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Billion-plus devices will reportedly be connected to the internet via the "Internet 
of Things" (IoT). Most of these gadgets, including wireless sensors that are 
wirelessly connected to the internet, will not have a wired connection to the 
electrical grid and will instead rely on the energy stored in the batteries to operate 
themselves. Due to its lifespan and capacity constraints, the battery power 
source is a barrier to expanding a wireless sensor network to hundreds or 
millions of nodes. Energy harvesting is a practical method for powering at least 
specific wireless sensors and devices. Since RF energy harvesting is becoming 
more widely available, integrated, and compatible with wireless networks, it has 
become one of the most common energy scavenging technologies. Due to route 
loss, fast signal attenuation over distance, poor power efficiency of RF-DC 
converters, and restrictions restricting the highest allowable broadcast signal 
intensity, RF energy harvesting is severely constrained in its ability to capture 
large amounts of energy. Even if a matching network is utilized to minimize the 
input power losses received by the antenna and enhance the power transfer to 
the rectifier, transistors cannot function at the minimal power level required 
without an effective rectifier design. Enhancement of the efficiency of RF 
rectifiers and the reduction of the power consumption of the sensor circuitry and 
wireless transmitter necessary for the transmission of sensed data to a reader 
are both critical to enhancing the radio frequency energy harvester (RFEH) 
system’s overall power conversion energy (PCE). Due to distance and other 
considerations such as the unavailability of precise and consistent power; 
consequently, the RF rectifier's design will need to be able to handle a broad 
range of input power with acceptable efficiency. This work presents a five-stage 
self-compensated charge pump rectifier in 4 different implementations with the 
application of the diode-connected MOS transistors technique to decrease the 
leakage current and the threshold voltage in reverse and forward operation 
regions respectively with the objectives to achieve high PCE dynamic range 
above 20% and 1V sensitivity by generating optimal compensation voltage using 
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auxiliary circuit. Each of these implementations has a unique auxiliary circuit that 
is designed to generate an optimal compensation voltage for each transistor in 
the main charge pump path, to convert RF signals to DC voltage efficiently. In 
comparison to conventional threshold voltage compensation circuits, where the 
level of compensation is restricted by the circuit construction and changes with 
input power, the proposed implementation achieves greater dynamic PCE 
throughout a wide input power range. This work is conceived and executed in a 
130nm CMOS Silterra technology and obtained a broad range of 15 dBm with 
an efficiency of more than 20% and a sensitivity of -21 dBm for 1V output and a 
maximum PCE of 39.9% at -9 dBm of input power while driving a 1 MΩ load at 
920 MHz. 
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Berbilion-biloin peranti dilaporkan akan disambungkan ke internet melalui 
"Internet of Things" (IoT). Sebilangan besar alat ini, termasuk penderia tanpa 
wayar yang disambungkan secara tanpa wayar ke Internet, tidak akan 
mempunyai sambungan berwayar ke grid elektrik tetapi sebaliknya akan 
bergantung pada tenaga yang disimpan dalam bateri untuk beroperasi sendiri. 
Disebabkan oleh jangka hayat dan kekangan kapasitinya, sumber kuasa bateri 
menjadi penghalang untuk mengembangkan rangkaian penderia tanpa wayar 
kepada ratusan atau berjuta-juta nod, penuaian tenaga ialah kaedah praktikal 
untuk menghidupkan sekurang-kurangnya penderia dan peranti tanpa wayar 
tertentu. Memandangkan penuaian tenaga RF semakin tersedia, disepadukan 
dan juga serasi dengan rangkaian tanpa wayar, ia telah menjadi salah satu 
teknologi penuaian tenaga yang paling popular. Disebabkan oleh kehilangan 
laluan, pengecilan isyarat pantas pada jarak yang jauh, kecekapan kuasa bagi 
penukar RF-DC yang lemah, dan sekatan yang menyekat keamatan isyarat 
penyiaran tertinggi yang dibenarkan, penuaian tenaga RF sangat terkekang 
dalam keupayaannya untuk menangkap sejumlah besar tenaga. Walaupun 
rangkaian yang sepadan digunakan untuk meminimumkan kehilangan kuasa 
input yang diterima oleh antena dan meningkatkan pemindahan kuasa kepada 
penerus, transistor tidak boleh berfungsi pada tahap kuasa minimum yang 
diperlukan tanpa reka bentuk penerus yang berkesan. Peningkatan kecekapan 
penerus RF dan pengurangan penggunaan kuasa litar penderia dan pemancar 
tanpa wayar yang diperlukan untuk penghantaran data deria kepada pembaca 
adalah penting untuk meningkatkan keseluruhan tenaga penukaran kuasa 
sistem penuai tenaga frekuensi radio. Disebabkan oleh jarak dan pertimbangan 
lain, kuasa yang ada tidak tepat dan konsisten; akibatnya, reka bentuk penerus 
RF perlu dapat mengendalikan julat yang luas bagi kuasa input dengan 
kecekapan yang boleh diterima. Kerja ini mempersembahkan penerus pam caj 
pampasan sendiri lima peringkat dalam 4 pelaksanaan berbeza dengan aplikasi 
teknik transistor MOS yang disambungkan diod untuk mengurangkan arus bocor 
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dan voltan ambang masing-masing dalam kawasan operasi songsang dan 
hadapan dengan objektif untuk mencapai julat dinamik PCE tinggi melebihi 20% 
dan sensitiviti 1V dengan menjana voltan pampasan optimum menggunakan litar 
tambahan. Setiap pelaksanaan ini mempunyai litar tambahan unik yang direka 
untuk menjana voltan pampasan optimum bagi setiap transistor dalam laluan 
pam cas utama, untuk menukar isyarat RF kepada voltan DC dengan cekap. 
Berbanding dengan litar pampasan voltan ambang konvensional, di mana tahap 
pampasan dihadkan oleh pembinaan litar dan perubahan dengan kuasa input, 
pelaksanaan yang dicadangkan mencapai PCE dinamik yang lebih besar 
sepanjang julat kuasa input yang luas. Kerja ini diilhamkan dan dilaksanakan 
menggunakan teknologi CMOS Silterra 130nm dan memperoleh julat luas 15 
dBm dengan kecekapan lebih daripada 20% dan sensitiviti -21 dBm untuk output 
1 V dan PCE maksimum 39.9% pada -9 dBm kuasa input semasa memacu 
beban 1 MΩ pada 920 MHz. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
1.1   Overview 
 
 
Nowadays the “Internet of Things” IoT which is the expansion of internet 
connectivity of devices, is turn out to be a crucial subject due to given services 
and applications. The energy that powering up most of these devices comes 
from the energy stored in batteries. The battery power source is a limited due to 
its performance and lifetime, which could lead to operation interruption, 
maintenance requirements, and cost [1]. Designing a high-performance power 
supply generation for these types of devices, brings a challenge for the IC 
designers. Due to portable devices and the new generation, the electromagnetic 
field density is increasing and gives an excellent source to Radiofrequency (RF) 
Harvester. RF energy has around  to  energy density [2, 3]. Radio 
Frequency Energy Harvester (RFEH) has more advantages than the use of 
batteries. One of the valuable advantages is the unlimited lifetime and it can 
operate at any time as long as a minimum RF power is available [4]-[6]. The 
additional benefit of the RFEH system is the possibility of combination with solar 
energy harvesting or any other harvesting technologies [7]-[8]. 
 
 
1.2   RF Power Transferring Method 
 
 
RF power transferring methods are divided into two major different methods, 
near field which is known also as wireless power transfer (WPT), and far-field 
[9]. Basically, in the far-field, energy harvesting is based on the energy received 
from the ambient signals such as AM/FM radio and cellular transmissions, and 
TV signals. Conversely, the near field has a higher power density with lower 
frequency compared to the far-field [10]. However, in the near field, magnetic 
and electric fields follow an illogical propagation law which contingent on its 
ambient nature and the type of supply antenna nature [11]. Near field radio 
frequency identification (RFID) systems are mostly used in wireless battery 
charging [12] and biomedical products [9]. 
 

1.2.1   The Frequency Band for RFEH System 
 
 
As the GSM, 3G, and Wi-Fi have the licensed bands of frequency to operate, 
some unlicensed sections of the frequency range are adjusted for Industrial, 
Scientific, and Medical (ISM) purpose which is known as ISM bands. However, 
these bands are required to meet strict rules on the output power and the 
operation frequency, which are defined by the international telecommunication 
union radio-communication sector (ITU-R) [13]. The power restriction and on the 
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ISM bands is that the maximum effective isotropic radiated power (EIRP) is 
36.99 dBm and the maximum power transmitter fed into the antenna, is 30 dBm
[14]. Table 1.1 presents the ISM frequency band.

Table 1.1: ISM Frequency Bands.

The great RF ambient source will be in 900MHz to 950MHz and 22.45 GHz/
5.8 GHz as these ranges use for mobile phones and local area networks, 
respectively [15].

1.2.2 Available Power for RFEH System

The available power is the power receives at the antenna that can be calculated 
based on Friis free space transmission [16]: 

Where is the gain of the receiving antenna, is the transmitted RF power, 
is the wavelength and d represent the distance between receiver and transmitter. 
the wavelength is inversely proportional to the frequency ( , therefore the 

decrease by and . Figure 1.1 Demonstrates the free space path loss in 
dB scale versus distance for the two ISM band center frequencies of 2.45GHz 
and 915MHz.

As the distance double up the pathloss increases about 6dB. Based on the 
regulations of ISM in Malaysia, the maximum EIRP that can be transmitted in the 
band of 902-928 MHz is 36 dBm (4W) [14]. The path loss for the 915Mhz at a 
distance of 10m is about 51.6 dBm. Therefore, the maximum available power at 

Frequency Range Centre Frequency Bandwidth
(6.765-6.795) MHz 6.78 MHz 30 kHz

(13.553-13.567) MHz 13.56 MHz 14 kHz
(26.957-27.283) MHz 27.12 MHz 326 kHz

(40.66-40.7) MHz 40.68 MHz 40 kHz
(433.05-434.79) MHz 433.92 MHz 1.74 kHz

(902-928) MHz 915 MHz 26 MHz
(2.4-2.5) GHz 2.45 GHz 100 MHz

(5.725-5.875) GHz 5.8 GHz 150 MHz
(24-24.25) GHz 24.125 GHz 250 MHz
(61-61.5) GHz 61.25 GHz 500 MHz
(122-123) GHz 122.5 GHz 1 GHz
(244-246) GHz 245 GHz 2 GHz
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a distance of 10m is less than -15.7 dBm, even due to multi-path fading, the 
available power is lower than this amount [17]. 
 
 
 

 

 

 

 

 

 

 
 
1.2.3   Block Diagram of RFEH System 
 
 
Figure 1.2 shows the block diagram of the RFEH system [18]. An antenna 
collecting the RF signal from the source, the matching network maximizes the 
power transmission to the RF rectifier and the RF rectifier is a converter that 
converts the RF signal from the matching network to a dc voltage. The power 
conversion energy (PCE) which is the ratio of the output DC power over the input 
AC power of the rectifier also its sensitivity, which is the lowest possible input 
power amount for starting a process are two main parameters to evaluate the 
performance of the RFEH system which are depending on the matching network 
and the RF rectifier efficiencies, However, RF rectifier plays the main role in the 
which becomes a real challenge for IC designers [19]. The PCE and sensitivity 
of the RF rectifier is extremely depending on the leakage current in reverse 
operation region and its threshold voltage in the forward operation region of 
the RF rectifier [20]. 
 
 

 

 

 

 
Figure 1.2: Block Diagram of The RFEH System. 
 

Figure 1.1: Free Space Path Loss. 
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1.3   Problem Statement 
 
 
The general issue of the RFEH is the limited amount of energy that can be gained 
from the sources, as discussed, the RF available power at the antenna is lower 
due to the pathloss, multipath fading, and the limited maximum allowable signal 
strength due to the ISM regulations [13, 17]. Although a matching network is 
used to reduce the input power losses received by antenna and increase the 
power transfer to the rectifier, without efficient rectifier design, the minimum 
power level received at the antenna will not be sufficient to make transistors to 
operate, which reduce the sensitivity and Dynamic PCE range [35-43]. One of 
main issue of RFEH is incredibly low PCE, especially in the lower available 
power. Another issue is not constant available input power, due to matching loss 
and path loss and multipath fading [17]. Therefore, the RF rectifier should be 
able to function effectively over a wide range of input power. The optimum 
implementations are suggested by previous researchers however, their designs 
usually are unable to function effectively over a wide input power range. 
  
 
By suggesting alternative diode-connected configurations or changing the gate-
source voltages, also known as compensation voltages, which may be done by 
constructing an auxiliary circuit, a number of ways have been offered to achieve 
the high-efficiency rectifier. For instance, passive auxiliary circuits to supply 
compensation voltage were suggested by the authors in [38, 39], but their 
design's primary drawback in multi-stage application is the amount of space they 
take up. This is because there is a lot of resistance and capacitance being 
consumed, and there is also a lot of leakage current and high parasitic 
capacitance. In contrast, the inventors of [42] and [28] suggested active auxiliary 
circuits by coupling the gate terminals to the chain nodes that provide larger 
overdrive voltage. However, during the reverse biased operation, these methods 
experience substantial leakage current and inversion loss. A flexible connection 
is suggested in [43] to reduce leakage current and inversion loss. The primary 
flaw with these methods is that the compensation voltage is fixed and heavily 
reliant on input power. The gate terminals frequently fail to offer a high PCE over 
a large input power range because they are attached to certain nodes of the 
chain. 
 
 
1.4   Aim of The Project  
 
 
This work aims to design a highly efficient RF rectifier with great sensitivity to 
improve the overall PCE of the RFEH system. However, as the available power 
is not exact and constant, due to the distance and other factors, therefore the 
design of the RF rectifier will also cover a wide range of input power with 
acceptable efficiency. As a result, the thesis's objectives are classified as follows: 
 

1. To design a self-compensated RF rectifier that cover a wide range 
of input power above 10dBm with acceptable efficiency above 20% 
at frequency of 920Mhz. 
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2. To design an auxiliary circuit that generates the optimal 
compensation voltage 0.35V. 

 
3. To simulate and analyze the sensitivity of 1V and PCE dynamic 

range of the self-compensated RF rectifier designs while driving 1 
MΩ, 500 kΩ, and 300 kΩ loads. 

 

1.5   Project Scope 
 
 
In this work, design of a single bound RF self-compensated rectifier to achieve 
great efficiency over a wide range of input power and the high 1V sensitivity will 
be presented. We first investigate what would be an appropriate compensation 
voltage to achieve this.  Through mathematical derivation and modelling of 
circuits, we've determined the optimal compensation voltage level to get the 
highest PCE possible. Then, as a proof of concept, a five-stage, single-ended 
RF rectifier with a large input range and low power consumption is built to apply 
the transistors with the appropriate compensation voltage in order to 
demonstrate its feasibility. 
 
 
The required threshold voltage compensation that maintains a reasonably 
constant value throughout a large input power range is achieved by a simple but 
effective construction that avoids the need of complicated auxiliary circuitry, 
external components, or baluns. As a result of the proposed threshold voltage 
adjustment, this design may deliver increased PCE and output voltage across a 
wider input power range compared to previously published designs. The 
suggested rectifier is conceived and implemented in four different methods in a 
standard 130 nm Silterra CMOS technology, with the results compared based 
on the post-layout simulations at 920Mhz frequency with off chip machining 
network. 
 
 
 
 
1.6   Thesis Structure  
 
 
The thesis is structured into 5 chapters. 
 
Chapter 1 presents the motivation of the radiofrequency energy harvesting 
(RFEH) system and the major information related to the RFEH such as frequency 
bands and the available power to harvest. Also describes the main limitation of 
the RFEH system and briefly explains the possible solutions and the aim of the 
project. 
 
 
Chapter 2 discusses the challenges of designing rectifiers at low power levels, 
as well as the limits of existing threshold voltage compensation approaches for 
rectifiers. 
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Chapter 3 discusses the design methodology in obtaining the optimum threshold 
voltage compensated rectifier circuit. The proposed rectifier is conceived and 
implemented in four potential methods in standard 130-nm CMOS technology. 
 
 
Chapter 4 discusses the performance measurements of the four proposed 
implementations under a variety of input power and load conditions. A 
comparison of the proposed circuits' performance and most recent 
developments follows the identification of the best implementation through 
analysis and discussion. 
 
 
In Chapter 5, the dissertation ends with an overview of important contributions 
and future-work
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CHAPTER 5 
 
 

CONCLUSIONS AND FUTURE RESEARCH 
 
 
5.1   Conclusions 
 
 
In order to improve the overall efficiency of the RF rectifier, the leakage current 
should be minimized, in this work the RF rectifiers are proposed in 4 different 
implementations with 2 different Model of transistor diode connections. By 
optimizing the significant number of stage and compensation voltage level, the 
charge pump is able to generate wide dynamic PCE range above 20% for 5 
stages charge pump with compensation voltage about 0.3V to 0.4V. 
 
 
An auxiliary circuit is proposed as a voltage divider to provide the threshold 
voltage compensation for each transistor at the main charge pump. Then, three 
different implementations are proposed which they are different in the high 
impedance paths of the auxiliary circuit. The auxiliary circuits are tuned and sized 
in order to generate the compensation voltage near to the optimum range of 
compensation voltage. 
  
 
After simulation of the auxiliary circuit, the generated compensation voltage for 
all implementations is varying slightly averagely about 40mV as input power 
changes from -21 dBm to -5 dBm and even load varies from 300k to 1M. which 
means all implementations are able to generate nearly consistent compensating 
voltage regardless to the input power and loads. 
 
 
All four implementations are constructed in 130-nm SilTerra CMOS technology. 
The post-layout of these implementations are simulated and analyzed for various 
factors such as Dynamic PCE range, peak efficiency, sensitivity, and area 
consumption, and found that Implementation 3A had the greatest overall 
performance when compared to the other implementations. 
  
 
In contrast to earlier research, Implementation 3A achieves a virtually average 
constant peak efficiency of roughly 39% for 1 MΩ, 500 kΩ, and 300 kΩ output 
loads, and a large dynamic PCE range of around 20% for all of these loads. 
Without a differential antenna or PCB balun, as well as specific CMOS transistors 
and a significant number of stages, implementation 3A has a sensitivity of -21 
dBm at 1 V. 
 
 
In this work, a self-compensated RF rectifier with a simple structure to provide 
the best compensation voltage has been proposed and the design is capable of 
providing almost constant compensation voltage for all input power while driving 
various output loads. At -9 dBm of input power, the proposed rectifier achieves 
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a maximum PCE of 39.9% while driving a 1 MΩ load. For an input power level 
of more than 15 dBm, the measured PCE stays over 20%. The proposed circuit 
has a sensitivity of -21 dBm for generating 1 V over a 1 MΩ load while requiring 
just 0.087  of silicon area. 
 
 
5.2   Future Work 
 
 
Matching networks are crucial for attaining maximum PCE for RF energy 
harvesters because the matching network not only makes it easier to transport 
power from the antenna/coil to the rectifier, but it also enhances the rectifier's 
input voltage to surpass the threshold voltage. Optimal matching networks for 
RF energy harvesting systems will be the focus of future research, and a 
systematic approach to constructing impedance matching circuits for RF energy 
harvesters will be proposed in order to optimize the harvested energy. A high-
efficiency 5T-cell rectifier will be developed using the optimum threshold voltage 
compensation approach that we've described. In the future, harvesting energy 
from a variety of frequencies is also possible. Harvesting energy from various 
frequency bands simultaneously increases output power. Microstrip antennas 
and high-Q matching networks have a limited bandwidth by design. For these 
reasons, we are aiming to construct a microstrip antenna and matching network 
with a very small bandwidth at each band in order to harvest energy from diverse 
frequency ranges.   
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