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Biohydrogen production via an anaerobic dark fermentation process at thermophilic 

conditions is recognized as an excellent biological method and more cost-effective due 

to its ability to perform without light energy and oxygen source. At thermophilic, this 

research aims to investigate the effect of bacterial immobilization on a matrix made of 

alginate and chitosan co-polymerization towards biohydrogen production. In the first 

objective, the effect of hydrogen production using granular activated carbon (GAC) as a 

microbial support carrier in forming GAC-attached biofilm was evaluated based on 

different amounts of sugar concentration as microbial feedstock. The comparison 

between initial sugars loading was conducted in a water bath shaker at 120rpm in 800 

ml working volume. The acclimatization was operated in a sequencing batch system at 

a thermophilic temperature of 60oC and the initial feedstock was set at pH 6. The 

fermentation process was continuously carried out until a steady state of biogas was 

obtained and it showed the attached-biofilm system successfully stabilizing hydrogen 

production after 40 days. The second objective involved the entrapment process in the 

formation of GAC-attached biofilm using alginate and chitosan as carrier polymers in 

the form of beads. Bacterial immobilization was done by entrapment of GAC-attached 

biofilm into 0.5g,1g,2g,3g and 4g of alginate and chitosan respectively (GAC-Alg and 

GAC-AlgC). The immobilized beads for both alginate and chitosan were conducted in 

batch fermentation using a synthetic medium at a temperature of 60°C, pH 6.0 and in 

200 ml working volume. The entrapment of GAC-attached biofilm provides good 

support for microorganisms to grow and colonize where high bacterial loads were 

observed under a scanning electron microscope (SEM). Lastly, in the final objective, this 

research was conducted to assess the performance of GAC-Alg and GAC-AlgC 

immobilized beads by using POME as a fermentation medium. It has been observed that 

the GAC-Alg immobilized beads resulted in stable hydrogen production after 52 hours 

with a consistent HPR of 1.02 mmol H₂/l.h and 1.83 mmol H2/l.h for GAC- AlgC. 

Overall, this study showed the immobilization of bacteria-entrapped beads promising 

approach to protect the bacteria colonization during the fermentation, thus retaining and 
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promoting microbial growth and protecting the microbial from an unfavourable 

environment.  
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memenuhi keperluan untuk ijazah Master Sains 

PENILAIAN KARBON BERBUTIR-AKTIF YANG DILAMPIRKAN DENGAN 

BIOFILM BERSALUT DALAM ALGINATE-CHITOSAN UNTUK 

PENGHASILAN BIOHIDROGEN 

Oleh 

NUR FARAHANA BT DZUL RASHIDI 

Jun 2022 

Pengerusi    : Nur Syakina Bt Jamali, PhD 

Fakulti  :  Kejuruteraan 

Pengeluaran biohidrogen melalui proses penapaian gelap anaerobik pada keadaan 

termofilik diiktiraf sebagai kaedah biologi yang sangat baik dan lebih menjimatkan kos 

kerana keupayaannya untuk melakukan tanpa tenaga cahaya dan sumber oksigen. Pada 

termofilik, penyelidikan ini bertujuan untuk menyiasat kesan imobilisasi bakteria pada 

matriks yang diperbuat daripada pempolimeran bersama alginat dan kitosan terhadap 

penghasilan biohidrogen. Dalam objektif pertama, kesan penghasilan hidrogen 

menggunakan karbon teraktif berbutir (GAC) sebagai pembawa sokongan mikrob dalam 

membentuk biofilem yang dipasangkan GAC dinilai berdasarkan jumlah kepekatan gula 

yang berbeza sebagai bahan suapan mikrob. Perbandingan antara pemuatan gula telah 

dijalankan dalam shaker mandi air pada 120rpm dalam 800 ml isipadu kerja. 

Aklimatisasi dikendalikan dalam kelompok penjujukan – sistem pada suhu termofilik 60 

oC dan bahan suapan awal ditetapkan pada pH 6. Proses penapaian dijalankan secara 

berterusan sehingga keadaan stabil biogas diperolehi. Keputusan menunjukkan sistem 

biofilm terpasang berjaya menstabilkan pengeluaran hidrogen selepas 40 hari, dengan 

pengeluaran biogas terkumpul yang lebih tinggi pada pemuatan gula 20 g/L sebanyak 

2274.75 ± 411.83 mL. Objektif kedua melibatkan proses pemerangkapan dalam 

pembentukan biofilm melekat GAC menggunakan alginat (Alg) dan kitosan (C) sebagai 

polimer pembawa dalam bentuk manik. Imobilisasi bakteria dilakukan dengan 

memerangkap biofilem GAC yang dipasang ke dalam 0.5g,1g,2g,3g dan 4g alginate 

(GAC-Alg). Manik tak bergerak GAC-Alg yang dioptimumkan kemudiannya 

terperangkap dengan 0.5g,1g,2g,3g dan 4g kitosan (GAC-AlgC). Manik tak bergerak 

untuk kedua-dua alginat dan kitosan telah dijalankan dalam penapaian kelompok 

menggunakan medium sintetik pada suhu 60°C, pH 6.0 dan dalam isipadu kerja 200 ml. 

Perangkap biofilem GAC yang dilampirkan memberikan sokongan yang baik untuk 

mikroorganisma untuk membesar dan menjajah di mana beban bakteria yang tinggi 

diperhatikan di bawah mikroskop elektron pengimbasan (SEM). Akhir sekali, kajian ini 

dijalankan untuk menilai prestasi manik tak bergerak GAC-Alg dan GAC-AlgC dengan 

menggunakan efluen kilang kelapa sawit (POME) sebagai medium penapaian. Telah 
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diperhatikan bahawa manik tidak bergerak GAC-Alg menghasilkan pengeluaran 

hidrogen yang stabil selepas 52 jam dengan HPR yang konsisten sebanyak 1.02 mmol 

H₂/l.h dan 1.83 mmol H2/L.h bagi GAC-AlgC. Secara keseluruhan, kajian ini 

menunjukkan imobilisasi manik yang terperangkap bakteria adalah pendekatan yang 

menjanjikan untuk melindungi kolonisasi bakteria semasa penapaian, dengan itu 

mengekalkan dan menggalakkan pertumbuhan mikrob dan melindungi mikrob daripada 

persekitaran yang tidak baik. 
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CHAPTER 1 

 
  

INTRODUCTION 

 
 

1.1    Research background  

 

 

    The increasing global warming issue has prompted the development of safe and natural 

hydrogen production via many approaches, including waste. Production of hydrogen 

from organic waste as a renewable energy source has gained global attention due to the 

high – dependency on fossil fuels, which their combustion brings to environmental 

nuisance such as harmful COx, NOx, SOx, and CxHx gases emission (Dahlgren et al., 

2019).  

 

 

Biohydrogen has become the most popular energy recovery since it produces a clean 

energy source that emits only water upon combustion with high energy content per unit 

weight (122 kJ/g) among all other fuels  (Silva-Illanes et al., 2017). Biological methods 

are being investigated to ensure that hydrogen production is safer and more cost-effective 

than the thermochemical method. Production of biohydrogen through biological 

pathways is challenging due to the limited conditions that could inhibit the production 

rate, especially when dealing with the microorganism (Pu et al., 2019). 

 

 

Among the biological methods of hydrogen production, dark fermentation appears to be 

one of the environmentally and cost-effectively processes. Dark fermentation is being 

recognized as an excellent biological process for producing hydrogen due to its ability 

to operate without light energy or oxygen source (Marques et al., 2019). Dark 

fermentation is an anaerobic fermentation where the catabolic process of converting 

organic substrate into hydrogen, carbon dioxide, and other solutes such as acetate and 

ethanol happens using specific microorganisms. As reported by (Barca et al., 2015), 

utilizing waste such as carbohydrates found abundantly in biomass or organic 

wastewater is the most effective substrate for dark fermentative hydrogen production.  

Carbohydrate-rich waste and wastewater, such as palm oil mill effluent (POME), food 

manufacturing wastes, cheese whey, sugar factory wastewater, rice winery, and 

wastewater appear to be suitable feedstocks for the production of hydrogen (Owusu-

Agyeman et al., 2021) 

 

 

Production of hydrogen from organic waste, especially POME, has gained interest over 

the last few years due to the dual benefits of alternative energy source recovery and 

controlling environmental pollution. POME poses a great threat to the environment 

because of its high biochemical and chemical oxygen demands  (Zainal et al., 2020). 

POME is well-known wastewater from the palm oil agro-industry in Malaysia that 

composes an abundance of cellulosic carbohydrates and available monomeric sugars. 

The high amount of sugars found in POME made its high potential to be used as a 

fermentable substrate in dark fermentation. Therefore, this substrate is dedicated as a 

promising solution for the increasing need for renewable energy (Sekoai et al., 2021). 
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The practical feasibility of hydrogen production from various synthetic and real 

wastewaters has been mostly conducted in batch bioreactors. The reactors will be well 

designed and operated, producing continuous biogas generation under steady-state 

conditions.  

 

 

Immobilization technology has been recognized to increase hydrogen production by 

providing a favourable environment and good support for the microbial cells during the 

fermentation process. Cells' immobilization also offers high substrate conversion within 

a shorter time by reducing the lag phase.  Entrapment is part of immobilization methods 

used widely to improve enzyme or microbial cell productivity. The entrapment of 

hydrogen-producing bacteria using alginate beads as a carrier is not only requires low 

cost but also reported can improve hydrogen production (Canbay et al., 2018). In 

addition, chitosan as a second layer of the beads can also enhance the beads' stability due 

to polymer and interaction with each other by hydrogen and electrostatic bonding 

(Krunić et al., 2016).  Therefore, the efficiency of alginate beads as a carrier will be 

increased by coating them with chitosan as a second layer. The covalent cross-linking 

between these two polymers can improve carriers' mechanical strength and stability, thus 

reducing the potential of cell leakage from the support carrier. 

 

 

1.2    Problem statement  

 

 

Malaysia has been reported to produce almost 80 million dry tonnes of solid biomass. 

The number is expected will be increased to 100 million by 2020 since the industry has 

gone through an excellent development (Nor et al., 2015). The continuous development 

and production contribute to the increase of POME discharge, which is identified as the 

most significant pollutant impact from industry into rivers in Malaysia. Due to the 

presence of untreated palm oil residue, raw POME consists of a high value of degradable 

organic matter. The colloidal suspension of POME consists of 95-96% water, 0.6-0.7% 

oil, and 4-5% total solids which have a high concentration of organic matter, oil, grease, 

and suspended solids (Zainal et al., 2020). 

 

 

Biological treatment with the aerobic, anaerobic or facultative process is the most 

suitable method to degrade or treat POME (Khemkhao et al., 2016). This is because 

biological treatment requires less energy demand, does not liberate foul odor, can 

minimize sludge accumulation and can produce biohydrogen by anaerobes under 

fermentation and digestion processes. The plenty of sugars found in POME also made it 

high potential to be used as a fermentable substrate in dark fermentation. Therefore, 

research on POME as a suitable fermentation feedstock to produce biohydrogen has 

grown rapidly and concurrently can manage the waste via anaerobic fermentation. 

 

 

Production of biohydrogen via a suspended culture system has gained attention due to 

its ability of higher hydrogen productivity rate and hydrogen yield (Mahmod et al., 

2017). However, according to a previous study on hydrogen production, lower microbial 

cell density has been the disadvantage (Canbay et al., 2018; Pugazhendhi et al., 2019; 

Zhu et al., 2018). Washout of the cells is often occurred using free cells (suspended 

culture system), making the microbial population difficult to be retained in the 
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bioreactor. Therefore, the biological immobilization approach becomes a special interest 

to researchers seeking to enhance cell density, especially through the cell attachment 

method in developing attached-biofilm on the microbial support carrier (Kumar et al., 

2016). 

 

 

Granular activated carbon (GAC) as a support carrier has been thoroughly documented 

as a support matrix in thermophilic fermentation (Syakina & Jahim, 2016). It has good 

mechanical strength and inert properties without any additional reaction that might 

disturb the system. The GAC also has a high surface area and highly porous structure 

that facilitate sustaining cell viability and colonization density helps to enhance cell 

density during the fermentation process. The surface area and pores size of the carrier 

plays an important role in the adsorption mechanism of microbe adhesion and 

accumulation of the microbe on the GAC surface before further attachment and 

colonization steps (Idris et al., 2018). Lutpi et al. had reported that the efficiency of 

hydrogen fermentation is influenced by the amount of biomass retained on the GAC 

system seems very promising to increase hydrogen production(Lutpi et al., 2016).  

 

 

Besides, to achieve the highest possible rate of hydrogen production, the excellent 

fermentation process requires a new idea for immobilization technology to enhance the 

bacterial population by providing them with a better support carrier and suitable 

environment for them to grow and colonize and improve the fermentation rates within a 

more extended period. The innovation of immobilized cells in biohydrogen production 

is to encounter the problem of cell wash-out phenomenon in a continuous biosystem. 

 

 

Therefore, the new design of immobilization is an approach to maximizing and 

maintaining biomass, such that it can work at a higher rate of dilution without biomass 

washout from the reactor. Entrapment technology has been developed to increase 

hydrogen production by providing a favorable environment or support for microbial cells 

during fermentation. The selection of the supporting material is imperative because it 

affects the overall performance of biohydrogen production.   

 

 

Polymeric materials are widely used in entrapment methods such as calcium alginate, 

chitosan, k-carrageenan, poly-acryl amide (PAM) gel, gelatin, and agar (Sekoai et al., 

2016). The work by Canbay et al., 2018 reported that alginate is the most extensively 

studied as a support carrier for immobilization because of its low cost, strong 

biocompatibility, and resistance to microbial inhibitors (Canbay et al., 2018). Alginate 

is one of the excellent support materials to make it a practical choice in immobilization. 

It has been reported that biohydrogen production increased about two times greater when 

alginate beads were enhanced with activated carbon (Damayanti et al., 2018). 

Nonetheless, even though alginate beads have been used widely in immobilization, they 

are reported to still suffer from certain limitations like weak mechanical strength and 

reduced porosity (Duarte et al., 2013). Therefore, several approaches have been studied 

to improve the permeability and mechanical stability of alginate matrices, such as 

incorporating other materials like cellulose, metal, and carbon source.  
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The attachment of GAC biofilm into alginate (GAC-Alg) immobilized beads alone 

cannot hold the microbial cells longer due to the cells' detachment and the carrier's low 

ability to protect the cells from the harsh environment degraded quickly and led to cell 

leakage. Therefore, the entrapment technique was approached to improve the detachment 

of the cells. Collagen, carrageen and gelatin are the most common biopolymers found as 

second layer in the immobilization process (Krunić et al., 2016). However, limitation of 

significant diffusion and weak enzyme activity might occur during the long–term 

operation, disturbing the micro-environmental conditions (Basile et al., 2010). A 

previous study reported that chitosan possesses good mucoadhesion behavior resulting 

from the cationic properties and free hydroxyl and amino groups, which allow the 

polymer to interact with each other by hydrogen and electrostatic bonding (Szymańska 

& Winnicka, 2015). Thus, the additional second layer of chitosan as co-polymerization 

is needed to improve the stability of the beads.  

 

 

The work by (Ngah & Fatinathan, 2008) reported the entrapment between chitosan and 

alginate formed a strong ionic interaction between amino groups of chitosan and 

carboxyl groups of alginate, thus resulting in an improvement in mechanical properties 

of the matrix support In other studies, the formation of high cross-linked, porous beads 

with the better mechanical and chemical stability of support matrix in the buffered 

medium was produced from the ionotropic gelation of and chitosan, was leading to the 

low rates of cell leakage even at higher cell loading (Žuža et al., 2011). It was also 

reported the effectiveness of chitosan coating enables the physical isolation of bacteria 

from the outer environment and reduces cell detachment during fermentation, besides 

improving the mechanical strength of alginate beads carrier during storage (Obradović, 

Krunić, Damnjanović, et al., 2015; Stojkovska et al., 2014). Thus, in this study, the GAC-

Alg immobilized beads subsequently need to be entrapped in chitosan (GAC-AlgC), 

which significantly contributes to preserving carrier strength during fermentation.  

 

 

1.3   Research objectives   

 

 

This project aims to explore the actions of chitosan–coating alginate beads (GAC-AlgC) 

on microbial cells behavior on biohydrogen production. Initially, an investigation of 

microbial behavior by the three different immobilization approaches will be conducted, 

followed by determining hydrogen productivity. The specific objectives are as follows. 

 

1. To investigate the use of GAC as a microbial support carrier in the 

formation of GAC-attached biofilm for hydrogen production.   

a. To characterize sugar composition in POME for synthetic 

medium preparation in immobilization using GAC 

b. To determine the effect of different pH on biofilm development 

in sequencing batch hydrogen production.  

c. To determine the effect of 10 g/L and 20 g/ L sugar 

concentration on biofilm development in sequencing batch 

hydrogen production.   

 

2. To determine the best ratio of GAC-attached biofilm beads using 

alginate and chitosan as a carrier polymer in producing biohydrogen 
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a. To characterize the physical properties of different types of 

alginate and chitosan in the formation of immobilized beads.  

b. To examine the microbial performance of GAC-attached 

biofilm entrapped in alginate (GAC-Alg) in different ratios, 

immobilize beads for the biohydrogen production 

c. To examine the microbial performance of GAC-Alg 

subsequently entrapped in chitosan (GAC-AlgC) in different 

ratios immobilize beads for biohydrogen production. 

 

 

3. To assess the performance of GAC-Alg and GAC-AlgC 

immobilized beads using palm oil mill effluent (POME) as a 

fermentation substrate in the production of biohydrogen.  

a. To examine the hydrogen production performance at different 

ratios of GAC-Alg immobilized beads in POME media 

fermentation. 

b. To examine the hydrogen production performance at different 

ratios of GAC-AlgC immobilized beads in POME media 

fermentation. 

 

 

1.4    Scope and limitations of research  

 

 

This project was divided into three subdivision objectives with concern to the one 

preferred product of biohydrogen production via immobilized beads. 

 

 

 In this study, an examination of the GAC-attached biofilm into alginate and chitosan as 

a carrier polymer via an anaerobic digestion process was investigated. The preliminary 

study was conducted to find the best microbial environmental conditions that were 

examined and optimized using GAC as a support carrier. The developing attach biofilm 

microflora on GAC microbial support was done through immobilization and was 

conducted in a water bath shaker at 120rpm in 800 ml working volume. The 

acclimatization was operated in a sequencing batch system at a thermophilic temperature 

of 60°C and the initial feedstock was set at pH 6. The next step was the entrapment of 

GAC attach biofilm into alginate and chitosan. The process was done by entrapment of 

GAC attached biofilm into the different ratios of alginate and chitosan (GAC-Alg and 

GAC-AlgC) which is 0.5g,1g, 2g,3g and 4g respectively. The immobilized beads for 

both alginate and chitosan were conducted in batch fermentation using a synthetic 

medium at a temperature of 60°C, pH 6.0 and in 200 ml working volume. The effect of 

GAC attaches biofilm using alginate and chitosan immobilized beads properties on the 

adhesion and colonization of bacteria through entrapment were characterized in terms of 

variations in beads sizes and the ratio of concentration polymer. The beads formed were 

then characterized using scanning electron microscope (SEM) analysis to observe the 

morphology of cell culture on the carrier surface. The gas samples generated during the 

fermentation were collected using water displacement method when the biogas amount 

achieved the stationary phase of microbial growth profile. Biogas production was 

calculated at standard temperature and pressure (STP) of 273.15 K and 101.325 kPa by 

converting pressure readings to gas volume in the headspace. The biogas composition is 

analyzed using gas chromatography (GC). The performance of the beads was further 
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investigated using complex POME as the fermentation feedstock. This study was 

conducted to assess the performance of GAC-Alg and GAC-AlgC immobilized beads by 

using POME as a fermentation medium. It is expected that the immobilization study of 

these co-polymerization techniques will provide new insight into biohydrogen 

production. 

 

 

There are some notable limitations in this research. There is a lack of previous studies 

on the co-polymerization of GAC with other natural polymers. Therefore, the literature 

that aims to improve immobilized beads performance using activated carbon towards 

hydrogen production is referred to. The development of the immobilized beads was 

performed in variations in the size of beads and cannot get the same size for each ratio 

of polymer. Generally, the differences in the size of beads were caused by the gravity 

and surface tension imbalance when the beads dropped from the syringe. The bead's 

shape formation also was affected by the viscosity of alginate and chitosan concentration 

and the distance of the dropper to the gel solution. The temperature for the fermentation 

is under thermophilic conditions (60°C). This is because thermophilic bacteria presented 

in POME sludge (inoculum) had an optimal growth temperature of 60°C, thus making it 

more favorable for biohydrogen production. Other than that, the method used to collect 

data is restricted. The biogas produced during the fermentation exposed to leakage into 

the environment due to the inadequate design of the fermenter. Hence, the hydrogen 

composition generated from the fermentation cannot be calculated accurately. Thus, it is 

essential to ensure the experimental setup is done properly to prevent biogas losses 

through leakage. However, this condition was minimized by modifying the bioreactor 

with a tightly covered to prevent the gas flow from the fermenter.   
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