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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Master of Science  

EFFECT OF NANOFILLERS IN JUTE/CARBON HYBRID REINFORCED 
POLYLACTIC ACID COMPOSITE 

By

NUR AQILAH BINTI SAIRY 

August 2021 

Chair : Norkhairunnisa Mazlan , PhD 
Faculty  : Engineering  

The presence of fibres and fillers in a composite can be efficiently arrest crack 
either at the macro or micro levels. In this work, woven jute and carbon fibres 
were arranged alternately in polylactic acid (PLA) composite. Graphene or 
nanoclay was embedded into the PLA matrix to make a polymer nanocomposite. 
Fibre-reinforced polymer composites were prepared by varying the 
concentration (1, 3, 5wt%) of graphene or nanoclay in the PLA matrix. The 
alternate woven jute and carbon fibres aere then bound with the PLA 
nanocomposite. The influence of graphene or nanoclay concentration and the 
presence of woven fibres in the composite were quantified by flexural analysis. 
Flexural strength and flexural modulus were found to increase at 3wt% of 
nanofiller concentration for graphene/jute/PLA and nanoclay/jute/PLA 
nanocomposites with the increments up to 37% and 31%, respectively. Low-
velocity impact revealed that PLA/TJ/C/G1, PLA/TJ/C/G3, and PLA/TJ/C/G1 
have the highest force value for 7J, 10J, and 13J, respectively. These three 
optimum values for each energy indicate that the closed curve results from the 
striker’s inability to penetrate the specimen. Thus, it was assumed that the lower 
loading of graphene could withstand the impact energy of 7J, 10J, and 13J. FTIR 
was used to determine the interaction between PLA and nanofillers. Morphology 
observation by Scanning Electron Microscopy (SEM) was done to investigate the 
fractured surface of the hybrid jute/carbon fibres reinforced PLA nanocomposite. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN PENGISI-PENGISI NANO DALAM HIBRID JUT/KARBON DALAM 
KOMPOSIT ASID POLILAKTIK YANG DIPERKUATKAN  

Oleh 

NUR AQILAH BINTI SAIRY 

Ogos 2021 

Pengerusi : Norkhairunnisa Mazlan, PhD 
Fakulti : Kejuruteraan 

Kehadiran serat dan pengisi dalam komposit boleh menjadi kaedah yang 
berkesan untuk menahan retakan sama ada pada tahap makro atau mikro. 
Dalam karya ini, tenunan jut dan serat karbon disusun secara bergantian dalam 
komposit asid polilaktik (PLA). Graphene atau nanoclay dimasukkan ke dalam 
matriks PLA untuk menghasilkan nanokomposit polimer. Serat yang 
diperkuatkan oleh komposit polimer telah disediakan dengan pelbagai 
kepekatan pengisi (1, 3, and 5wt%) dari graphene dan nanoclay dalam matrik 
PLA. Serat rami dan karbon susunanya yang berselang seli kemudiannya 
bergabung dengan nanokomposit PLA. Pengaruh kepekatan graphene atau 
nanoclay dan kehadiran serat tenunan dalam komposit diuji dengan analisis 
lenturan. Kekuatan lentur dan modulus lenturan didapati meningkat pada 3wt% 
kepekatan pengisi nano untuk kedua-dua nanokomposit graphene/jute/PLA dan 
nanoclay/ jute/PLA dengan kenaikan masing-masing hingga 37% dan 31%. 
Kesan halaju rendah menunjukkan bahawa PLA/TJ/C/G1, PLA/TJ/C/G3, dan 
PLA/TJ/C/G1 mempunyai nilai daya tertinggi masing-masing untuk 7J, 10J dan 
13J. Ketiga hasil optimum untuk setiap tenaga telah menunjukkan bahawa 
lengkung tertutup hasil daripada penembusan spesimen oleh hentaman yang 
dikenakan. Oleh itu, diandaikan bahawa pemuatan graphene yang lebih rendah 
dapat menahan tenaga hentaman 7J, 10J, dan 13J. FTIR digunakan untuk 
menentukan interaksi antara PLA dan nanofillers. Pemerhatian morfologi 
dengan Scanning Electron Microscopy (SEM) dilakukan untuk menyiasat 
permukaan patah dari hibrida rami hibrid/serat karbon yang diperkuatkan 
nanokomposit 
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CHAPTER 1 

INTRODUCTION 

The first chapter of this thesis provides a brief description of composite fibre, for 
instance, natural fibre and synthetic fibre. This chapter also has stated the 
issues, advantages and disadvantages related to the composite. This chapter 
also consists of the problem statement, research objective, scope and limitation 
of the study.

1.1 Background of Study 

Synthetic polymers are used in various industries, including the packaging 
industry. However, they have a negative impact on the environment and trigger 
a slew of waste disposal and management issues. As a result, there is a growing 
trend to replace such polymers with biodegradable polymers. Significantly, there 
is a growing interest in using polymers derived from natural materials like starch 
(Masuelli, 2013). 

Natural fibres are environmentally friendly due to their low-energy combustion, 
organic nature, and biodegradability. Due to their organic properties and 
marketing appeal in the composite manufacturing industry, kenaf, flax, hemp, 
jute, sisal, and banana fibres are introduced as composite reinforcement 
substitutes. Natural fibres have recently piqued the attention of manufacturers in 
many industries, who are attempting to create new composites to replace glass 
fibre-based composites or polymers (Verma and Fortunati, 2019).   

Natural fibres are used in several industries, including civil construction, 
aerospace, and automotive, to name a few. However, natural fibres have certain 
disadvantages, such as lower mechanical properties compared to glass or 
carbon fibre-based composites. Furthermore, natural fibres have a much higher 
water absorption capacity than synthetic fibres (Bharath and Basavarajappa, 
2016).  

As illustrated in Table 1.1, natural fibres can be classified according to their 
origin: animal, mineral, and plant. Plant fibres are the most generally recognized 
by the industry and the most extensively researched by researchers. This is due 
to product`s short growth cycle, renewability, and widespread availability. 
According to Peças et al., 2018, vegetable fibres are composed of cellulose, 
hemicellulose, and lignin, which can be derived from bast, leaf, seed, fruit, wood, 
stalk, and grass/reed. 
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Table 1.1: Natural Fibre Classification. 
 

 
 
 
 

Natural 
Fibre 

 
 
 

Plant 

Bast Jute, Flax, Ramie, Hemp, Kenaf 
Leaf Banana, Sisal, Abaca, Pineapple 
Seed Kapok, Cotton 
Fruit Coir 

Wood Hardwood, Softwood (e.g., 
Eucalyptus) 

Stalk Rice, oat, wheat, maize 
Grass/Reed Corn, Bamboo 

 
Animal 

Wool/Hair Lamb wool, Horsehair, Cashmere, 
Goat hair 

Silk Mulberry 
Mineral  Metal fibres, Asbestos, Ceramic fibres 

 
(Peças et al., 2018) 
 
 
To address these shortcomings and enhance the properties of natural fibre-
reinforced polymer composites, hybrid biocomposites were developed. Hybrid 
biocomposites are composites made up of two or more fibres bonded together 
in a single matrix. Dashtizadeh et al., (2017), demonstrated that hybrid 
biocomposites composed of a bio fibre and a nano-reinforced bio-based polymer 
can be used to mitigate environmental issues while retaining desired industrial 
properties.  
 
 
1.2 Significance of Study 

 
 

Industrial ecology, eco-efficiency, and green chemistry are leading the next 
generation of materials, goods, and processes using biocomposites (natural fibre 
composites) made from local and renewable resources. Over the last decade, 
biocomposites have seen significant growth in the domestic market, construction 
materials, aerospace industry, circuit boards, and automotive applications. 
Nonetheless, with proper growth, biocomposites can reach recent markets and 
promote an increment in demand. Numerous natural fibres have been combined 
with a polymer matrix to create composite materials that are compatible with 
synthetic fibre composites, which require special attention. Agricultural wastes 
can be used to render commercially viable fibre-reinforced polymer composites 
with marketing appeal. According to Bharath and Basavarajappa (2016), growing 
global environmental and community concern, a high percentage of petroleum 
reserves being depleted, and new environmental regulations necessitated the 
search environmentally friendly composites. 
 
 
The purpose of this investigation is to determine the effect of incorporating two 
distinct nanofillers into a hybrid composite reinforced polylactic acid.  Due to their 
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large specific surface area, nanofillers can form heat-conducting paths through
the composite at extremely low concentrations. Owing to its unique thermal 
conductivity (~5300 W/mK) via phonon transport, two-dimensional graphene has 
garnered considerable academic interest for its potential use in fabricating highly 
thermal conductive polymers (Balandin, 2011; Ghosh et al., 2010). Numerous 
studies indicate that they may be incorporated into polymers to enhance thermal 
conductivity (Shtein et al., 2015; Araby et al., 2014; Du and Cheng, 2012; Veca 
et al., 2009). 

This study also emphasizes the three different adding nanofiller ratios (1, 3, and 
5wt%) in developing PLA composites to see which loading is the best in 
mechanical testing. In polymer blends, nanofillers can perform two important 
functions. Firstly, to strengthen mechanical, barrier, thermal, flame retardant, 
and electrical properties. Secondly, the alteration of polymer blends' 
miscibility/compatibility and morphology. Nanoparticles' ability to alter the 
morphology, interfacial properties, and efficiency of immiscible polymer blends 
is dependent on their location, interactions with polymer components, and how 
these additives spread inside the polymer composite (Scaffaro and Botta, 2014). 

It has been discovered in recent decades, that incorporating small amounts of 
these nanofillers into polymers can enhance mechanical, thermal, barrier, and 
flammability properties without impairing processability. In the ideal 
nanocomposite configuration, single nanoparticles are uniformly distributed 
throughout in a matrix polymer. The dispersion of nanoparticles is the most 
difficult barrier to overcome in order to maximise the potential for property 
enhancement. The uniform dispersion of the nanofillers results in a wide 
interfacial area between the constituents of the nanocomposites. Numerous 
variables, including the polymer matrix`s properties the presence and form of 
nanofiller, the concentration of polymer and filler, the aspect ratio of the particles, 
the particle size, the particle arrangement, and particle allocation, are thought to 
be responsible for the reinforcing effect of filler (de Oliveira and Beatrice, 2018). 

The selection of a nanofiller is primarily determined by the desired property 
enhancements, application, cost, synthesis. Aside from the form and scale of the 
nanofiller, its interaction with the polymer matrix will majorly impact the 
processes and kinetics of nanocomposite crystallization, which is closely related 
to material properties. The number of nanofiller loading dispersed in a polymer 
matrix influences the composite's property enhancements (Korivi, 2015).

1.3 Problem Statement 

The global demand for synthetic-based materials has risen due to of a shortage 
of crude oil supplies (Ilyas et al., 2019). As a result, global societies are becoming 
more aware of the need to reduce their reliance on synthetic products, prompting 
the plastic manufacturing industry to seek new alternatives and take urgent 
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action (Jaafar et al., 2018). Aside from that, the use of traditional synthetic-based 
composites has resulted in a slew of environmental concerns, including waste 
management and long-term environmental viability (Sanyang et al., 2018; 
Merzuki et al., 2019).  

As a result of growing environmental awareness, green chemistry and 
engineering have been combined to create a new class of materials via a variety 
processes. The depletion of petroleum resources, combined with tightening 
environmental regulations, is accelerating the development of new materials and 
goods that are both environmentally sustainable and petroleum-free. Taking all 
of these factors into consideration, a new type of green composite material has 
been developed. On the other hand, bio-based materials are not only ideal for 
construction applications such as building construction but also for 
manufacturing products used in durable goods applications. These bio-based 
materials are derived from renewable resources such as natural fibre plants, 
agro-waste, wood, and grasses that contain starch, cellulose, hemicellulose, 
lignin, and proteins. The majority of chemical products and materials 
manufactured in the early twentieth century were made from renewable 
resources. Due to environmental and economic concerns, bio-based polymers 
and composite materials are becoming more prevalent (Verma and Fortunati, 
2019).  

Using biodegradable plastics and materials is one of the numerous ways to 
mitigate the environmental impact of petroleum based. The biological basis for 
these new biopolymers enables one-of-a-kind exploitation of a highly desired 
property of these products, namely compostability. It is important to remember 
that among the plastic waste are items with a high pollution level, and recycling 
requires a significant amount of energy. As a consequence, compostability is an 
intriguing property that ensures that these novel biomaterials degrade primarily 
to carbon dioxide and water after disposal (Kijchavengkul et al., 2006). These 
biodegradable materials exhibit a range of excellent and promising properties in 
a variety of applications, including packaging, automotive, and biomedical. PLA 
is a thermoplastic biopolyester manufactured from L-lactid acid, which is usually 
extracted during the fermentation of corn starch. PLA is currently being 
commercialised and used as a food packaging polymer for items with a limited 
shelf life, with applications including drinking cups, containers, overwrap and 
lamination films, sundae and salad cups, and blister bags (Kale et al., 2006). 

However, the brittleness of PLA would be a limiting factor on for its tenacity and 
shock resistance. Finally, when PLA is subjected to extreme weather conditions, 
its behaviour can become unpredictable. In comparison to conventional 
thermoplastic polymers, polylactic acid has low heat tolerance and shock 
resistance. As a consequence, there is a difference between PLA and 
conventional polymers. Researchers have recently used a variety of nanofillers 
to increase the efficiency of PLA, including phyllosilicates, carbon nanotubes, 
hydroxyapatite, layered titanates, and others (Thummarungsan et al., 2018; Sun 
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et al., 2018b). One method of overcoming the brittleness of the polymer such as 
PLA is to add or combine it with nanofillers.  
 
The incorporation of low concentrations of these nanofillers into polymers has 
been shown to improve their mechanical, thermal, barrier, and flammability 
properties without impairing their processability. Individual nanoparticles 
distributed homogeneously throughout a matrix polymer are the ideal 
configuration for a nanocomposite. The dispersion state of nanoparticles is the 
most challenging obstacle to resolve in order to maximise the potential for of 
property enhancement. The uniform dispersion of the nanofillers results in a 
large interfacial area between the constitutent of the nanocomposites. Numerous 
factors contribute to the filler`s reinforcing effect, including the polymer matrix 
properties, the nature and shape of the nanofiller, the particle aspect ratio, the 
polymer and filler concentration, the particle size, particle distribution, and 
particle orientation. Example of nanoparticles include clays, carbon nanotubes, 
and graphene (de Oliveira and Beatrice, 2018). 
 
 
Hybridization, or the combination of two or more types of fibres within a single 
polymeric framework, is advantageous because it facilitates synergies between 
the reinforcing materials used, thereby mitigating their inherent disadvantages. 
The purpose of this research research is to improve the properties of hybrid 
polymer composite reinforced polylactic acid by adding nanofillers into the 
approach to deal with the gap study. Three different nanofiller ratios will be 
combined with polylactic acid to obtain the hybrid polymer composite`s optimal 
properties. The nanofiller that would be used are graphene and nanoclay. There 
are a few established research studies that used these two nanofillers, but none 
of them use jute and carbon fibre as the composite matrix. Thus, this research 
study would examine the effect of nanofillers in jute/carbon hybrid reinforced PLA 
composite. When all of the materials in the composite are synthetic, there will be 
a biodegradable issue. As a result, the addition or combination of natural 
ingredients helps to resolve the issue. 

 
 

1.4 Research Objective  
 
 
This research aims to analyze the different loading of different types of nanofillers 
reinforced with PLA and jute/carbon hybrid. Therefore, the specific objectives of 
this research are developed as follows: 
 

 To investigate the effects of different loading nanofillers on PLA/ treated 
jute/ carbon nanocomposite flexural properties. 

 To determine the low-velocity impact of the PLA/ treated jute/ carbon 
nanocomposite at different impact energy. 

 To observe the morphology fractured of PLA/ treated jute/ carbon 
nanocomposite. 

 
 
 



© C
OPYRIG

HT U
PM

6 
 

 
 
1.5 Scope and Limitation of Study 

 
 

The purpose of this research is to combine jute and carbon fibre reinforced in 
polylactic acid (PLA) filled with graphene and nanoclay fillers. The hybrid 
composite laminate was constructed using treated jute and carbon fibres. 5% 
sodium hydroxide is the optimal concentration for the jute fibre surface treatment. 
Two distinct nanofillers were used in the hybrid composite: graphene and 
nanoclay. The effect of the nanofillers was studied at loadings of 1wt%, 3wt%, 
and 5wt%. The nanofiller loading was dispersed into the polylactic acid (PLA) 
using an ultrasonic probe set to a specific parameter, resulting in a thin film. 
Additionally, the thin film will be inserted into each of the fibre arrangements. Jute 
and carbon fibres can only be stacked in the following order: Carbon-Jute-
Carbon-Jute-Carbon (CJCJC). Thus, the hybrid nanocomposite`s mechanical 
properties will be analysed using using flexural and low-velocity impact testing. 
The flexural test determines the amount of force is required to bend a beam 
under three-point loading. The data is frequently used to determine the material 
strength.  
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