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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 

fulfilment of the requirement for the degree of Master of Science 

 

MODELLING THE DYNAMICS AND CONTROL SYSTEM OF HYBRID 

AIRSHIP UAV (HAU-3) 

 

By 

 

MOHD FAZRI BIN SEDAN 

 

April 2022 

 

Chair  : Ahmad Salahuddin Mohd Harithuddin, PhD  

Faculty  : Engineering 

 

 

In this thesis, a 3.3 m length, finless hull airship called HAU-3 is presented. Four 

vector thrusters arranged in H-Frame configurations were attached to the hull, 

which enable the airship to maneuver in 5DOF. To allow a deeper understanding 

of the HAU-3 motion behavior and to design a flight controller, a reliable 

dynamics model representation and simulator of HAU-3 are developed. A six-

degrees of freedom (6DOF) non-linear mathematical model representation is 

constructed using the Newton-Euler approach. The dynamics model parameters 

were identified via semi-empirical, computer-aided modelling (CAD) and 

experimental approaches. The HAU-3 dynamics model was then integrated into 

Simulink and MATLAB to construct a closed-loop simulator to analyze the 

airship's behavior. Five separate Proportional, Integral and Derivative (PID) 

controllers were designed using the developed non-linear dynamic model. A 

series of indoor static tests and outdoor flight tests were conducted to evaluate 

the controller performance and to validate the simulator response. A dynamic 

response model of the vector thrusters developed provides excellent agreement 

with the actual thrust and motor transient response with 0.29 s delay and 0.2 N 

steady-state error.  The indoor static test of the yaw controller shows an adequate 

yaw state change tracking performance with a 9.5% average difference in 

maximum overshoot and approximately 30% settling time difference by 

comparison of actual and simulated responses. The controller is able to suppress 

the pendulum oscillation in pitch and roll with 0.165 Hz and 0.3 Hz oscillation 

frequency, respectively and at least 20°maximum angle deviation. The altitude 

controller also shows an excellent performance in tracking the change in altitude 
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during outdoor flight tests with an average 0.5 m altitude difference between 

simulation and actual recorded altitude. The developed HAU-3 simulator 

provides a reasonable estimate of the airship's attitude and translational states 

for modelling and simulation purposes.   
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk Ijazah Master Sains 

 

PEMODELAN DINAMIK DAN SISTEM KAWALAN UAV PESAWAT 
HIBRID (HAU-3) 

 

Oleh 
 

MOHD FAZRI BIN SEDAN 
 

April 2022 

 
Pengerusi : Ahmad Salahuddin bin Mohd Harithuddin, PhD 
Fakulti  : Kejuruteraan 
 
 
Tesis ini membincangkan mengenai sebuah pesawat tanpa sirip sepanjang 3.3 

meter yang dikenali sebagai HAU-3. Empat penujah vektor yang disusun dalam 

konfigurasi H-Frame telah dipasang pada badan pesawat yang membolehkan 

pesawat bergerak dalam sistem 5DOF. Bagi pemahaman yang lebih mendalam 

tentang tingkah laku gerakan HAU-3 dan bagi tujuan mereka bentuk alat 

pengawal penerbangan, perwakilan model dinamik yang boleh dipercayai dan 

simulator HAU-3 dibangunkan. Pewakilan model matematik bukan linear enam 

darjah kebebasan (6DOF) dibina menggunakan pendekatan Newton-Euler. 

Parameter model dinamik dikenal pasti melalui pendekatan semi-empirikal, 

reka bentuk berbantu komputer (CAD) dan eksprimen. Model dinamik HAU-3 

kemudiannya disepadukan ke dalam Simulink dan MATLAB untuk membina 

simulator gelung selanjar rapat untuk menganalisis tingkah laku pesawat. Lima 

alat kawalan Proportional, Integral dan Derivative (PID) berasingan telah direka 

bentuk menggunakan model dinamik bukan linear yang telah dibangunkan. 

Satu siri ujian statik dalaman dan ujian penerbangan luar telah dijalankan untuk 

menilai prestasi alat kawalan dan untuk mengesahkan tindak balas simulator. 

Model tindak balas dinamik penujah vektor yang dibangunkan memberikan 

keserasian yang sangat baik dengan tujahan sebenar dan motor sambutan fana 

dengan lengah 0.29s dan ralat keadaan mantap 0.2 N. Ujian statik dalaman alat 

kawalan rewang menunjukkan prestasi pemacu perubahan keadaan rewang 

yang mencukupi dengan perbezaan purata 9.5% dalam melewati maksimum 

dan kira-kira 30% perbezaan masa enapan dangan perbandingan tindak balas 

simulasi dan tindak balas sebenar. Alat kawalan mampu menahan ayunan 

bandul dalam anggul dan beroleng dengan ayunan 0.165 H dan 0.3 Hz frekuensi 
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ayunan masing-masing sekurang-kurangnya 20° sudut sisihan maksimum. Alat 

kawalan altitud juga menunjukkan prestasi cemerlang dalam menjejaki 

perubahan altitud semasa ujian penerbangan luar dengan purata perbezaan 

ketanggian 0.5 m antara simulasi dan ketinggian sebenar yang direkodkan. 

Simulator HAU-3 yang dibangunkan menyertakan anggaran yang munasabah 

tentang sikap pesawat dan keadaan translasi untuk tujuan pemodelan dan 

simulasi.  
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1. CHAPTER 1  

INTRODUCTION 

1.1 Research Background 

After being neglected for a few decades, airships are now again a source of high 
interest, and new research programs are being launched around the world. This 
new airship trend is mainly due to three main reasons: A major concern for 
sustainable growth, increasing need for carrying heavy loads, and new 
expectations for survey and monitoring means. Their use represents a niche in 
the aeronautical market.  LTAs are aerial platforms that get some or all of their 
lift from a lifting gas like helium, hydrogen, or hot air. Examples of this class of 
vehicle include airships, hot-air balloons and, tethered aerostats. There has been 
a resurgence of interest in Lighter-Than-Air Vehicle (LTAV) technology in recent 
decades, particularly in the advancement of autonomous technology in air 
vehicles. The rising of interest in LTA vehicle also due to its low energy 
consumption and long endurance capability (Li et al., 2011).  

The autonomous airship, which is propelled by the buoyancy of lighter-than-air 
gases, has enormous potential as an aerial platform for a variety of applications 
including telecommunication relay, broadcasting relay, monitoring, 
experimental platform, and public security. Currently, most of the existing 
airship is classified as Heavy Lifting airship (HLA) where the payload is 
measured in tonnes. With the miniaturization of electronic technology, the 
scaling capability of airship can be improved from the HLA class to smaller 
design that can carry less than hundreds of kilograms of payload.  Smaller 
airships that able to carry payloads ranging from 20-100 kg is suitable to extend 
the mission capacity of multi-copter drones, especially for missions that need 
more flight endurance and lifting capacity. The system of classification of airship 
size based on payload is depicted in Figure 1.1 and a commonly known 
commercial airship is presented in Figure 1.2. 
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Figure 1.1: Current available airships size and payload capacity ranged from 
small to heavy lifting airship 

 

Figure 1.2: Common commercial airship. Airlander 10 (a) (Block, n.d.), 

Lockheed P-791 (b) (Lockheed Martin P-791 - Lockheed, 2006), Goodyear Wingfoot 

One (c) (Goodyear, n.d.), Skyship 600 (d) (Airship Industries Skyship 600 - Airship 

Industries, n.d.), US Navy MZ-3 airship (e) (Peek, 2013) and LZ N07-101 – 

Zeppelin (f) (Zeppelin NT, n.d.). 

Currently, a major key area of interest for a buoyant vehicle is unmanned and 

autonomous airships. The application of this area is widely conducted all over 

the world, such as the ALTAV Quanser MkII that developed by Quanser Inc 

      

      

    f 
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(Liesk et al., 2012) as shown in Figure 1.3 these can be used for wide variety of 

application such as wildlife monitoring and surveillance due to the ability to 

relatively stealthy due to their lower heat and noise signature, aerial 

photography, atmospheric measurements, civil safety and security mission are 

major area of application.  

 

Figure 1.3: ALTAV Quanser MkII airship (Liesk et al., 2012) 

Due to the low mass of the typical payload, unmanned, autonomous airship is 

generally much smaller than airship for cargo or passenger transportation, 

making them more susceptible to atmospheric disturbances. As they float in the 

surrounding air, they tend to follow every movement of the air, such as wind 

gusts or thermals, unless measures are taken to counter these effects. To 

overcome the problem of poor ground handling and manoeuvrability at low 

speed, a combination between the lighter-than-air technology and the heavier 

than air technology such as fixed wing and rotary wing have been applied. This 

combination is called Hybrid Airship, the advantages of this configuration is the 

airship does not fully depend on the lifting gas to create lift (Khoury, 2012). The 

lift can be generated partially from the buoyancy force which from lifting gas 

and also generated dynamically from different of airflow pressure acting on the 

hull of the airship. Usually, the hybrid airship has unconventional shape which 

is the merging of several lobes body (Khoury, 2012). The application of vectored 

thrusters has improved the low-speed manoeuvring performance of hybrid 

airship which has been shown to be beneficial by number of researchers (Chen 

et al., 2015) (Nong, 2012). In the following section, a triangular shaped hybrid 

airship with axial coupling vector thrust configuration concept is presented that 

attempts to address the shortcomings of conventional airship design. 
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1.2 Hybrid Airship UAS (HAU-3) 

 

Figure 1.4: HAU-3 prototype 

The hybrid airship unmanned aerial system (HAU) is a finless airship that has a 

thruster configuration that enables this airship to move in biaxial direction 

without changing its heading. The objective of this axial-coupling thruster 

configuration is to improve the manoeuvrability and agility of small airships 

with payloads ranging from 10-100 kg. HAU-3 is the third prototype of the HAU 

airship series that replaced HAU-2. Its 3.3 m length, and 1.7 m hull made of 

lightweight material which is TPU film sheet. The vehicle consists of three major 

components which is the hull, thrusters and gondola as in Figure 1.4. The most 

distinctive feature of the HAU-3 compared to most conventional airship is its 

lack of aerodynamics control surface such as rudder and elevator due to its 

finless design.  The airship becomes highly manoeuvrable in this case, but at the 

expense of stability due to the lack of restoring forces provided by the fins 

(Peddiraju et al., 2009). As a result, the airship's stability is primarily dependent 

on the artificial stability provided by its controller. Four vector thrusters 

mounted along the hull's equator provide stability control and actuation as 

shown in Figure 1.4.  A servo tilts the motor allowing the vector thrust direction 

change from +90o to -90o make this thruster able to produce upward and 

downward thrust for vertical take-off (VTOL) and vertical landing. Another 

distinguishing feature of this airship is that, in normal operation, the airship's 

weight exceeds the lift generated by the helium, indicating that the airship is 

negatively buoyant. The excess weight will be compensated with additional lift 

provided by the thrusters to keep the airship airborne. The benefits of having 

negative buoyant are that if all of the thrusters fail, the airship will slowly sink 

to the ground rather than floating away with the wind, making this 

configuration one of its safety features.  
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Apart of the features that offered by this vehicle and its successful prototype 

construction previously, there is lack of work to understand the underlying 

dynamics behaviour of this vehicle. The first attempt to develop this vehicle 

dynamics and control system is conducted by Sedan, (2018), using a black-box 

modelling approach of the second HAU prototype (HAU-2). However, to 

develop a robust mathematical representation using experimental approach 

increase the project cost and duration due to the needs to conduct multiple flight 

test of the actual vehicle. Furthermore, the experimental approach model does 

not accurately represent the underlying dynamics and is only valid in the region 

where the vehicle is tested. In addition, to reduce the logistics cost of flight test 

and rapid controller design optimization a platform which enable the developed 

HAU-3 dynamics model to be simulated is required. The need to develop a 

mathematical model and a functional flight simulator in LTA and UAV vehicle 

study also addressed by a number of author in their work such as Alsayed  

(2017), Navajas (2021), Peddiraju et al. (2009) and Frye et al. (2007).  

1.3 Research Objectives 

Hence, in order to allow a deep understanding of the HAU-3 motion behaviour 

and to design its attitude controller, a robust and reliable mathematical 

dynamics model representation and a closed-loop simulator needs to be 

developed. 

Thus, three objectives of the research are as follows, 

1. To build a working prototype of HAU-3 to be applied as a functional 

experimental platform. 

2. To develop a six degree of freedom (6DOF) dynamics model for the 

HAU-3 prototype. 

3. To develop closed-loop six degree of freedom (6DOF) simulator using 
Simulink and MATLAB for HAU-3. 
 

1.4 Research Scope and Limitation 

The research work involved in the fabrication and construction of the HAU-3 

airship. The airship is built from scratch based on its previous prototype design 

(HAU-2) that involved the fabrication of its hull, electronic board and the 

thruster’s module. Physical parameter experiments also conducted to measure 

the physical parameter needed in the dynamics model. A major work involves 

in the development of the mathematical model of HAU-3 based on its prototype 
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and model implementation to build its closed-loop non-linear simulator using 

Simulink and MATLAB. The simulator then used to develop its flight controller.  

Finally, the controller and some of the dynamic parameters is validated using 

static and outdoor flight tests. To sum up, the scope of the research is 

summarized as follows: 

1) HAU-3 prototype fabrication and assembly 

2) Dynamics modelling of HAU-3 using Newton-Euler approach 

3) Closed-loop simulator with PID controller development using Simulink 

and MATLAB 

4) HAU-3 flight test for some of dynamics parameter validation and 

controller response evaluation. The test divided into two part which is 

static indoor test which focuses more on the evaluation of yaw controller 

and outdoor flight test to evaluate the controller performance and 

dynamics parameters validation.  

In order to simplify the vehicle modelling in this research, some assumption is 

made before the development of HAU-3 mathematical model. The modelling 

assumption is as follows:  

1) The airship hull is modelled as a rigid body, as the hull is pressurized. 

2) The COB is the point of origin of the airship. 

3) CG is the centre of mass of the airship.  

4) Hull elasticity skin properties is ignored. 

5) The airframe is symmetric about X-Z plane such that both the COB and 

CG lie in the plane of symmetry.  

6) The CG is located under the COB where horizontal displacement, xCG is 

considered relatively small and y
CG

 assumed to be zero. 

7) Airship is neutrally buoyant in open-loop simulation. Heaviness only 

introduced in closed-loop simulation.  

The limitation of the conducted study is laid out to provide initial insight of the 

study outcomes and applicability. Since the study is based on one specific 

vehicle design called HAU-3, thus the 6DOF mathematical model obtained from 

this study is applicable to HAU-3 only, however general expression of the model 

is still applicable for a finless airship application. Part of propulsion dynamic 

model is derived using black-box modelling where the model only applicable to 

vehicle which utilize a compatible vectored thruster configuration. The thrust 

mixing methodology developed in this study is specifically constructed for 

vehicle which utilise similar vector thruster configuration. The PID controller 

developed in this study is tuned based on Zigeler-Nichols’s method with non-

linearized plant, hence the PID gain obtained is not optimal but sufficient to 

make the vehicle as a functional experimental platform to analyse HAU-3 
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responses. HAU-3 closed loop simulator is build based on no wind disturbance 

assumption hence this simulator only can estimate HAU-3 states for minimal to 

no wind flight condition. The no wind assumption is only valid in HAU-3 

simulator as the wind disturbance is not incorporated in the HAU-3 dynamics 

model. For actual flight test of HAU-3 prototype this ideal case is considered 

applicable with relatively low wind speed condition of <2 m/s based on the 

work that conducted in this study. 

1.5 Thesis Organization  

The thesis is divided into five chapters which begins with Chapter 1 that 

describes the introduction of the conducted study, introduction of the vehicle 

used in this study and laid out of research objectives and problem statement 

which drives the research work. Major research related concept and previous 

related work is reviewed in Chapter 2.  

Chapter 3 where the methodology to carried out this research is discussed in 

details. This chapter is divided into six sections where the first section described 

the overall work research flow.  Section 3.2 discussed the constriction of HAU-3 

prototype. The development of HAU-3 dynamics model is discussed in the third 

and fourth section.  

The simulator construction based on dynamic model integration to SIMULINK 

and MATLAB is described in section five and finally the flight test setup is laid 

out in the last section of Chapter 3.  Result and findings of the research is 

discussed in detail in Chapter 4, where this Chapter is divided into three major 

parts which is the dynamics modelling experimental result discussion.  

Second part of the result, presented the finding of the developed simulator 

responses based on open and closed loop simulation of HAU-3 and the final part 

of this Chapter is a discussion on the simulator response validation based on 

comparison between simulation and actual vehicle response during flight test. 

The final Chapter of this thesis, laid out the conclusion made based on research 

findings and objectives also the future work recommendations.  
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