluid flowing path through 

their main body. This fluid flow path is known as bypass flow, which varies along with 
differential pressure over the PIG. The PIG with bypass flow is called as bypass PIG 

(Figure 1.1 is an example of bypass PIG), which is generally used to maintain the 

production rate by moderating the PIG speed (Chen et al., 2020; Hendrix et al., 2020; 

Nguyen et al., 2001a). There are various types of bypass PIG, among which disk bypass 

PIG is most potential for pigging operations (Liang, 2015). Previous studies 

demonstrated that fluids struck the disk due to the disk's presence, which caused a 

reduction of differential pressure and PIG speed  (Korban, 2014; Liang, (2015); 

Mirshamsi & Rafeeyan, 2019; Zhang et al., 2020). 

1.2 Problem Statement 

The major problem faced by the pipeline inspection gauges (PIG) is to control and reduce 

the speed of the PIG during flows through the pipeline, which is usually very high for 

conventional and bypass PIG. The travelling speed of PIG will seriously affect the 

operation’s results; therefore, strict requirements are necessary on the travelling speed. 

Very high speed of PIG causes several damages to the pipelines and PIG itself.  

Therefore, proper control and accurate prediction for PIGs' speed are highly significant 

during the pigging operations.  

PIG speed usually depends on geometrical parameters of PIG, fluids properties and flow 

characteristics of fluids inside the pipeline. Studies reported that, use of disk in front of 

bypass PIG is more effective to reduce PIG speed. This is due to the bypass opening 

section at the disk, which can be adjusted by using different opening percentages that 

helps to reduce the velocity and pressure loss of fluids at upstream and downstream of 

PIG section. This decreases in fluid velocity and pressure loss reduces the PIG speed at 

(b) (a) 
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a moderate rate. Therefore, if bypass opening percentages are not considered correctly 

during the design of PIG then it may affect PIG speed as well as pigging performance. 

Other geometrical parameters such as diameter, length, height, shape and thickness also 

have impact on the PIG speed. 

Generally, the pigging operations are conducted in pipelines with different fluid 
mediums, which may influence the PIG speed due to the change in fluid dynamics 

properties of fluids. Therefore, it is important to consider design parameters of a PIG 

based on the fluid mediums to get effective pigging operation.  

Despite the importance of geometrical parameters for disk bypass PIG and fluid 

mediums in pigging operation, the PIG speed and flow characteristics of fluids for 

different geometrical parameters and fluids were not evolved in literature properly. 

Moreover, relationship between PIG speed and PIG geometrical parameters for different 

fluid mediums was not demonstrated in previous studies, which is important to calculate 

PIG speed during travelling. In addition, general correlation for bypass opening 

percentages and other parameters (PIG geometrical and fluids) was not examined 

properly in literature to identify the most effective bypass opening percentages for 

pigging operations.   

1.3 Objectives 

The overall aim of this study is to establish relationships among PIG speed, bypass 

opening percentages and other parameters (fluid and PIG geometrical parameters) for 
disk bypass PIG with hole in disk. The objectives of the study are as follows. 

 

1. To determine the relationship between PIG speed and other parameters (fluid 

and PIG geometrical parameters). 

2. To determine PIG speed and pressure loss of different PIG geometries and 

fluids (water, crude oil and butane). 

3. To establish a general correlation for PIG bypass opening percentages in terms 

of other parameters (fluid and PIG geometrical parameters). 

 

1.4 Scope of the Study 

Several scopes have been considered in conducting the study which are presented as 

follows- 

 

• The flow condition of the working fluid in this study was turbulent based on 

the company's data. 

• This study only investigated the fluid mechanics inside the pipe and PIG as 
influenced by the PIG dimensions. The body of the PIG, including its 
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deformability, was beyond the scope of the study.  

• The roughness of the pipeline wall was not considered in this numerical 

simulation. According to company data, the pipe for experimental study was 

smooth and flow of fluid was single phase. Therefore, in numerical study the 

roughness of the pipeline wall was negligible. 

• PIG inside the pipelines was considered as a stop condition due to determine 

the fluid velocity and pressure around the PIG. During movement, it is difficult 

to determine the fluid velocity and pressure around the PIG therefore the PIG 

was treated stop condition inside the pipeline for simulation purpose. 

• The influence of heat on the pipeline wall and production fluid was also taken 

as negligible since, company did not impose any heat flux on the pipe wall 

during pigging operation. 

• The bypass PIG considered in this study was a disk bypass PIG with a hole at 

the disk section as provided by company. 

• Geometry and dimensions were as given by company. 

• Ten different PIG geometries and pipe dimensions were considered which was 

denoted as case 1 to case 10. 

• Eleven different bypass opening percentages; 2%, 4%, 5%, 6% 7.5%, 8%, 10%, 

12%, 12.5%, 15% and 20% were applied. 

• Three different fluids; water, crude oil and butane were considered as fluid 

medium. 

• The flow was assumed axisymmetric. This means that in cylindrical 

coordinates (r, 𝜃,  𝑧), there is no variation in the circumferential direction (𝜃). 

Therefore, the geometry in the simulation was 2D. Revolving the 2D geometry 

360 degrees about the axis gives the full 3D geometry. As axisymmetric flow 

by revolving 2D geometry provides the full 3D geometry therefore, this study 

was assumed axisymmetric flow for simulation. 

 

1.5 Thesis Organization 

The thesis is organized in five chapters which are discussed as follows: 
 

Chapter 1: A brief introduction consists of background, problem statement, objectives 

and scope of the study was explained in this chapter.  

 

Chapter 2: A detail description of published researches on pipeline inspection gauges 

along with a summary table and research gap were demonstrated in this chapter.  Pipeline 

integrity, categories, purposes, design, operating conditions of PIG were discussed. 

Moreover, developed correlations for bypass PIG from literature were also summarized.  
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Chapter 3: The applied methods and materials to conduct the current numerical study 

were presented in this chapter. Governing equations, geometrical parameters, PIG 

dynamics equations, grid independency test and verification were explained.  

 

Chapter 4: The findings of the study according to the research objectives were presented 
in this chapter. PIG speed, pressure loss, velocity and pressure contours and relationships 

for PIG speed and bypass opening percentages were demonstrated. 

 

Chapter 5: Base on the findings, analysis and discussion, the general conclusions and 

future recommendations were made.  
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