

UNIVERSITI PUTRA MALAYSIA

INFLUENCE OF Bi2O3 CONTENT ON THERMAL, STRUCTURAL AND OPTICAL PROPERTIES OF BISMUTH TELLURITE GLASS-CERAMICS BY CONTROLLED HEAT TREATMENT FOR OPTICAL APPLICATIONS

FONG WAI LENG

FK 2022 12

INFLUENCE OF Bi₂O₃ CONTENT ON THERMAL, STRUCTURAL AND OPTICAL PROPERTIES OF BISMUTH TELLURITE GLASS-CERAMICS BY CONTROLLED HEAT TREATMENT FOR OPTICAL APPLICATIONS

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

June 2021

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

INFLUENCE OF Bi₂O₃ CONTENT ON THERMAL, STRUCTURAL AND OPTICAL PROPERTIES OF BISMUTH TELLURITE GLASS-CERAMICS BY CONTROLLED HEAT TREATMENT FOR OPTICAL APPLICATIONS

By

FONG WAI LENG

June 2021

Chair Faculty : Prof. Mohd Adzir bin Mahdi, PhD : Engineering

This dissertation has summarized the findings of the thermal, structural, and optical properties in $xBi_2O_3-5Na_2O-5TiO_2-10ZnO-(80-x)TeO_2$ based glass, where x= 5, 8, 10, 12, and 15mol% by using the melt quenching method. Multiples techniques have been carried on to characterize the influence of the Bi₂O₃ content on the thermal, structural, and optical properties of the bismuth tellurite based glass. The thermal properties have been analyzed by differential scanning calorimetry to identify the glass transition temperature, T_g, onset crystallization temperature, T_x, and crystallization temperature, T_c. The increasing Bi₂O₃ content causes the T_g to decrease due to the decomposition of strong TeO₄ units into TeO₃₊₁ polyhedra and TeO₃ units and the replacement of strong Te-O-Te bonds by the formation of weaker Te-O-Bi bonds and Bi-O-Bi bonds. The formation of BiO_3 and BiO_6 can be observed when reaching an optimum percentage of Bi_2O_3 . The Bi-rich phase will enhance the rate of nucleation and crystals growth rate which improve the crystallization tendency of the glass samples. Thus, a greater tendency for the glass ceramics transformation. The high content of Bi2O3 has caused the glass ceramics to lose transparency due to the oversize crystalline growth. On the other hand, the structural changes based on the variation of composition also investigated by X-Ray diffraction (XRD), Raman spectroscopy, and Fourier transform infrared (FTIR). The results from the structural analysis have proven the formation of BiO₃ and BiO₆ units. The formation of BiO_3 and BiO_6 units with more open structure has increased with the increasing percentage of Bi₂O₃. The more open structures have further improved the rate of nucleation and crystal growth within the glass matrix. Thus, the higher content of Bi_2O_3 has favoured the glass ceramics transformation. As a result of the heat treated sample glasses, the Bi₂O₃ content was strongly affecting the transparency of the resultant glass-ceramics due to the crystallization behaviour of the Bi₂O₃. The types of crystal formed within the glass matrix after controlled heat treatment were identified through Xray diffraction (XRD). The $Bi_2O_{3.96}$ crystal started to form within the glass matrix with a lower Bi₂O₃ content and the transparency of the glass-ceramics was retained in these samples. Sample glass-ceramics were started to turn opaque on the samples with high Bi_2O_3 content with the formation of β -Bi₂O₃ crystals. Besides that, the vibration modes

of the structural units and the functional group of the elements before and after the controlled heat treatment were identified by Raman and FTIR. In addition, the optical properties including the direct and indirect energy bandgap, Eg which induced optically by the incident photons of the amorphous nature before controlled heat treatment, and the crystalline structure after the heat treatment were investigated through the UV-Visible absorption spectrophotometer. The energy bandgap, Eg has decreased due to the high concentration of NBO within the glass network which increases the excitation tendency of the electrons to the conduction band as the content of Bi₂O₃ increased. The sharp absorption edge can be observed in the heat treated glass and the sample glass ceramics with 12mol% and 15mol% Bi₂O₃ content have the most significant absorption edge as compared with the lower Bi_2O_3 content. The wavelength transmission in visible wavelength were extremely low in sample glass ceramics with 12mol% and 15 mol% of Bi_2O_3 content. Thus, the transparency of these sample glass ceramics were extremely low. The optical bandgap also reduced more in sample glass ceramics with greater Bi_2O_3 content as compared with the sample glasses. Most importantly, the transparency of the bismuth tellurite glass-ceramics has to be maintained above 50% for optical applications. The transparency of the samples started to decreased and turned opaque by the increasing Bi₂O₃ content and longer heat treatment period. The crystal growth of the tellurite glassceramics also has been investigated by using the Field Emission Scanning Electron Microscope. In conclusion, the optimum Bi₂O₃ content was 10mol% which has a significant crystallization tendency that showing 2 significant crystallization peaks. The 10 mol% glass ceramics having optimized glass ceramics properties with an excellent transparency at the same time. However, the heat treatment period has to be monitored to prevent the overgrowth of crystal which directly affecting the transparency of glass ceramics.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGARUH KANDUNGAN Bi₂O₃ TERHADAP TERMAL, HARTA STRUKTUR DAN OPTIK TERHADAP SERAMIK KACA BSMUT TELLURIT DENGAN RAWATAN PANAS YANG DIKAWAL UNTUK KEGUNAAN OPTIK

Oleh

FONG WAI LENG

Jun 2021

Pengerusi: Prof. Mohd Adzir bin Mahdi, PhDFakulti: Kejuruteraan

Disertasi ini telah meringkaskan penemuan sifat termal, struktur, dan optik dalam kaca $xBi_2O_3-5Na_2O-5TiO_2-10ZnO-(80-x)TeO_2$, di mana x = 5, 8, 10, 12, dan 15 dengan menggunakan kaedah peleburan lebur. Beberapa teknik telah dijalankan untuk mencirikan pengaruh kandungan Bi_2O_3 pada sifat termal, struktur, dan optik kaca berasaskan bismut telurit. Sifat termal telah dianalisis dengan permeteran kalorimetri pengimbasan pembezaan untuk mengenal pasti suhu peralihan kaca, T_g, permulaan suhu penghabluran, T_x, dan suhu penghabluran, T_c. Kandungan Bi₂O₃ yang semakin meningkat menyebabkan Tg menurun kerana penguraian unit TeO4 yang kuat menjadi unit polyhedral TeO₃₊₁ dan TeO₃ dan penggantian ikatan Te-O-Te yang kuat dengan pembentukan ikatan Te-O-Bi dan Bi-O-Bi yang lebih lemah. Pembentukan BiO₃ dan BiO₆ dapat diperhatikan ketika mencapai peratusan Bi₂O₃ yang optimum. Fasa Bi kaya akan meningkatkan kadar nukleasi dan kadar pertumbuhan kristal yang meningkatkan kelegapan penghabluran sampel kaca. Oleh itu, kelegapan yang lebih besar untuk transformasi seramik kaca. Kandungan Bi₂O₃ yang tinggi telah menyebabkan seramik kaca kehilangan kelutsinaran kerana pertumbuhan kristal yang terlalu besar. Sebaliknya, perubahan struktur berdasarkan variasi komposisi juga diselidiki oleh difraksi sinar-X (XRD), spektroskopi Raman, dan inframerah transformasi Fourier (FTIR). Hasil dari analisis struktur telah membuktikan pembentukan unit BiO3 dan BiO6. Pembentukan unit BiO_3 dan BiO_6 dengan struktur yang lebih terbuka telah meningkat dengan peningkatan peratusan Bi₂O₃. Struktur yang lebih terbuka telah meningkatkan kadar nukleasi dan pertumbuhan kristal dalam matriks kaca. Oleh itu, kandungan Bi₂O₃ yang lebih tinggi telah meningkatkan prestasi transformasi seramik kaca. Akibat dari gelas sampel yang dirawat dengan panas, kandungan Bi₂O₃ sangat mempengaruhi kelutsinaran seramik kaca yang terhasil kerana tingkah laku penghabluran Bi₂O₃. Jenis kristal yang terbentuk di dalam matriks kaca setelah rawatan haba terkawal dikenal pasti melalui pembelauan sinar-X (XRD). Kristal Bi₂O_{3.96} mula terbentuk dalam matriks kaca dengan kandungan Bi₂O₃ yang lebih rendah dan kelutsinaran seramik kaca dipertahankan dalam sampel ini. Sampel kaca seramik mula menjadi legap pada sampel dengan kandungan Bi₂O₃ yang

tinggi dengan pembentukan kristal β -Bi₂O₃. Selain itu, mod getaran unit struktur dan kumpulan berfungsi elemen sebelum dan selepas rawatan haba terkawal dikenal pasti oleh Raman dan FTIR. Di samping itu, sifat optikal termasuk jalur jurang terus dan tidak langsung, Eg yang disebabkan secara optik oleh foton amorf sebelum rawatan haba terkawal, dan struktur kristal selepas rawatan haba disiasat melalui spektrofotometer penyerapan UV-Visible. Jalur jurang, Eg telah menurun kerana kepekatan NBO yang tinggi di dalam rangkaian kaca yang meningkatkan kelegapan pengujaan elektron ke jalur konduksi ketika kandungan Bi₂O₃ meningkat. Pinggir penyerapan yang tajam dapat dilihat pada kaca yang dirawat panas dan sampel seramik kaca dengan kandungan Bi₂O₃ dalam 12mol% dan 15mol% mempunyai kelebihan penyerapan yang paling ketara berbanding dengan kandungan Bi₂O₃ yang lebih rendah. Penghantaran panjang gelombang dalam panjang gelombang nampak sangat rendah pada seramik kaca sampel dengan kandungan 12mol% dan 15 mol% Bi₂O₃. Oleh itu, kelutsinaran seramik kaca sampel ini sangat rendah. Jurang jalur optik juga menurun lebih banyak dalam seramik kaca sampel dengan kandungan Bi₂O₃ yang lebih besar berbanding dengan gelas sampel. Yang paling penting, kelutsinaran seramik kaca bismuth tellurit harus dijaga untuk aplikasi optik. Kelutsinaran sampel mula menurun dan menjadi legap dengan peningkatan kandungan Bi₂O₃ dan tempoh rawatan haba yang lebih lama. Pertumbuhan kristal seramik kaca bismut tellurit juga telah diselidiki dengan menggunakan Mikroskop Elektron Pengimbasan Pelepasan Lapangan. Kesimpulannya, kandungan Bi₂O₃ optimum adalah 10mol% yang mempunyai kecenderungan penghabluran bererti yang menunjukkan 2 puncak penghabluran yang bererti. Seramik kaca yang berkandungan 10 mol% bismut mempunyai sifat seramik kaca yang dioptimumkan dengan kelutsinaran yang sangat baik pada masa yang sama. Walau bagaimanapun, tempoh rawatan haba harus dipantau untuk mengelakkan pertumbuhan kristal yang berlebihan yang secara langsung mempengaruhi kelegapan seramik kaca.

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to all who have directly or indirectly helped, giving their precious opinions and supported me to complete my thesis successfully in the given period. I have gained a lot of knowledge throughout this research journey and learned the right attitude and positive mindset to keep motivated in the research field.

First, I would like to express my deepest gratitude to my advisor Professor Dr. Mohd Adzir bin Mahdi for always giving me support when I faced any problem within my laboratory work. Other than that, I also must thank for the patience, advice, and guidance given by him in my academic and even a clear direction when I had any doubt in my research which keep motivate me in my research.

Secondly, I would like to thank Dr. Sharudin bin Omar Baki for monitoring and supports for the progress of my research work. At the same time, I also need to express my gratitude for him to spend his time having a lengthy discussion with me by giving me suggestions and ideas related to my research progress.

Next, I would like to say thanks to Dr. Mohd Hafiz bin Mohd Zaid for his support in my laboratory work and writing by giving his suggestions and opinions. He was always willing to arrange his time to have a meeting with me when I faced any problem in my research work.

Lastly, I would like to thank my friend Mr. Bashar Khudhair Abbas who always giving technical support for me in my research. Other than that, we always have a deep discussion and he also giving guidance and motivates me all the time.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd Adzir bin Mahdi, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Sharudin bin Omar Baki, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Member)

Mohd Hafiz bin Mohd Zaid, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 20 January 2022

Declaration by Graduate Student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and the copyright of the thesis are fully-owned by Universiti Putra Malaysia, as stipulated in the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from the supervisor and the office of the Deputy Vice-Chancellor (Research and innovation) before the thesis is published in any written, printed or electronic form (including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials) as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld in accordance with the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2015-2016) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature:	Date:
Name and Matric No.:	

Declaration by Members of the Supervisory Committee

This is to confirm that:

G

- the research and the writing of this thesis were done under our supervision;
- supervisory responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2015-2016) are adhered to.

Signature:	
Name of Chairman of	
Supervisory	
Committee:	
Signature	
Name of Member of	
Supervisory	
Committee:	
Signatura	
Name of Member of	
Name of Member of	
Committee	

TABLE OF CONTENTS

	Page
ABSTRACT	i
ABSTRAK	iii
ACKNOWLEDGEMENTS	v
APPROVAL	vi
DECLARATION	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	xvii

CHAPTER

1

2

INTRODUCTION					
1.1	Aims and motivation				
1.2	Problem statement				
1.3	Objectives				
1.4	Scope			4	
1.5	Report	Structure		4	
LIT	LITERATURE REVIEW				
2.1	Introdu	ction		6	
2.2	Glass			6	
	2.2.1	Glass tra	insition	7	
	2.2.2	Formatio	on of glass	7	
		2.2.2.1	Goldschmidt's theory	7	
		2.2.2.2	Zachariasen's random network		
			theory	7	
		2.2.2.3	Chemical nature of glass-forming		
			materials	10	
2.3	Tellurit	te glass		11	
	2.3.1	Structura	al units of tellurite glasses	13	
2.4	Bismut	Bismuth oxides, Bi2O3 properties overview			
2.5	Bismuth tellurite glass and glass-ceramics			16	
2.6	Glass-c	lass-ceramics			
	2.6.1	Transfor	mation of glass to glass-ceramics	17	
	2.6.2	Theory of	of nucleation	18	
	2.6.3	Homoge	neous nucleation	18	
	2.6.4	Heterog	eneous nucleation	20	
	2.6.5	Crystal g	growth	21	
	2.6.6	Crystalli	zation behavior and classification of		
		glass-cei	ramics	22	
		2.6.6.1	Surface and volume		
		0.4.4.9	crystallization	22	
		2.6.6.2	Classification of typical glass-	~~	
		0.4.4.6	ceramics system	22	
		2.6.6.3	Optical crystals	22	
		2.6.6.4	I ransparency	- 23	

2	ME		25
3	ME	THODOLOGY	25
	3.1	Introduction	25
	3.2	Fabrication of glass samples	25
		3.2.1 Glass composition selection	25
		3.2.2 Quantitative batching	26
		3.2.3 Melting of glass composition	29
		3.2.4 Glass forming	29
	3.3	Transformation of glass samples to glass-ceramics	30
	3.4	Thermal characterization	31
	3.5	Structural characterization	32
		3.5.1 X-Ray Diffraction (XRD)	32
		3.5.2 Raman characterization	32
		3.5.3 FTIR characterization	33
		3.5.4 Field Emission Scanning Electron	
		Microscope (FESEM)	34
	3.6	Optical characterization	34
	3.7	Densities measurement	35
	3.8	Molar refractivities, polarisabilities, and refractive	
		indices	35
	3.9	Metallization criterion	36
4	RE	SULTS AND DISCUSSION	37
	4.1	Transparencies of the sample glasses	37
	4.2	Density of sample glasses	39
	4 <mark>.</mark> 3	Thermal analysis	40
	4.4	Structural analysis	43
		4.4.1 X-ray Diffraction (XRD) analysis	43
		4.4.2 Raman analysis	49
		4.4.3 FTIR analysis	54
		4.4.4 FESEM analysis	58
	4.5	Optical analysis	60
5	CO	NCLUSION AND FUTURE WORK	77
-	5.1	Conclusion	77
	5.2	Future work	79
REFEREN	CES		80
APPENDIC	CES		92
BIODATA	OF S	TUDENT	93
LIST OF P	UBLI	CATIONS	94

 (\mathbf{C})

LIST OF TABLES

Table		Page
2.1	Classification of cations	10
2.2	Electronegativity of some glass formers and modifiers	12
2.3	Characteristics of isotropic, uniaxial and biaxial crystals	23
3.1	Composition of sample glasses in mol%	26
3.2	Properties of the oxides used in the glass composition	27
4.1	Glass transition temperature (T_g) , first onset crystallization temperature (T_{x1}) , first crystallization temperature (T_{c1}) , second onset crystallization temperature (T_{x2}) , second crystallization temperature (T_{c2}) , and glass stability of sample glasses	42
4.2	Density, ρ , glass transition temperature, T _g , optical energy band gap, E _{opt} , and refractive indices, n for the reported works in TeO2-Bi2O3-ZnO glass systems	70
4.3	Density, molecular weight, molar volume, cutoff wavelength, direct and indirect optical energy band gap, refractive index, molar refractivity, polarizability, and metallization of Bi ₂ O ₃ - Na ₂ O-TiO ₂ -ZnO-TeO ₂ sample glass system	74
4.4	Density, molecular weight, molar volume, cutoff wavelength, direct and indirect optical energy band gap, refractive index, molar refractivity, polarizability, and metallization of Bi ₂ O ₃ - Na ₂ O-TiO ₂ -ZnO-TeO ₂ glass ceramic system	75
4.4	Density, molecular weight, molar volume, cutoff wavelength, direct and indirect optical energy band gap, refractive index, molar refractivity, polarizability and metallization of 12B and 15B sample glasses in Bi2O3-Na2O-TiO2-ZnO-TeO2 sample glass-ceramics	76
	τ	

LIST OF FIGURES

Figure		Page
2.1	Volume-Temperature transformation diagram of glass Number of Staff at Universiti Putra Malaysia by Group	7
2.2	Volume-Temperature transformation diagram of glass	8
2.3	(a)-(f) Variation of structural units in tellurite glasses, n= number of nonbridging oxygen	10
2.4	Mechanism of TeO ₄ network termination and the generation of TeO3 structural units by addition of network modifiers	15
3.1	Glass components used in the glass composition	26
3.2	Mixing of glass components	28
3.3	Weighting of the glass components	28
3.4	Mixture of glass components in alumina crucible	28
3.5	Furnace for the melting of glass composition	29
3.6	Internal of the furnace for melting	29
3.7	(a)(b) Cracked glass samples due to thermal shocked in ambient temperature	30
3.8	Prevention of thermal shock in glass samples	30
3.9	Mettler Toledo TGA/ DSC HT Integrated Gravimetric Analyzer	31
3.10	Ital APD 200 diffractometer	32
3.11	WITec alpha 300R confocal Raman system	33
3.12	Perkin Elmer Spectrum 100 FTIR spectrometer	33
3.13	Emitech Quorum sputter coater K575X	34
3.14	FEI-NOVA NanoSEM 230	34
3.15	Shimadzu UV3600 spectrophotometer	34
4.1	Photograph of Bi ₂ O ₃ -Na ₂ O-TiO ₂ -ZnO-TeO ₂ glass system	37

6

4.2	Photograph of Bi_2O_3 - Na_2O - TiO_2 - ZnO - TeO_2 glass-ceramics system	38
4.3	Thermal profiles of Bi ₂ O ₃ -Na ₂ O-TiO ₂ -ZnO-TeO ₂ glass system	40
4.4	XRD profiles of Bi ₂ O ₃ -Na ₂ O-TiO ₂ -ZnO-TeO ₂ glass system	43
4.5	XRD profiles of 5B sample glass ceramic	44
4.6	XRD profiles of 8B sample glass ceramic	
4.7	XRD profiles of 10B sample glass ceramic	
4.8	XRD profiles of 12B sample glass ceramic	47
4.9	XRD profiles of 15B sample glass ceramic	48
4.10	Raman spectra of Bi2O3-Na2O-TiO2-ZnO-TeO2 glass system	49
4.11	Raman spectra of 5B sample glass without heat treatment and heat-treated 5B glass with half an hour, 2 hours and 8 hours	50
4.12	Raman spectra of 8B sample glass without heat treatment and heat-treated 8B glass with half an hour, 2 hours and 8 hours	51
4.13	Raman spectra of 10B sample glass without heat treatment and heat-treated 10B glass with half an hour, 2 hours and 8 hours	
4.14	Raman spectra of 12B sample glass without heat treatment and heat-treated 12B glass with half an hour, 2 hours and 8 hours	
4.15	Raman spectra of 15B sample glass without heat treatment and heat-treated 15B glass with half an hour, 2 hours and 8 hours	52
4.16	FTIR spectra of Bi ₂ O ₃ -Na ₂ O-TiO ₂ -ZnO-TeO ₂ glass system	54
4.17	IR spectra of 5B sample glass without heat treatment and heat- treated 5B sample glasses with half an hour, 2 hours and 8 hours	55
4.18	IR spectra of 8B sample glass without heat treatment and heat- treated 8B sample glasses with half an hour, 2 hours and 8 hours	55
4.19	IR spectra of 10B sample glass without heat treatment and heat- treated 10B sample glasses with half an hour, 2 hours and 8 hours	56
4.20	IR spectra of 12B sample glass without heat treatment and heat- treated 12B sample glasses with half an hour, 2 hours and 8 hours	57

4.21	IR spectra of 15B sample glass without heat treatment and heat- treated 15B sample glasses with half an hour, 2 hours and 8 hours	57
4.22	SEM micrographs of (a)5k magnification and (b)100k magnification for Bi2O3-Na2O-TiO2-ZnO-TeO2 glass	58
4.23	SEM micrographs of heat treated 8B sample glass for 2 hours and heat treated 10B sample glass for 8 hours under (a)(c)5k magnification (b)(d)100k magnification	59
4.24	SEM micrographs of heat treated 12B sample glass for 8 hours and heat treated 15B sample glass for 8 hours under (a)(c)1k magnification (b)(d)5k magnification	60
4.25	(a) Absorption spectra of Bi_2O_3 -Na ₂ O-TiO ₂ -ZnO-TeO ₂ glass system in 300-700nm, (b) Absorption spectra of 15B sample glass from 300-2500nm	61
4.26	Percentage of transmittance of Bi_2O_3 -Na ₂ O-TiO ₂ -ZnO-TeO ₂ glass system in the wavelength range of 300-700 nm	62
4.27	Absorption spectra of 5B, 8B, 10B, 12B, and 15B after heat treatment for half an hour	62
4.28	Percentage of transmittance for 5B, 8B, 10B, 12B, and 15B sample glasses after heat treatment for half an hour	63
4.29	Absorption spectra of 5B, 8B, 10B, 12B, and 15B after heat treatment for 2 hours	63
4.30	Percentage of transmittance for 5B, 8B, 10B, 12B, and 15B sample glasses after heat treatment for 2 hours	64
4.31	Absorption spectra of 5B, 8B, 10B, 12B, and 15B after heat treatment for 8 hours	64
4.32	Percentage of transmittance for 5B, 8B, 10B, 12B, and 15B sample glasses after heat treatment for 8 hours	65
4.33	Tauc's plot of direct band gap transition for Bi_2O_3 -Na ₂ O-TiO ₂ -ZnO-TeO ₂ glass system	66
4.34	Tauc's plot of indirect band gap transition for Bi_2O_3 -Na ₂ O-TiO ₂ -ZnO-TeO ₂ glass system	67
4.35	Plot of direct bandgap transition for heat treated 5B sample glass with 0.5h, 2h, and 8h	69

4.36 Plot of indirect bandgap transition for heat treated 15B sample 69 glass with 0.5h, 2h, and 8h

71

71

- 4.37 Plot of direct bandgap transition for heat treated 15B sample glass with 0.5h, 2h, and 8h
- 4.38 Plot of indirect bandgap transition for heat treated 15B sample glass with 0.5h, 2h, and 8h

6

LIST OF ABBREVIATIONS

DSC	Differential Scanning Calorimetry
XRD	X-Ray Diffraction
FTIR	Fourier Transform Infrared
FESEM	Field Emission Scanning Electron Microscope
UV-Vis	Ultraviolet-Visible
Tg	Glass transition temperature
T _x	Onset crystallization temperature
T _c	Crystallization temperature
T _m	Melting temperature
IR	Infrared
NLO	Nonlinear optics
SHG	Second harmonic generation
HMO	Heavy metal oxides
UV	Ultraviolet
NIR	Near infrared
MIR	Mid infrared
Т	Temperature
mol%	Molarity percentage
ZnO	Zinc oxides
TeO ₂	Tellurium oxides
Na ₂ O	Sodium oxides
TiO_2	Titanium oxides
$\begin{array}{c} Bi_2O_3\\ Bi^{3+} \end{array}$	Bismuth oxides Bismuth ions
BiO ₃	Oxobismuthinolate oxide

G

E _{opt}	Optical b	band gap
NaCO	D ₃ Sodium of	carbonate
TGA	Thermo-	Gravimetric Analysis
λ	Wavelen	gth
V	Volts	
А	Ampere	
Al ₂ O ₂	3 Aluminiu	um oxides
ρ	Density	
Vm	Molar vo	olume
NBO	Non-brid	lging oxygen
ВО	Bridging	oxygen
S	Glass sta	bility
TBP	Trig <mark>onal</mark>	bipyramid
TP	Trigo <mark>nal</mark>	pyramid
${ m Ti}^{4+}$	Titanium	nions
χ ³	Nonlinea	ar susceptibility
Er ³⁺	Erbium i	ons
Yb ³⁺	Ytterbiu	m ions
Tb ³⁺	Terbium	ions

xviii

CHAPTER 1

INTRODUCTION

1.1 Aims and motivation

In recent years, the direction of development in the communication system has shifted slowly from the ordinary electrical communication system using copper wires as a transmission medium for signal transmission to optical communication system. The reasons for this trend are due to the limitation on the capacity and speed of the transmission when copper wires are used as a transmission medium in the communication system. However, this problem can be solved by the invention of the optical communication system that uses optical fibre as the transmission medium of the communication system. The benefits of using optical fibre as a transmission medium are to increase the capacity and the speed of signal transmission within the communication system.

Essentially, a comprehensive optical communication system is a built using multiple optical components, such as optical switches, optical amplifiers, and optical fibre. For the design of fibre-based and optical waveguides material, the characteristics of the glass material in thermal stability and crystallisation properties are important as crystal growth within the glass materials due to reheating during laser operation will lead to a linear loss through light scattering centre in the waveguide, which potentially negates the signal gain [1]. In order to optimise data transmission, it is vital that the manufacturing materials used for optical components have a good refractive index, transmittance, and non-linear optical properties. Due to this reason, many efforts have been made to improve the data or signal transmission on various types of glasses from the perspective of capacity, and low loss and wide transmission window from ultraviolet (UV) to near-infrared (NIR) [2]. Tellurite-based glasses have stirred wide-ranging interest in the field of photonic for their high refractive index, low phonon energy, good thermal stability, and excellent chemical durability. The low phonon energy of the tellurite glass minimises the non-radiative losses of the material through the reduction of the non-radiative transition probability of the ions in the glass [3][4]. Most importantly, linear and non-linear optical (NLO) properties of the tellurite glasses are excellent in the third-order optical non-linearity and ultrafast non-linear optical response [5]. Moreover, the nonlinear refractive index of tellurite-based glasses is higher than other types of glasses, such as silicate, borate, or germanate glasses [6]. This has made tellurite-based glass increasingly prominent as materials for laser, non-linear optics, and optical communication [7].

The significant non-linear optical properties of TeO₂-based glasses are mainly due to the high polarisability of the lone pair electron in the 5s orbital of the tellurium atom [8]. Tellurite glass is a type of conditional glass former in which tellurium is unable to form glass by a single oxide. The reason for this is because pure TeO₂ is unstable and will quickly crystallise due to the lone pair electrons, which are present at the equatorial

position of the TeO₄ units. Due to this reason, the structural rearrangement of these units during the glass formation process is strictly limited. Thus, the modifier oxides, such as alkali, alkaline, or heavy metal oxides, have to be added to the composition in order to improve the glass-forming ability of the tellurium oxides. The modifier oxides that are generally recommended to avoid crystallisation by enhancing the glass stability are ZnO and Na₂O [6][9]. Additionally, the great non-linear optical properties due to the high polarisability of Te⁴⁺ can be further enhanced by simply adding the modifier oxides that involve the highly polarisable cations in the heavy p elements. The modifier oxides of high atomic weight, such as lead oxides (PbO) and bismuth oxides (Bi_2O_3), are also able to enhance the refractive index and the transmission windows of the tellurite-based glasses, which extend the infrared (IR) spectrum. In the current development of glasses, glasses have been mainly divided into two types: amorphous glasses and glass-ceramics. Amorphous glass's characteristic is that the arrangement of the glass structure and the network fully random. As for glass-ceramics, the organized crystal structures and networks can be observed within the amorphous glass network. There are few great potentials on the tellurite glass-ceramics, which have greater mechanical properties, refractive index, and nonlinear properties as compared to the amorphous tellurite based glass. Thus, the potential of tellurite glass-ceramics on the application of optical devices is significant [10][11].

High refractive index tellurite glass-ceramics can be obtained when the refractive index of the crystalline phases formed within the glass network structures is similar to the refractive index of the glass phases within the glass matrix. This phenomenon can be explained by the reduction of scattering within the glass matrix. When the refractive index of the phases within the glass matrix is similar, the scattering loss when the incident light travels from one phase to another phase can be reduced. Thus, the glass refractive index can be modified by converting the amorphous glass into glass-ceramics. On the other hand, the formation of the crystal phases has broken the long-range isotropic glass network of the tellurite based glass. The nonlinear optical properties such as second harmonic generation (SHG) will be enhanced due to the formation of the crystal in the tellurite glass-ceramics [10]. A nonlinear crystals can be used for the conversion of energy in an electromagnetic wave with a certain value of frequency or multiples electromagnetic waves at different frequencies to energy in an electromagnetic wave at a different frequency.

By referring to the earlier work that has been done by previous researchers, Bi_2O_3 is a great modifier oxide that is able to improve the crystallisation behaviour of the tellurite-based glass [10]. Thus, Bi_2O_3 has been chosen as the varying modifier oxide in this project to observe the difference in structural, optical properties, and crystallisation behaviour between the tellurite-based glass and the tellurite glass-ceramics by converting the amorphous tellurite glass into tellurite glass-ceramics. The conversion of the amorphous tellurite glass into tellurite glass-ceramics is done by control heat treatment. Controlled heat treatment is a doublestep heat treatment, which is the nucleation and crystals growth. There is a difference in the microstructure that can be observed by controlled heat treatment as compared to the single-step heat treatment [11]. The purpose of using controlled heat treatment is to maintain the crystal size below 1 μ m, which controls the transparency of the tellurite glass-ceramics.

1.2 Problem statement

As mentioned from the part of aims and motivation, an optical communication system should have characteristics, such as high speed and low loss, to transmit a huge amount of data at one time, especially with long-distance communication. Thus, the glass materials used should have characteristics, such as low absorption of light and wide transmission bandwidth.

Other than the novel glass of silicate glass composition, there are a lot of other more optical flexible glass compositions that can be obtained with a high refractive index, transparent window, and great linear and nonlinear optical properties, such as heavy metal oxides, fluorides, and chalcogenides [12]. In this project, tellurium oxides, which is able to fulfill the characteristics that have been mentioned, will be used as the glass former in our glass composition.

First, significant transparency is an important characteristic of the medium for optical applications. Thus, the transparency of the glass samples needs to be maintained even the sample glasses have undergone the crystallisation process through heat treatment, which converts from glass to glass-ceramics. In other words, the crystal size needs to be controlled for the prevention of the overgrew of the crystals within the glass-ceramics, which causes the scattering of light that lead to the opacity of the sample glasses [10].

Next, the refractive index of the glass material needs to be significant because the refractive index is the fundamental criterion of an optical material. The high refractive index enables the material to have high polarisability and high potential to act as a low loss optical waveguide through total internal reflection with an appropriate combination of material [13][14]. Material with great polarisability is expected to have significant nonlinear optical properties, which, in turn, have a large nonlinear susceptibility, χ [13]. The nonlinear coefficient of an optical material plays an important role in various optical applications, such as optical lenses, optoelectronics, and optical communication. Since tellurite glass is considered as a high refractive index glass, the addition of the high refractive index heavy metal oxides (HMO), Bi₂O₃ as a glass modifier will further enhance the polarisability of the high polarisable tellurite glass [15]. However, the addition of Bi₂O₃ also able to enhance the crystallisation tendency of the tellurite-based glass at the same time [10]. Thus, the thermal properties, network structure, and tendency of crystallization by the influence of Bi₂O₃ addition have to be investigated.

Lastly, the optical induced transition can be observed through the absorption edge from the UV-Visible absorption investigation [16]. The band structure and the energy gap of the non-crystalline and crystalline material can be determined through the absorption investigation. Thus, the changes in the bandgap and energy structure of the bismuth tellurite glass representing non-crystalline material before controlled heat treatment and bismuth tellurite glass-ceramics, which crystallised after the heat treatment can be investigated.

1.3 Objectives

In this thesis, the thermal, structural, and optical properties of the bismuth tellurite glass with different percentages of bismuth oxides, Bi_2O_3 , before and after controlled heat treatment will be investigated. The objectives of this project can be concluded as follow:

- 1. To evaluate the optical transparency of the bismuth tellurite glass-ceramics even after the controlled heat treatment.
- 2. To analyse the thermal properties, structural network, and the tendency of crystallisation of the bismuth tellurite glass with different percentages of the bismuth oxides, Bi_2O_3 content.
- 3. To investigate the optical induced bandgap and energy structure of the bismuth tellurite glass before and after heat treatment.

1.4 Scope

In this thesis, the fabrication of the glass, heat treatment, and various types of testing of the sample glasses will be carried out to perform the best results of this project. The scope of this project can be summarised as follow:

- 1. The bismuth tellurite glasses with different percentages of Bi_2O_3 content will be fabricated by using the melt quenching method.
- 2. The thermal properties of the sample glasses with different percentage of Bi_2O_3 content will be performed by differential scanning calorimetry (DSC).
- 3. Heat treatment will be performed based on the DSC results, and the temperature for the heat treatment will be referring to the glass transition temperature (T_g) , onset crystallisation temperature (T_x) , and crystallisation temperature (T_c) .
- 4. The degree of crystallinity of the sample glasses before and after heat treatment will be performed by x-ray diffraction.
- 5. The structural properties of the sample glasses before and after heat treatment will be performed by Raman spectroscopy and Fourier-transfer infrared spectroscopy (FTIR)
- 6. The optical properties of the sample glasses before and after heat treatment will be performed by UV-Vis spectroscopy.

1.5 Report structure

An overview of the structure of this report is presented in this chapter. The problem statement in this chapter has listed the problems faced in the current technologies. The objective was the purpose of carrying out this project and also as guidance or directory of the project. Meanwhile, the scope was the solutions that how the problem stated able

to be solved. Furthermore, the report structure will be summarized the content or idea that will be discussed in each of the chapters.

Chapter 2 has reviews the research that have been done by the other researchers. The idea and the techniques that have been carried out by the researchers have been extracted and compounded as references for the project. The idea and techniques have been extracted here, including glass properties, characteristics of glass-ceramics, structural, thermal, and optical properties of the compositions. Other than that, the comparison among the results by the researchers also has been done to extract the best solutions or techniques to proceed with the project.

Chapter 3 describes the basic steps or procedures that has been carried out in this research. First, this chapter has described the preparation of the sample glasses, which includes chemical mixing and glass melting process. Next, the conversion of sample glasses into glass-ceramics by using controlled heat treatment also has been discussed in this chapter. Lastly, the characterisation of thermal, structural, and optical properties of the sample glass before and after heat treatment also has been described in this chapter.

Chapter 4 discusses the results that have been obtained in this project. First of all, this chapter has shown the transparency of the sample glasses before and after heat treatment. Subsequently, the degree of crystallinity of the heat-treated glass samples also has been described in this chapter. At the end of this chapter, the results of the characterization of thermal, structural, and optical properties also have been discussed in this chapter.

Chapter 5 has concludes and summarises the research on the changes in the sample glasses before and after heat treatment in the perspective of transparency, degree of crystallinity, thermal, structural, and optical properties.

REFERENCES

- J.Massera *et al.*, "Nucleation and growth behavior of glasses in the TeO2 Bi2O3 – ZnO glass system," *J. Non. Cryst. Solids*, vol. 356, no. 52–54, pp. 2947– 2955, 2010.
- [2] A. S. R.D. Manzani, J.B. Soauza, "Phosphotellurite glass and glass ceramics with high TeO2 content: thermal, structural and optical properties," 2019.
- [3] C. S.Ray and D. E.Day, "Structural Properties and Crystallization of Sodium Tellurite Glasses," vol. 81, no. 4, pp. 9–16, 2008.
- [4] V.Nazabal, S.Todoroki, A.Nukui, T.Matsumoto, and S.Suehara, "Oxyfluoride tellurite glasses doped by erbium : thermal analysis, structural organization and spectral properties," vol. 325, pp. 85–102, 2003.
- [5] T.Nb *et al.*, "Physical properties and optical band gap of new tellurite glasses within the," vol. 113, pp. 407–411, 2009.
- [6] M.Udovic, P.Thomas, A.Mirgorodsky, O.Durand, M.Soulis, andO.Masson, "Thermal characteristics, Raman spectra and structural properties of new tellurite glasses within the Bi 2 O 3 – TiO 2 – TeO 2 system," vol. 179, pp. 3252– 3259, 2006.
- [7] H. M.Kamari and S.Aziz, "Optical properties of ternary tellurite glasses," no. March, 2010.
- [8] M. Ç.Ersundu and A. E.Ersundu, "Structure and crystallization kinetics of lithium tellurite glasses," *J. Non. Cryst. Solids*, vol. 453, pp. 150–157, 2016.
- [9] G.Lakshminarayana *et al.*, "Borotellurite Glasses for Gamma-Ray Shielding: An Exploration of Photon Attenuation Coefficients and Structural and Thermal Properties," 2018.

- [10] X.Hu et al., "Influence of Bi2O3 Content on the Crystallization Behavior of TeO2 – Bi2O3 – ZnO Glass System," vol. 358, pp. 952–958, 2012.
- [11] A.Bertrand et al., "New Transparent Glass-Ceramics Based on the Crystallization of 'Anti-glass 'Spherulites in the Bi 2 O 3 – Nb 2 O 5 – TeO 2 System."
- [12] A.Santic, "Structural Properties and Crystallization of Sodium Tellurite Glasses Structural Properties and Crystallization of Sodium Tellurite Glasses," no. July 2014, 2008.
- [13] M. N.Azlan, M. K.Halimah, A. B.Suriani, Y.Azlina, andR.El-mallawany, "Electronic polarizability and third-order nonlinearity of Nd 3 b doped borotellurite glass for potential optical fiber," *Mater. Chem. Phys.*, vol. 236, no. June, p. 121812, 2019.
- [14] M. K.Halimah, M. F.Faznny, M. N.Azlan, and H. A. A.Sidek, "Results in Physics Optical basicity and electronic polarizability of zinc borotellurite glass doped La 3 + ions," *Results Phys.*, vol. 7, pp. 581–589, 2017.
- [15] K. S.Shaaban, "Optical properties of Bi2O3 doped boro tellurite glasses and glass ceramics," *Opt. Int. J. Light Electron Opt.*, p. 163976, 2019.
- [16] M. M. E.A. Abdel-Kader, A.A Higazy, "Optical absorption studies for TeO2-PzO., and Bi2Os-TeO2-P2Os glasses," vol. 2, pp. 204–208, 1991.
- [17] W.Bragg, *The glassy state*. Elsevier Ltd.
- [18] L.U.Grema, "The Effects of Composition on the Thermal, Mechanical and Electrical Properties of Alumino-borosilicate Sealing Glasses for Solid Oxide Fuel Cell (SOFC) Applications. By Lawan Umar Grema A thesis submitted for the degree of Doctor of Philosophy The Un," no. March, 2018.
- [19] M.O. Donnell, "Tellurite and Fluorotellurite Glasses for Active and Passive Fibreoptic Waveguides," 2004.

- [20] G. P.Kothiyal, A.Ananthanarayanan, and G. K.Dey, *Glass and Glass-Ceramics*. Elsevier Inc., 2012.
- [21] E.Sayed, M. M.Elokr, andY. M.Aboudeif, "Optical, elastic properties and DTA of TNZP host tellurite glasses doped with Er 3 p ions," *J. Mol. Struct.*, vol. 1108, pp. 257–262, 2016.
- [22] N. N.Yusof *et al.*, "Modified Absorption Features of Titania-Erbium Incorporated Plasmonic Tellurite Glass System," vol. 13, pp. 89–94, 2015.
- [23] T.Hayakawa, M.Hayakawa, M.Nogami, and P.Thomas, "Nonlinear optical properties and glass structure for MO – Nb 2 O 5 – TeO 2 (M = Zn, Mg, Ca, Sr, Ba) glasses," Opt. Mater. (Amst)., vol. 32, no. 3, pp. 448–455, 2010.
- [24] J. C.Mclaughlin, S. L.Tagg, and J. W.Zwanziger, "The Structure of Alkali Tellurite Glasses," pp. 67–75, 2001.
- [25] R. S.Kundu, S.Dhankhar, R.Punia, K.Nanda, and N.Kishore, "Bismuth modified physical, structural and optical properties of mid-IR transparent zinc borotellurite glasses," vol. 587, pp. 66–73, 2014.
- [26] T.Sekiya, N. Mochida, A. Ohtsuka, M. Tonokawa, "NON-CRYSTALLINE SOLIDS Raman spectra of MO1 / z-TeO 2 (M = Li, Na, K, Rb, Cs and T1)," vol. 144, pp. 128–144, 1992.
- [27] K.Kaur, K. J.Singh, and V.Anand, "Structural Properties of Bi2O3-B2O3-SiO2-Na2O Glasses for Gamma Ray Shielding," vol. 120, pp. 63–72, 2016.
- [28] L.Pop, E.Culea, R.Muntean, M.Culea, and M.Bosca, "Structural characteristics of terbium - Lead - bismuthate glasses," *J. Optoelectron. Adv. Mater.*, vol. 9, no. 6, pp. 1687–1689, 2007.
- [29] K. M.Kaky, G.Lakshminarayana, S. O.Baki, I.VKityk, Y. H.Taufiq-yap, and M. A.Mahdi, "Results in Physics Structural, thermal and optical absorption features of heavy metal oxides doped tellurite rich glasses," vol. 7, pp. 166–174, 2017.

- [30] F.Chen *et al.*, "Preparation and optical nonlinearities of transparent bismuthbased glass ceramics embedded with Bi 2 O 3 microcrystals," vol. 256, pp. 2786– 2789, 2010.
- [31] J.Massera, "Nucleation and Growth Behavior of Tellurite-Based Glasses Suitable for Mid-Infrared Applications," 2009.
- [32] A.Azuraida *et al.*, "Comparative Studies of Bismuth and Barium Boro-Tellurite Glass System : Structural and Optical Properties," vol. 12, no. 10, pp. 497–503, 2015.
- [33] E.Yousef, M.Hotzel, andC.Ru, "Effect of ZnO and Bi 2 O 3 Addition on Linear and Non-linear Optical Properties of Tellurite Glasses," vol. 353, pp. 333–338, 2007.
- [34] H. M.Oo, H.Mohamed-kamari, and W. M. D.Wan-yusoff, "Optical Properties of Bismuth Tellurite Based Glass," no. 2011, pp. 4623–4631, 2012.
- [35] X.Liu, J.Zhou, S.Zhou, Y.Yue, and J.Qiu, "Progress in Materials Science Transparent glass-ceramics functionalized by dispersed crystals," *Prog. Mater. Sci.*, vol. 97, pp. 38–96, 2018.
- [36] A. T. G.Kullberg, A. A. S.Lopes, J. P. B.Veiga, M. M. R. A.Lima, and R. C. C.Monteiro, "Formation and crystallization of zinc borosilicate glasses: In fl uence of the ZnO / B 2 O 3 ratio," *J. Non. Cryst. Solids*, vol. 441, pp. 79–85, 2016.
- [37] A.Tarafder, A. R.Molla, C.Dey, andB.Karmakar, "Thermal, Structural, and Enhanced Photoluminescence Properties of Eu 3+ -doped Transparent Willemite Glass – Ceramic Nanocomposites," vol. 2431, pp. 2424–2431, 2013.
- [38] A. T. G.Kullberg, A. A. S.Lopes, J. P. B.Veiga, and R. C. C.Monteiro, "Crystal growth in zinc borosilicate glasses," *J. Cryst. Growth*, vol. 457, pp. 239–243, 2017.

- [39] A. L. I. A.Omar and S. A. M.Abdel-hameed, "Crystallization of Calcium Zinc Aluminosilicate Glasses," no. December, 2016.
- [40] S. A. M. A. Y. M.Hamdy, "Characterization and Luminescence Properties of Mn-Doped Zinc Borosilicate Glasses and Glass-Ceramics," *Silicon*, 2018.
- [41] P.Naresh, G. N.Raju, V. R.Kumar, M.Piasecki, I.VKiytyk, and N.Veeraiah, "Optical and dielectric features of zinc oxyfluoroborate glass ceramics with TiO 2 as crystallizing agent," *Ceram. Int.*, vol. 40, no. 1, pp. 2249–2260, 2014.
- [42] M.Wang, L.Fang, M.Li, A.Li, X.Zhang, and Y.Hu, "Glass transition and crystallization of ZnO-B 2 O 3 -SiO 2 glass doped with Y 2 O 3," no. November, 2018.
- [43] M. T.Wang, L. Fang, M. Li, M. Wang, Z.G. Liu, Y.H. Hu, X.W. Zhang, "Investigation on Phase Evolution of the ZnO-B2 O3 -SiO2 Glass Ceramics," vol. 31, no. 4, pp. 830–834.
- [44] R.Nat, "Crystallization and Properties of Low thermal expansion glass-ceramics in BaO - Al2O3 - B2O3 System," 1977.
- [45] "Definition of Glass," pp. 1–26, 2016.
- [46] H.Shahbazi, M.Tataei, M. H.Enayati, A.Shafeiey, and M. A.Malekabadi, "Structure-transmittance relationship in transparent ceramics," *J. Alloys Compd.*, vol. 785, pp. 260–285, 2019.
- [47] S. N. N. M. K. H. F. D.Muhammad, "Comparison study of optical properties on erbium-doped and silver- doped zinc tellurite glass system for non-linear application," *J. Mater. Sci. Mater. Electron.*, vol. 0, no. 0, p. 0, 2019.
- [48] F.Chen, Q.Yu, B.Qiao, S.Dai, andQ.Zhang, "Influence of TiO2 on Thermal Stability and Crystallization Kinetics of Tellurite Glasses within TeO2 – Bi2O3 – Nb2O5 Pseudo-Ternary System," J. Non. Cryst. Solids, vol. 404, pp. 32–36, 2014.

- [49] M.Peng, C.Zollfrank, andL.Wondraczek, "Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at," vol. 285106, 2009.
- [50] G.Lin, D.Tan, F.Luo, D.Chen, Q.Zhao, and J.Qiu, "Linear and nonlinear optical properties of glasses doped with Bi nanoparticles," *J. Non. Cryst. Solids*, vol. 357, no. 11–13, pp. 2312–2315, 2011.
- [51] B. S.Zhou *et al.*, "Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers **," pp. 1407–1413, 2008.
- [52] B.Kusz, K.Trzebiatowski, M.Gazda, andL.Murawski, "Structural studies and melting of bismuth nanocrystals in reduced bismuth germanate and bismuth silicate glasses," vol. 328, pp. 137–145, 2003.
- [53] A.Bajaj *et al.*, "Structural investigation of bismuth borate glasses and crystalline phases," *J. Non. Cryst. Solids*, vol. 355, no. 1, pp. 45–53, 2009.
- [54] A.Zakiah et al., "Comprehensive study on structural and optical properties of -Tm2O3 doped zinc silicate based glass – ceramics," J. Mater. Sci. Mater. Electron., vol. 29, no. 23, pp. 19861–19866, 2018.
- [55] O.Al, M. A.González, A.Gorokhovsky, J. I.Escalante, and P.Ponce, "Crystallization and properties of glass-ceramics of the K2O-BaO-B2O3 -," vol. 755, pp. 125–132, 2013.
- [56] Q.Liu, Y.Tian, W.Tang, X.Jing, J.Zhang, and S.Xu, "Comprehensive studies of the Ag + effect on borosilicate glass ceramics containing Ag nanoparticles and Er-doped hexagonal NaYF 4 nanocrystals : morphology, structure, and 2.7 μ m emission," vol. 7, no. 5, pp. 913–923, 2018.
- [57] E.Sayed andY. A. E. A. E. R.Shaaban, "A TEM study and non-isothermal crystallization kinetic of tellurite glass-ceramics," pp. 5929–5936, 2010.

- [58] N.Berwal, S.Dhankhar, P.Sharma, R. S.Kundu, R.Punia, and N.Kishore, "Physical, structural and optical characterization of silicate modi fi ed bismuthborate-tellurite glasses," vol. 1127, pp. 636–644, 2017.
- [59] H. A. A.Sidek, S. Rosmawati, Z.A. Talib, M.K. Halimah, W.M. Daud, "Synthesis and Optical Properties of ZnO-TeO 2 Glass System," vol. 6, no. 8, pp. 1489–1494, 2009.
- [60] G.Upender, S.Ramesh, M.Prasad, V. G.Sathe, and V. C.Mouli, "Optical band gap , glass transition temperature and structural studies of (100 - 2 x) TeO 2 - x Ag 2 O - x WO 3 glass system," vol. 504, pp. 468–474, 2010.
- [61] A. F. A.Mohammed, G.Lakshminarayana, S. O.Baki, K. A.Bashar, I.VKityk, andM. A.Mahdi, "Optical and dielectric studies for Tb 3 + / Sm 3 + co-doped borate glasses for solid-state lighting applications," *Opt. Mater. (Amst).*, vol. 86, no. June, pp. 387–393, 2018.
- [62] R.Situmorang, Rahmaniar, D.D. Paggabean, C. Sarumaha, "The Dy2O3 Effect Study on Spectroscopy and Optical Properties of PbiNaGd Glass for Optical Amplification," 2020.
- [63] E.Idalgo, E. B.Ara, K.Yukimitu, J. C. S.Moraes, V. C. S.Reynoso, and C. L.Carvalho, "Effects of the particle size and nucleation temperature on tellurite 20Li 2 O 80TeO 2 glass crystallization," vol. 434, pp. 13–18, 2006.
- [64] X.Zhang, W.Deng, and R.Dongol, "Phase separation and crystallization of La 2 O 3 doped ZnO-B 2 O 3 -SiO 2," J. Rare Earths, no. xxxx, pp. 2–7, 2019.
- [65] N.Effendy *et al.*, "Structural and optical properties of Er 3 + -doped willemite glass-ceramics from waste materials," *Opt. - Int. J. Light Electron Opt.*, vol. 127, no. 24, pp. 11698–11705, 2016.
- [66] A.Tarafder, A.Rahaman, S.Mukhopadhyay, andB.Karmakar, "Fabrication and enhanced photoluminescence properties of Sm 3 + -doped ZnO – Al 2 O 3 – B 2 O 3 – SiO 2 glass derived willemite glass – ceramic nanocomposites," vol. 36, pp. 1463–1470, 2014.

- [67] G. S.Murugan, E.Fargin, V.Rodriguez, andF.Adamietz, "Temperature-assisted electrical poling of TeO 2 Bi 2 O 3 ZnO glasses for non-linear optical applications," vol. 344, pp. 158–166, 2004.
- [68] S.Shen andA.Jha, "Raman spectroscopic and DTA studies of TeO 2 -ZnO-Na 2 O tellurite glasses," vol. 40, pp. 159–164, 2008.
- [69] G. S.Murugan and Y.Ohishi, "TeO 2 BaO SrO Nb 2 O 5 glasses : a new glass system for waveguide devices applications," vol. 341, pp. 86–92, 2004.
- [70] N.Elkhoshkhany, R.Abbas, R.El-Mallawany, and S. F.Hathot, "Optical properties and crystallization of bismuth boro-tellurite glasses," J. Non. Cryst. Solids, vol. 476, no. February, pp. 15–24, 2017.
- [71] N. A. M.Jan, M. R.Sahar, and A.Optical, "Effect of heat treatment on the structural modification of neodymium doped tellurite glass," vol. 13, no. 9, pp. 417–426, 2016.
- [72] P.Pascuta, L.Pop, S.Rada, M.Bosca, and E.Culea, "The local structure of bismuth germanate glasses and glass ceramics doped with europium ions evidenced by FT-IR spectroscopy," vol. 48, pp. 281–284, 2008.
- [73] A. E.Ersundu, M.Çelikbilek, andS.Ayd, "A Review of Scanning Electron Microscopy Investigations in Tellurite Glass Systems," pp. 1105–1114, 2012.
- [74] M.Hafiz, M.Zaid, K. A.Matori, S.Hj, A.Aziz, and A.Zakaria, "Effect of ZnO on the Physical Properties and Optical Band Gap of Soda Lime Silicate Glass," vol. i, pp. 7550–7558, 2012.
- [75] B. Ã.Eraiah and S. G.Bhat, "Optical properties of samarium doped zinc phosphate glasses," vol. 68, pp. 581–585, 2007.
- [76] B.Samanta, "Synthesis and different Optical properties of Gd2O3 doped sodium zinc tellurite glasses."

- [77] G.Kiliç andE.Aral, "Determination of Optical Band Gaps and Structural Properties of Cu2 + Doped B2O3 -Na2O-Al2O3 -V2O5 Glasses," vol. 22, no. 3, pp. 129–139, 2009.
- [78] M.Abdel-baki, F. A.Abdel-wahab, F.El-diasty, M.Abdel-baki, F. A.Abdelwahab, andF.El-diasty, "One-photon band gap engineering of borate glass doped with ZnO for photonics applications One-photon band gap engineering of borate glass doped with ZnO for photonics applications," vol. 073506, 2012.
- [79] S.Sindhu, S.Sanghi, A.Agarwal, V. P.Seth, and N.Kishore, "Effect of Bi2O3 content on the optical band gap, density and electrical conductivity of MO·Bi2O3·B2O3 (M = Ba, Sr) glasses," vol. 90, pp. 83–89, 2005.
- [80] M.Ha et al., "Comprehensive study on compositional dependence of optical band gap in zinc soda lime silica glass system for optoelectronic applications," vol. 449, pp. 107–112, 2016.
- [81] M.Ha et al., "Effect of heat treatment temperature to the crystal growth and optical performance of Mn3O4 doped α -Zn2SiO4 based glass-ceramics," vol. 15, no. August, pp. 0–5, 2019.
- [82] S. E. T. A. T. A. A.Higazy, "Synthesis and characterization of CdS nanocrystals embedded in germanate glasses," pp. 219–226, 2014.
- [83] M. C.Dias, E.Piva, M.Alexandre, andC.Sinhoreti, "UV-Vis Spectrophotometric Analysis and Light Irradiance Through Hot-Pressed and Hot-Pressed-Veneered Glass Ceramics," vol. 19, pp. 197–203, 2008.
- [84] M.Farahmandjou andS. A.Salehizadeh, "The Optical Band Gap and the Tailing States Determination in Glasses of TeO2 – V2O5 – K2O system," vol. 39, no. 5, pp. 473–479, 2013.
- [85] K. A.Bashar *et al.*, "Tunable white-light emission from Pr3+ / Dy3+ co-doped B2O3 - TeO2 - PbO - ZnO - Li2O - Na2O glasses," vol. 88, no. December 2018, pp. 558–569, 2019.

- [86] F.El-diasty, F. A. A.Wahab, M.Abdel-baki, F.El-diasty, and F. A. A.Wahab, "Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions," vol. 093511, no. May 2014, 2008.
- [87] M.Behera, S.Behera, and R.Naik, "Optical band gap tuning by laser induced Bi diffusion into As2Se3 film probed by spectroscopic," pp. 18428–18437, 2017.
- [88] P. K.Singh, P.Jaiswal, S.Mishra, and D. K.Dwivedi, "Investigations of Heat Treatment on Structural and Optical Properties of Ge8Se60 Te30 in 2 Thin Film for Optical Data Storage," vol. 15, no. 5, pp. 255–260, 2018.
- [89] N.Shasmal andB.Karmakar, "Synthesis of Transparent Chloroborosilicate Nanoglass-ceramics: Crystallization and Growth Mechanism of BaCl2 Nanocrystals," *Integr. Med. Res.*, vol. 3, no. 4, pp. 390–401, 2015.
- [90] B.Eraiah, "Optical properties of lead tellurite glasses doped with samarium trioxide," vol. 33, no. 4, pp. 391–394, 2010.
- [91] P.Zhang, X.Li, J.Yang, andS.Xu, "Effect of heat treatment on the microstructure and properties of lithium disilicate glass-ceramics," *J. Non. Cryst. Solids*, vol. 402, pp. 101–105, 2014.
- [92] M.Ennouri, I.Jlassi, E.Habib, andG.Bernard, "Improvement of spectroscopic properties and luminescence of Er3+ ions in phospho-tellurite glass ceramics by formation of ErPO4 nanocrystals," vol. 216, no. June, pp. 1–9, 2019.
- [93] M. N. A. C.Eevon, M. K. H. R.El, and M. S. L.Hii, "Effect of Gd3+ on optical and thermal properties of tellurite glass," J. Theor. Appl. Phys., no. 0123456789, 2020.