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The quality of palm oil depends on fresh fruit bunch (FFB) ripeness level. Ripe 

bunch has higher oil quantity compared to unripe bunch. It also has less free 

fatty acid (FFA) compared to overripe bunch which reduces the quality of palm 

oil to become poor. Therefore, classification and grading of FFB into correct 

categories and process them separately is an important step to avoid loss in 

quality of the extracted palm oil. Traditionally, the grading of FFB bunches is 

performed by well-trained graders according to different parameters such as 

mesocarp color, number of loose fruits on the ground and number of empty 

sockets on the bunches. This method depends heavily on human eyes which 

can be subjective and lead to different outcomes of grading between graders. 

Thus, non-destructive method is another option for tasks of FFB ripeness level 

classification. In this research, a spectrometer with a wavelength range of 180 to 

1100 nm was applied to collect the reflectance data of FFB from unripe, ripe, and 

overripe classes. The three objectives in this study are (1) to determine the most 

suitable part of FFB for classifying oil palm ripeness level, (2) to identify the ideal 

vegetation index as prediction model for FFB classification and (3) To assess 

the classification accuracies and validate the selected prediction model. Each 

bunch was scanned at its different parts including apical, front equatorial, front 

basil, back equatorial and back basil. The reflectance data from these five parts 

was analyzed using statistical method and machine learning algorithm. Front 

equatorial was found to have significant difference between the three classes of 

ripeness, and an overall 92.7% of accuracy in differentiating between the 

maturity classes. Next, specific bands were extracted to compute vegetation 

indices for prediction model. Normalized Difference Vegetation Index (NDVI) is 

selected as the best prediction model with 93.8% classification accuracy. The 

accuracy assessment showed that NDVI has precision of 0.938, recall of 0.939 
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and F1-Score of 0.937. This shows a promising result of the NDVI as vegetation 

index to classify FFB ripeness level. The trained NDVI model was exported as 

prediction model that can assist in predicting ripeness level of FFB which can be 

applied by researcher and graders from the industry. The model was validated 

by predicting ripeness level for another FFB reflectance dataset. The prediction 

was able to produce 100% accuracies by using Linear and Weighted KNN as 

classification testing algorithm. An application was built by using the NDVI 

prediction model. It allows users to enter red and NIR reflectance values of FFB 

for the prediction of FFB ripeness level. Furthermore, the average accuracies of 

each classifier were compared. Fine KNN had the highest average accuracy of 

68.6% whereas Coarse KNN had the lowest average accuracies of 36.0%. 

These findings provide valuable information to future researchers in this field to 

develop automatic oil palm FFB classifier. 
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Kualiti minyak sawit bergantung pada tahap kematangan buah segar (FFB). 
Tandan masak mempunyai kuantiti minyak yang lebih tinggi berbanding dengan 
tandan yang belum masak. Ia juga mempunyai kurang free fatty acid (FFA) 
dibandingkan dengan tandan yang terlalu banyak yang mengurangkan kualiti 
minyak sawit menjadi kurang. Oleh itu, pengelasan dan penggredan FFB 
menjadi kategori yang betul dan memprosesnya secara berasingan adalah 
langkah penting. Secara tradisinya, penggredan tandan FFB dilakukan oleh 
pekerja yang terlatih mengikut parameter yang berbeza seperti warna mesocarp, 
jumlah buah yang jatuh di tanah dan jumlah soket kosong pada tandan. Kaedah 
ini sangat bergantung pada mata manusia yang boleh menjadi subjektif dan 
membawa kepada hasil penilaian yang berbeza antara kelas. Oleh itu, kaedah 
tidak merosakkan adalah pilihan lain untuk tugas pengelasan tahap kematangan 
FFB. Dalam penyelidikan ini, spektrometer dengan jarak 180 hingga 1100 nm 
digunakan untuk mengumpulkan pantulan FFB dari kelas belum masak, matang, 
dan terlalu masak. Tiga objektif dalam kajian ini ialah (1) untuk menentukan 
bahagian FFB yang paling sesuai untuk mengklasifikasikan tahap kematangan 
kelapa sawit, (2) untuk mengenal pasti indeks tumbuh-tumbuhan yang ideal 
sebagai model ramalan untuk pengelasan FFB dan (3) Untuk menilai ketepatan 
klasifikasi dan mengesahkan model ramalan yang dipilih. Setiap kumpulan 
diimbas pada bahagian yang berlainan termasuk apikal, khatulistiwa depan, 
basil depan, khatulistiwa belakang dan basil belakang. Data pantulan dari lima 
bahagian ini dianalisis menggunakan kaedah statistik dan algoritma 
pembelajaran mesin. Khatulistiwa depan (front equatorial) didapati mempunyai 
perbezaan yang signifikan antara ketiga kelas kematangan, dan keseluruhan 
ketepatan 92.7% dalam membezakan antara kelas kematangan. Seterusnya, 
jalur tertentu diekstrak untuk menghitung vegetation index untuk model ramalan. 
Normalized Difference Vegetation Index (NDVI) dipilih sebagai model ramalan 
terbaik dengan ketepatan klasifikasi 93.8%. Penilaian ketepatan menunjukkan 
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NDVI mempunyai precision 0.938, recall 0.939 dan F1-Score 0.937. Ini 
menunjukkan hasil yang menjanjikan dari NDVI sebagai indeks vegetasi untuk 
mengklasifikasikan tahap kematangan FFB. Model NDVI yang terlatih dieksport 
sebagai model ramalan yang dapat membantu dalam meramalkan tahap 
kematangan FFB yang dapat diterapkan oleh penyelidik dan graduan dari 
industri. Model ini disahkan dengan meramalkan tahap kematangan untuk set 
data pantulan FFB yang lain. Ramalan tersebut dapat menghasilkan 100% 
ketepatan dengan menggunakan Linear dan Weighted KNN sebagai algoritma 
pengujian klasifikasi. Aplikasi dibina dengan menggunakan model ramalan 
NDVI. Ia membolehkan pengguna memasukkan nilai pantulan merah dan NIR 
FFB untuk ramalan tahap kematangan FFB. Selanjutnya, ketepatan purata 
setiap pengkelasan dibandingkan. Fine KNN  mempunyai ketepatan purata 
tertinggi 68.6% sedangkan Coarse KNN mempunyai ketepatan purata terendah 
36.0%. Penemuan ini memberikan maklumat yang berharga kepada penyelidik 
masa depan dalam bidang ini untuk mengembangkan pengelasan FFB kelapa 
sawit automatik. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 General Introduction to Oil Palm Industry in Malaysia 

 

Agriculture and agro-based industry have been the foundation of the Malaysian 

economy. Although this industry had been the “sunset industry” since former 

Prime Minister, Tun Dr. Mahathir Mohammed decided that Malaysia developed 

towards an industrialized country in early 1980’s; agriculture continues to have 

a significant role in the national economy. The successor of Tun. Dr. Mahathir, 

Tun Abdullah Badawi prioritised agricultural development, relying mostly on 

domestic food production to offset imports. (Bakar, 2009). In 2019, the 

agricultural sector provided RM89.5 million to the total Malaysian Gross 

Domestic Product (GDP), and the oil palm sector alone accounted for 37.9% of 

the agricultural GDP (DOSM, 2020). Malaysian exports of oil palm products 

totaled 27.86 million tonnes in2019, up 12.0% from the previous year's figure of 

24.88 million tonnes. 

 

Oil palm tree (Elaeis guineensis jacq.) comes from West Africa and was brought 

to Malaya by the British in the early 1870’s. During the early period, it was planted 

as an ornamental plant. Nicholas Joseph Jacquin, who identified Elaeis 

guineensis, also known as African oil palm, in 1763, formally brought the genus 

Elaeis of the monocotyledonous palm family Arecaceae into tobotanical 

classification (Corley and Tinker, 2003). 

 

Later, this crop was introduced into commercial planting and became foundation 

of palm oil industry in Malaysia. Oil palm output exploded in the early 1960s as 

part of the agriculture expansion policy of the government, which aimed to 

diminish the country's reliance on rubber and tin for economic survival (MPOC, 

n.d). Ever since, the oil palm business has evolved into one of the country's most 

vital sources of revenue. Oil palm is a blessing to thousands of people in tropical 

rural areas, providing much-needed money to fast developing countries. (Sayer 

et.al., 2012).  

 

Being the most productive oil crop, oil palm can meet the world's vast and 

expanding need for vegetable oils, which is predicted to reach 240 million tonnes 

by 2050. Oil palm trees produce three to eight times more oil than other oil crop 

(Barcelos et al., 2015). Fresh palm fruits are collected and crushed separately to 

obtain the oil from the kernel and the fruit flesh. The oil from the kernel is mostly 
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utilised in soap, industrial applications, and processed foods, whereas the oil 

from the fruit is used in food preparation. (Meijaard et. al., 2018).  

 

After 30 months of field planting, the oil palm tree will begin bearing fruits and 

will remain productive for the next 20 to 30 years, assuring a steady supply of 

oils. Each ripe bunch is commonly known as Fresh Fruit Bunch (FFB) (MPOC, 

n.d). There are several research that proved the maturity level of FFB has a high 

influence on the oil quality. Mohanaraj et. al. (2016) stated that oil content in each 

fruitlet is maximized during the ripening process. The abscission process then 

kicks off, forcing them to separate from the bunch. However, as the level of free 

fatty acids (FFA) in the oil rises, the quality of the oil begins to decrease in the 

abscised fruit. (Mohanara et. al., 2016). The amount of FFA in the soil effects the 

price and quality of crude palm oil (CPO) produced, as well as the manner of 

production, storage, and marketing of CPO. (Azeman et. al., 2015).  

 

The commercial worth of FFBs is determined by the appearance of the bunch as 

well as the quantity and quality of oil extracted from it. Ripe bunches are 

preferred because they contain more oil than unripe ones and have lower FFA 

than overripe bunches. (Makky et. al., 2014). Therefore, FFBs ripeness grading 

is an important task in a mill to ensure the extracted oil fulfill the standard. 

Traditionally, this task is done by human graders according to color and number 

of empty sockets on the bunch. Malaysia Palm Oil Board had set a standard to 

guide the graders to classify FFBs into different classes. Table 1.1 gives 

description of FFB classification.  

 

Throughout the years, different researchers from the world have developed 
different approaches to assess fruit maturity level. Some have been utilised for 
on-tree fruit quality inspection, while others are better suited for laboratory uses. 
These included destructive test method and non-destructive method. Chauhan 
et. al. (2017) stated that non-destructive methods (NDM) are more effective than 
conventional method since they are based on physical features that correspond 
well with certain crop quality parameters. (Chauhan et al., 2017). Besides, NDM 
do not rupture the fruit tissue, can be used to assess internal variable of fruits. 
These included applications of LiDAR scanning (Zuhaira et al., 2018), optical-
based sensors (Utom et al., 2018), computer and camera vision system (Makky, 
2016), laser-based imaging system (Shiddiq et al.,2017), handheld optical 
spectrometer (Dayaf, 2017), LED optical sensor (Setiawan et al., 2019), thermal 
imaging technique (Zolfagharnassab et al., 2017) and resonant frequency 
technique (Misron et al., 2017).  
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Table 1.1: Grading standard of oil palm fresh fruit bunch (Murad, 1995) 

Bunch Classifications Description 

Ripe reddish orange color fruits, at the time of 
examination at the mill, the fruit had at least 
10 sockets of detached fruitlets and more than 
fifty percent (50%) of the fruit was still 
connected to the bunch 

Underripe reddish orange color fruits and has at least 10 
sockets of detached fruitlets at the time of 
inspection at the mill.  

Unripe purplish black color fruits and without any 
socket of detached fruitlets at the time of 
inspection at the mill. 

Overripe darkish red color fruits and has more than fifty 
percent (50%) of detached fruitlets but with at 
least ten percent (10%) of the fruits still 
attached to the bunch at the time of inspection 
at the mill. 

Empty  Bunch which has more than ninety percent 
(90%) of detached fruitlets at the time of 
inspection at the mill. 

Rotten  Bunch partly or wholly, including its loose 
fruits, has turned blackish in color, rotten and 
mouldy. 

Long stalk Bunch which has s stalk of more than 5cm in 
length (measured from the lowest level of the 
bunch stalk).  

Unfresh/ Old Bunch which has been harvested and left in 
the field for more than 48 hours before being 
sent to the mill. The whole fruit or part of it 
together with its stalk has dried out. Normally, 
this type of bunch is dry and blackish in color. 

Dirty Bunch with more than half of its surface 
covered with mud, sand, other dirt particles 
and mixed with stone or foreign matter. 

Small Bunch which has small fruits and weighs less 
than 2.3kg. 

Pest damaged Bunch with more than thirty percent (30%) of 
its fruits damaged by pest attack such as rat 
etc. 

Diseased Bunch which has more than fifty percent 
(50%) parthenocarpic fruits and is not normal 
in terms of its size of its density.  

Dura  Shell thickness 2-8mm, Ratio of shell to fruit 
25-50%, Ratio of mesocarp to fruit 20-60%, 
Ratio of kernel to fruit 4-20%,  

Loose fruit Fruit detached from a fresh bunch because of 
ripeness and reddish orange in color. 

Wet Consignment of FFB which has excessive free 
water. 
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1.2   Research motivation and problem statement 

 
 
The FFB fruit starts to ripe from outer and top of the bunch. However, the word 
‘ripe’ is subjective, and can be interpreted from the view of oil content, changes 
in the color of the surface and number of loose fruits. Only the color changes and 
number of loose fruits can be observed before harvest. The color change is not 
sensitive sufficiently. In fact, the oil formation and fruit abscission processes are 
quite separate processes (Corley, 2005). Junkwon et al. (2009) and Hafiz et al. 
(2011) also investigated the color properties of different part of FFB.  Makky and 
Soni (2013) stated that the color of the fruitlets on a FFB is not uniform within the 
whole bunch. However, these previous researches did not quantify the 
differences between front and back of FFB, which is front equatorial, front basil, 
back equatorial, back basil and apical. In our present study, these five parts will 
be studied, compared and classified to identify the most suitable part for ripeness 
level identification.  

 
 

Traditional methods to grade FFBs are conducted through manually. Trained 
graders will inspect the quality and ripeness of FFBs. However, this method is 
subjective and inaccurate. Even for a skilled grader, manually classifying oil palm 
FFB into ripeness categories is a tough and time-consuming operation. 
Furthermore, human perceptions of color are frequently erratic, influenced by 
physical and psychological factors (Makky, 2016).  The low grade of oil extraction 
is due to overripe and unripe FFB at the mills. Because of these flaws, optimal 
crude oil production is impossible; as a result, some operating expenditures 
become a loss and burden for manufacturers (Kassim et. al., 2014). Saeed et al. 
(2011) proposed few vegetation indices for classification of FFB ripeness level. 
They proved that VI can produce high accuracies. However, this method was not 
tested in a prediction process. Therefore, we proposed some vegetation indices 
to act as the prediction models.  

 
 

ML is an interesting technique that can discover hidden patterns and information 
lies within the huge amount of dataset. It can be used to classify and predict the 
categories of data. However, high accuracy of classification does not ensure the 
model can serve as a good prediction model. The model needs to be validated 
with the ground truth data to check for its ability in predicting the classes of them. 
In the third objective, we will validate the selected prediction model from the 
second objective outcome. Lastly, we will carry out classification accuracies 
assessment by using precision, recall and F1-score.   

 
 

Another problem focus on is that NDM to assess the FFBs ripeness appear to 
require further laboratory analysis of collected data to achieve the objective of 
grading ripeness level of FFBs. This will increase the time-cost in the grading 
process. Therefore, a fast and accurate method to classify FFBs ripeness is 
needed.  
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1.3 Research Objectives 
 

There are several specific objectives in this study which are: 
 
1. To determine the most suitable part of FFB for classifying oil palm ripeness 

level. 

2. To identify the ideal vegetation index as prediction model for FFB 

classification. 

3. To assess the classification accuracies and validate the selected prediction 

model. 

 

 

1.4 Scope of the research 
 

This research explores the use of different bands across the light spectrum to 
investigate the ability of each band to classify FFBs into unripe, ripe and overripe. 
These three categories are critical, as there is a pressing need to avoid the 
harvesting of unripe fruits to avoid low oil yield. The other categories graded by 
MPOB were not studied in this research as they are easily identified by human 
eyes. For example, Figure 1.1 showed the images of dirty bunch and rotten 
bunch. Dirty bunch was covered by sand and mud whereas rotten bunch showed 
rotten fruitlets that were attached by pest especially mouse. The graders at the 
mill can easily eliminate these bunches from the process line. Meanwhile, as 
mentioned in the problem statement, unripe, ripe and overripe bunches cannot 
be easily differentiated from each other by using human eyes. Hence, we 
focused on them. The images of the other categories that were not studied were 
attached in the Appendix section for reference. 

 
 

 An optical spectrometer is presented as a device to collect reflectance of FFBs 
from 180nm to 1100nm. FFBs from three classes of maturity level were scanned 
using spectrometer. Different vegetation indices were applied by selecting 
specific features from the reflectance of FFBs to create a secondary parameter 
to test whether VI can improve the accuracy of FFB ripeness classification and 
used as a prediction model for ripeness levels. Machine learning algorithms were 
applied for the classification accuracy testing.  

 
 

This scope is relevant to our main research topic and objectives where we 
investigate the applicability of digital agriculture to the oil palm industry. We are 
trying to combine the effectiveness of NDM and ML to provide an accurate 
prediction method to the industry.  
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Figure 1.1: dirty bunch and rotten bunch 
 

1.5 Hypothesis and research gap 
 

Reflectance of different bands is a popular technique in the study of FFB 
ripeness level classification. However, FFB is large in size and its growth 
condition on the tree leads to different exposure of sunlight to each part of it. 
Some parts faced the tree and even covered by leaves. The other part faced 
towards the sunlight and obtained different amount of sunlight for photosynthesis. 
This situation caused the different parts of FFB to have different colors. Previous 
research may have focused on comparison between parts that were covered by 
leaves and not covered by leaves. In this research, the research gap is further 
filled by dividing FFB into five different parts which were apical, front equatorial, 
front basil, back equatorial and back basil for analysis. Each of them from every 
FFB were scanned and compared to discover the best part of FFB for ripeness 
classification. We assumed that the front parts that faced towards the sunlight 
are more accurate than the back parts of FFB.  
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