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p-Nitrophenol (PNP) is one of the most hazardous pollutants; this compound is 

extremely damaging to human well-being and additionally, leads to both 

environmental and economic burdens. Several strategies have been utilized for the 

removal of phenols from effluents. The adsorption separation technique is considered 

to be an effective method; it is broadly utilized for wastewater treatment. 
 

 

Various adsorbent materials are used for the purification of phenols-contaminated 

effluent. However, they are subject to limitations due to their expense, high-energy 

requirement, relatively low adsorption capacities, slow kinetics and challenges related 

to their regeneration and recyclability. To overcome these challenges, novel fibrous 

and microparticle based adsorbents have been designed and employed for PNP 

adsorption from aqueous solution. 

 

 

Fibrous-based adsorbents were prepared by radiation-induced graft polymerization 

(RIG); glycidyl methacrylate (GMA) was grafted onto polyamide 6 (PA6) and natural 
cotton (Cot) substrates in order to form (PA6-g-GMA) and (Cot-g-GMA) fibers, 

respectively. The extent to which GMA was grafted on PA6 and cotton fibers was 

found to be markedly influenced by the absorbed dose of radiation and the reaction 

time of grafting. The optimal parameters were established so as to attain the required 

degree of grafting (DG) which tuned to 200% at 25 kGy absorbed dose and 30 minutes 

for PA6 whilst 10 kGy and 50 minutes for cotton fibers. A functionalization strategy 

was run with trimethylamine (TMA) to obtain TMA-(PA6-g-GMA) and TMA-(Cot-g-

GMA). Redox polymerization (RP) of acrylonitrile (AN)/acrylic acid (AA) as 

poly(AN-co-AA) was employed so as to create microparticle-based adsorbents. A 

range of AA ratios were integrated into the polyacrylonitrile chain and additionally 
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functionalized with an amidoxime (AO) moiety in order to generate AO-poly(AN-co-

AA) adsorbents. 

 

 

The created adsorbents were evaluated so as to verify the copolymerization and 
functionalization processes and to describe the impact of preparation on the adsorbent's 

physiochemical properties utilizing a range of analytical strategies, including Fourier 

transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, Field 

emission scanning electron microscopy (FESEM), Brunauer–Emmett–Teller (BET) 

surface area, pore size assessment, Thermogravimetric (TG-DTG) analyzer and point 

of zero charge (pHpzc). 

 

 

Adsorption studies for PNP removal were conducted. The factors encompassing 

adsorbent dose, solution pH, temperature, initial PNP concentration and contact time 

were demonstrated to impact adsorption performance; this was optimized in depth. The 

adsorption process showed that the proportion of PNP removal increased when the 
adsorbent dose and PNP initial concentration were increased. The process of PNP 

adsorption was negatively affected by temperature, where a lower temperature was 

clearly preferable for greatest PNP adsorption. The adsorption was found to be pH-

dependent; an increase in pH from 3.0 to 5.0 caused an increased in PNP removal, i.e. 

from 46.79% to 82.81% for TMA-(PA6-g-GMA) and from 49.31% to 85.33% for 

TMA-(Cot-g-GMA) whilst from 34.8% to 80.6% by changing the pH from 3 to 7. A 

pH of 5.0 was associated with maximum removal of PNP onto fibrous adsorbents and 

pH of 7 onto AO-poly(AN-co-AA) adsorbent. 

 

 

The function of the adsorbents pertaining to kinetics, equilibrium, isotherm, and 
thermodynamics of PNP adsorption from aqueous solutions was assessed employing 

relevant models. Non-linear Pseudo-first order (PFO), Pseudo-second order (PSO), 

Elovich and Intraparticle diffusion (IPD) models were utilized to study the adsorption 

kinetics; PNP adsorption on all adsorbents was demonstrated to follow to Pseudo-

second order model. While non-linear Langmuir, Freundlich, Temkin and Redlich-

Peterson models offered data on the adsorption isotherms; in which, Redlich Peterson 

most closely described the equilibrium results, followed closely by Langmuir isotherm 

and Freundlich isotherm models for the fibrous and microparticle-based adsorbents, 

respectively. The maximum adsorption capacities were TMA-(PA6-g-GMA), 176.04 

mg/g; TMA-(Cot-g-GMA) 180.00 mg/g; and AO-poly(AN-co-AA), 143.06 mg/g. 

Thermodynamic evaluation demonstrated that the adsorption was a spontaneous and 

exothermic process. Lastly, the specific high regeneration efficiency of the adsorbents 
was revealed. 

 

 

The data from this study imply that fibrous adsorbents exhibit a higher adsorption 

capacity and more rapid kinetics than microparticle-based adsorbents. However, the 

latter have markedly higher adsorption capacity than alternative adsorbents described 

in previous studies. Therefore, it can be believed that the designed adsorbents are 

encouraging materials for the removal of PNP from water and wastewater. 
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p-Nitrofenol (PNP) adalah antara pencemar yang merbahaya; sebatian ini sangat 

memudaratkan kepada manusia dan tambahan pula, boleh membebankan kepada 

kedua-dua alam sekitar dan ekonomi. Pelbagai strategi telah digunakan untuk 

menyingkirkan fenol dari efluen. Teknik pemisahan penjerapan telah dipertimbangkan 

sebagai kaedah yang efektif; ia telah digunakan secara meluas untuk rawatan sisa air.  
Pelbagai bahan penjerap telah diguna pakai untuk penulenan efluen yang mengandungi 

fenol. Walaubagaimanapun, bahan–bahan ini tertakluk kepada kekangan disebabkan 

oleh perbelanjaan, keperluan tenaga yang tinggi, kapasiti penjerapan yang rendah 

secara relatif, kinetik yang perlahan dan cabaran yang berkaitan dengan penjanaan 

semula dan kebolehan kitar semula. Untuk mengatasi masalah ini, bahan penjerap 

baharu berasaskan gentian dan mikropartikel telah direka dan digunakan untuk 

penjerapan PNP daripada larutan akueus.  
 
 

Penjerap berasaskan gentian telah dihasilkan menggunakan pempolimeran cangkuk 

dengan dorongan radiasi (RIG); glisidil metakrilat (GMA) telah dicangkuk ke atas 

substrat polyamida 6 (PA6) dan kapas semulajadi (Cot) untuk menghasilkan gentian 

(PA6-g-GMA) dan gentian (Cot-g-GMA), masing-masing. Pelanjutan cangkukan 

GMA ke atas PA6 dan gentian kapas didapati telah dipengaruhi oleh dos radiasi yang 

diserap dan masa tindak balas cangkukan. Parameter yang optimum telah dibina bagi 

mencapai darjah cangkukan (DG) yang dikehendaki iaitu sebanyak 200% pada dos 
serapan 25 kGy dan 30 minit untuk PA6, manakala 10 kGy dan 50 minit untuk gentian 

kapas.  Strategi kefungsian telah dijalankan menggunakan trimetilamina (TMA) untuk 

menghasilkan TMA-(PA6-g-GMA) dan TMA-(Cot-g-GMA). Pempolimeran redoks 

(RP) menggunakan akrilonitril (AN)/akrilik asid (AA) sebagai poli(AN-co-AA) telah 

dijalankan untuk menghasilkan penjerap berasaskan mikropartikel. Pelbagai nisbah AA 

telah diperkenalkan ke dalam rantaian poliakrilonitril dan tambahan pula difungsikan 

dengan kumpulan berfungsi amidoksim (AO) untuk menghasilkan penjerap AO-

poli(AN-co-AA). 
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Penjerap yang dihasilkan dinilai untuk mengesahkan proses kopempolimeran dan 

kefungsian serta untuk menerangkan impak penyediaan terhadap sifat fisiokimia 

penjerap menggunakan pelbagai strategi analitikal, termasuklah penggunaan 

spektroskopi Inframerah Transformasi Fourier (FTIR), analisis pembelauan sinar-X 

(XRD), mikroskop imbasan elektron pancaran medan (FESEM), penganalisis kawasan 
permukaan Brunauer-Emmett-Teller (BET), penganalisis termogravimetri (TG-DTG) 

and penganalisis titik caj sifar (pHpzc). 

 

 

Kajian ke atas penjerapan PNP telah dijalankan. Faktor merangkumi dos bahan 

penjerap, pH larutan, suhu, kepekatan awal PNP dan masa sentuhan telah menunjukkan 

kesan terhadap prestasi penjeraan; yang mana telah dioptimakan secara mendalam. 

Proses penjerapan menunjukkan bahawa nisbah penyingkiran PNP meningkat apabila 

dos bahan penjerap and kepekatan awal PNP meningkat. Proses penjerapan PNP 

dipengaruhi secara negatif oleh suhu, di mana suhu yang rendah lebih cenderung untuk 

penjerapan PNP yang tertinggi. Penjerapan didapati bergantung kepada pH; 

peningkatan pH dari 3.0 kepada 5.0 telah menyebabkan peningkatan penyingkiran 
PNP; contohnya daripada 46.79% kepada 82.81% untuk TMA-(PA6-g-GMA) dan 

daripada 49.31% kepada 85.33% untuk TMA-(Cot-g-GMA), manakala daripada 

34.80% kepada 80.6% dengan mengubah pH daripada 3 kepada 7. pH 5.0 didapati 

menghasilkan penyingkiran maksimum PNP ke atas penjerap gentian and pH 7.0 ke 

atas penjerap AO-poli(AN-ko-AA).  

 

 

Fungsi bahan penjerap berkaitan kinetik, keseimbangan, isoterma dan termodinamik 

untuk penjerapan PNP daripada larutan akeus telah dinilai menggunakan model yang 

bersesuaian. Persamaan model tidak linear Pseudo-tertib pertama (PFO), Pseudo-tertib 

kedua (PSO), Elovich and resapan intrapartikel (IPD) telah digunakan untuk mengkaji 
kinetik penjerapan; penjerapan PNP menggunakan semua bahan jerapan menunjukkan 

bahawa ia mengikuti model kinetik Pseudo-tertib kedua. Manakala, model tidak linear 

isoterma Langmuir, Freundlich dan Redlich Peterson memberikan data isoterma; di 

mana, Redlich Peterson paling hampir untuk menggambarkan keputusan 

keseimbangan, diikuti dengan model isoterma Langmuir dan isoterma Freundlich, 

untuk penjerap gentian dan mikropartikel, masing-masing. Kapasiti penjerapan 

maksimum bagi setiap bahan penjerap adalah TMA-(PA6-g-GMA), 176.04 mg/g; 

TMA-(Cot-g-GMA) 180.00 mg/g; dan AO-poli(AN-ko-AA), 143.06 mg/g. Penilaian 

termodinamik menunjukkan bahawa penjerapan adalah proses spontan dan eksotermik. 

Akhirnya, kecekapan penjanaan semula spesifik yang tinggi oleh penjerap telah 

diperlihatkan. 

 
 

Data daripada kajian ini menunjukkan bahawa penjerap gentian mempunyai kapasiti 

penjerapan yang tinggi dan kinetik yang lebih pantas berbanding penjerap berasaskan 

mikropartikel. Walau bagaimanapun, penjerap mikropartikel dikenali mempunyai 

kapasiti penjerapan yang jauh lebih tinggi daripada penjerap alternatif seperti 

dijelaskan dalam kajian sebelumnya. Oleh yang demikian, dijangkakan bahawa 

penjerap yang direka adalah bahan yang menggalakkan untuk penyingkiran PNP 

daripada air dan air sisa. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Research Background 

Following the acceleration of residential and industrialization expansion, global 

concerns relating to the pollution of the environment have become evident, with grave 

consequences (Zhang et al., 2020). The large-scale manufacture and broad use of 

differing key substances has led to a range of extremely noxious organic compounds 

being released into the planet’s water bodies. Such products include pharmaceutical, 

phenols, pesticides, dyes, and personal care items, amongst others (Awfa et al., 2018; 

Tkaczyk et al., 2020). 

Effluent waste products released by various industries often encompass phenolic 

compounds such as phenol, p-nitrophenol, and etc (Singh & Verma, 2018). These are 

toxic to humans and can cause a spectrum of medical conditions, from a simple 

headache to tumorigenesis or unexpected fatality. The global pollution of aquatic areas 

with phenolic waste has been identified as a present concern of rising magnitude. 

Indeed, phenolic compounds are deemed to be the principal pollutants of water-based 

ecosystems; even in trace quantities they are toxic to human, animal and vegetation 

species (Patel et al., 2020; Vasantha & Jyothi, 2020). The widespread utilization of 

phenolic compounds in effluents from both industry and urban areas facilitates their 

introduction into aquatic ecosystems. Examples include leachates arising from waste 
deposits, effluents discharged by oil refineries and pharmaceutical sites, together with 

overspill from the agricultural employment of pesticides (Osman, 2014; Othman et al., 

2020). Thus, surveillance of these types of pollutants is mandatory in order to maintain 

a clean and hazard-free environment (Sushma & Yadav, 2020). 

p-Nitrophenol (PNP) is a phenolic compound which is both poisonous and resistant to 

degradation. Huge quantities of PNP are released into effluents owing to its broad 

spectrum of use industrially, e.g. in pharmaceutical, agricultural industries, dyestuff 

and via its formation as a spin-off product effluent. PNP can precipitate grave damage 

to the environment. Its mutagenic properties and toxic effects on both kidney and liver 

means that it seriously impacts human well-being (Wang et al., 2017). PNP has 

been recognized in natural water and in effluent as a consequence of its extreme 

solubility; it is highly stable in aqueous solutions (Mei et al., 2020). Thus, such 

chemicals are unable to be liberated immediately into water systems without treatment. 

Previously, municipal water treatment plants were utilized in order to clean wastewater 

produced by industrial enterprises. Such methods were reliant on biological activity 

and were generally noted to be inefficacious for the removal of the more impervious 

phenolic discharges. Currently, novel modes of treatment have been promoted; this 
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area is the subject of ongoing study and evolution. Present techniques for removing 

phenolic substances encompass biological degradation, oxidation, utilizing chemicals 

such as ozone, hydrogen peroxide or chlorine dioxide, adsorption onto synthetic and 

natural adsorbents, solvent extraction and membrane separation (Mohd, 2020; Shankar 

et al., 2020). 

Biological destruction and chemical oxidative processes are highly responsive to the 

working context; when the former takes place without sufficient speed, the outcome 

can be difficult to anticipate. Thus, adsorption, of all the techniques alluded to, remains 

the method of choice. It has a more optimum endpoint, can be repeated with accuracy 

and is also cost-effective (Uddin, 2017; Awad et al., 2019). 

The principal forms of adsorbents utilized involve activated carbon, activated alumina, 

silica gel, molecular sieve carbon, molecular sieve zeolites and polymeric adsorbents. 

Activated carbons are porous substances frequently employed for the purification of 

substances in chemical and pharmaceutical activities; they are additionally used within 

the environment for decontamination interventions. Industrially accessible activated 

carbons are mostly produced from coal, wood, or coconut shell. They are multi-

purpose agents which can uptake a wide range of organic and inorganic materials from 
solution in both liquid and gas phases. A limitation is that the process is expensive, and 

the production and recycling of activated carbon is an intensive process. Thus, the hunt 

for additional options that offer efficacious adsorptive properties is ongoing, leading to 

additional studies evaluating both synthetic and naturally arising polymers that may 

offer more adaptable, multi-functional, pragmatic, and low energy solutions together 

with more optimal functional activity characterized by increased adsorption capacity, 

high-speed kinetics, and recyclability. 

Over recent years, fibrous adsorbents have been the focus of attention as possible 

options to the more traditional adsorbents; they are inexpensive and their surface 

exhibits high activity. They have sufficient mechanical strength, the ability for surface 

chemical change, the capability to be reutilized, and are straightforward to employ 
(Gao et al., 2017; Khosravi Mohammad Soltan et al., 2021). Additionally, 

microparticle-based polymers are broadly used for the decontamination and separation 

of organic materials owing to their wide range of functionality. Thus, they are seen as a 

valid option to other conventional adsorbents such as activated carbon for the removal 

of particular organic compounds from polluted water (Gai et al., 2019; Ling et al., 

2019). 

Radiation-induced graft polymerization (RIG) has been the subject of considerable 

focus as it is recognized as an efficient method for the development of adsorbents for 

the removal or retrieval of a number of specific solutes from aqueous sources. Redox 

polymerization (RP) is a technique in general usage for the synthesis of polymers for a 

range of purposes. In the current study, two separate routes were utilized to create 

adsorbents for PNP elimination. Firstly, RIG was deployed to prepare fibrous 
adsorbents, i.e. glycidyl methacrylate (GMA), grafted onto synthetic polyamide 6 



© C
OPYRIG

HT U
PM

 

3 

(PA6) and natural cotton (Cot) fibers, respectively, and then functionalized with 

trimethylamine (TMA). Secondly, RP was used to synthesize microparticle adsorbents 

from acrylonitrile (AN) /acrylic acid (AA) copolymers; amidoxime (AO) was used for 

copolymers functionalization. 

1.2 Problem Statement 

One of the derivatives of phenol, PNP which has been deemed to be a priority 

contaminant to the environment by the United States Environmental Protection Agency 

(USEPA) owing to its unremitting poisonous potential (Panagos et al., 2013; Fatima et 

al., 2019). Industrially, the annual production of PNP could hit several tons to meet the 
world demand because of its uses; inevitably, some leaches into the ecosystem. As per 

Malaysia's Environmental Quality Act, the permitted limits for phenolic substances in 

wastewater should not exceed 1.0 μg/L (Standard A effluent) and 1.0 mg/L for 

(Standard B effluent) (DOE, 2010; Shaarani & Hameed, 2010). Thus, multiple 

methods have been developed in order to purify wastewater including photocatalytic 

oxidation (Ojha et al., 2019; Rodríguez-Romero et al., 2019), electrolysis (Cheng et al., 

2007; Zhang et al., 2020), adsorption (Nakhjiri et al., 2021; Rong & Han, 2019), 

oxidation (Chen & Shih, 2020; Faria et al., 2007), biodegradation (Wei et al., 2020) 

and membrane separation (Tan et al., 2019; Alshabib & Onaizi, 2019). Of the 

suggested methods, adsorption processes are generally the most practical owing to their 

efficiency and lower cost. 

Employment of polymeric adsorbents, i.e. based on fibrous or particles structures is a 

promising strategy for the removal of organic pollutants by chemical or physical 

adsorption from contaminated solutions. However, due to the wide ranges of potential 

contaminants and adsorbents, respectively, it can be challenging to choose a proper 

adsorbent for a particular treatment context. In order to find a solution to this problem, 

it is essential to comprehend the overall adsorption procedure and to estimate the 

concentration of a specific substance that is adsorbed by a particular adsorbent. This, 

therefore, necessitates accurate predictive modelling and mechanistic understanding of 

major interactions occurring within the process, data that are largely not available. 

Moreover, despite the fact that regeneration of a spent polymer is achievable in 

ambient conditions with a minimal degree of loss, activated carbon, in contrast, is 

characterized by the need for an expensive heat-driven renewal technique, greater 
energy requirement and higher rates of attrition. These challenges have driven greater 

research efforts to develop adsorbent materials utilizing alternative methods for the 

treatment of water and wastewater. 

Electron beam (EB) radiation for RIG offers an efficacious and practical way in which 

to graft a monomer onto a polymer substrate. Adsorbents created via this method are 

potentially superior options due to exhibits unique advantages including greater 

efficiency and fast, non-toxic to the environment and thus does not cause any further 

pollution associated with toxic chemical or catalysts. Furthermore, RP is in general 

usage. It enables multiple monomers to undergo polymerization and can be conducted 

in the presence of moderate conditions. A positive outcome of this research will offer 
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solutions to several difficulties linked with the development of industrial viable valid 

and proper functional adsorbents for the treatment of wastewater containing organic 

environmental contaminants. 

1.3 Research Goal and Objectives 

This study has two principal objectives.  

 

 

The initial objective relates to the creation of the adsorbents. The absorbents that are 

fibrous based consist of GMA grafted onto PA6 and cotton fibers, respectively; these 
are then functionalized using TMA. The adsorbents that are microparticle-based 

comprise AN/AA copolymers, functionalized with AO. Both forms were evaluated in 

order to establish their properties to adsorb PNP from aqueous solutions. 

The second main objective was to determine the adsorption properties of these 

adsorbents, including their optimization during the adsorption process, kinetics, 

isotherm, thermodynamics, and regeneration properties. 

Detailed objectives of this research include: 

 

1. To characterize the chemical and physical properties of TMA-(PA6-g-

GMA), TMA-(Cot-g-GMA) and AO-poly(AN-co-AA) prepared under 

different reaction conditions. 

2. To optimize and compare the preparation of fiber-based and microparticles-

based adsorbents for PNP adsorption. 

3. To evaluate adsorption performance of the TMA-(PA6-g-GMA), TMA-

(Cot-g-GMA) and AO-poly(AN-co-AA) adsorbents for removal of PNP 

from aqueous solution. 

 

 

1.4 Scope of the Study 

To achieve the above research objectives, this research focuses on: 

 

RIG and RP methods, respectively, were utilized for the synthesis of the PNP-selective 

adsorbents. The RIG process was performed in three-stages, i.e. irradiation, grafting 

and finally, chemical treatment with TMA. The first absorbent was generated by RIG 

of GMA onto PA6 fibers, utilizing a radiation dose range of 10-50 kGy and a reaction 

time of 20-180 minutes at 40 ˚C. The second adsorbent was created by RIG of GMA 

onto natural cotton fibers, using a radiation dose range of 5-50 kGy and a reaction 
temperature of 50 ˚C. The two irradiated grafted fibers were functionalized with TMA 

solution. 
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PAN-based copolymers were engineered using five varied ratios of AA, which were 

added to the PAN chain in order to increase the hydrophilic characteristics by the 

integration of a carboxyl moiety. Hydroxylamine hydrochloride (HH) was utilized to 

achieve chemical functionalization of the poly(AN-co-AA) by the AO. The 

physiochemical characteristics of the engineered adsorbents, encompassing 
morphology, surface chemical functional, elemental composition, structural, textural 

traits, thermal stability, and point of zero charge, were characterized using a number of 

strategies, including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction 

(XRD), field emission scanning electron microscopy (FESEM), Brunauer–Emmett–

Teller (BET) evaluation, thermogravimetric analysis (TGA) and pHpzc assessment. 

The adsorption studies were performed using a range of variables, e.g. adsorbent dose, 

initial solution pH, adsorption process temperature, initial PNP concentration and 

contact time. PNP adsorption kinetics and the adsorption mechanism for the 

adsorbents, non-linear models for Pseudo-first order, Pseudo-second order, Elovich and 

Intraparticle diffusion were investigated. Equilibrium isotherm studies were appraised 

with the use of non-linear isotherm adsorption models, i.e. Langmuir, Freundlich, 

Temkin and Redlich-Peterson models. PNP adsorption, thermodynamic properties, 
Gibb’s free-energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) 

were measured. The regeneration properties of the absorbents with respect to the 

desorption of PNP were additionally studied utilizing the eluents hydrochloric acid 

(HCl), nitric acid (HNO3), sodium hydroxide (NaOH) and ethanol (EtOH). 

1.5 Novelty and Contribution of Research Study 

On both small and large scales, phenols and PNP contaminants are released into 

aqueous streams from oil and petrochemical plants, pharmaceutical industries, textile 

manufacturers, paint, and pesticide businesses. They are also generated as by-products 

from a number of industrial processes. Functionalized polymer-based adsorbents have 

a broad spectrum of heightened physical and chemical characteristics that make them 

encouraging materials for wastewater separation and decontamination techniques. 

In the current research, TMA functionalized fibrous adsorbents have the potential 

ability to surmount the difficulties faced by other types of adsorbents in relation to 

adsorption capacities and kinetics. The method comprised a shortened RIG process 

based on inexpensive PA6 and easily accessible and renewable natural cotton fibers. At 
the same time, PAN-based microparticles, functionalized with AO, were formed under 

moderate conditions by RP. The evident novelty of the current study includes the 

engineering of the three adsorbents utilized for PNP adsorption, the comparison of 

their adsorption performance, delineation of their mechanisms of PNP uptake, and their 

regeneration abilities. This study provides data to determine the potential industrial 

feasibility of the designed adsorbents. The latter could significantly diminish both the 

financial burden of wastewater purification and the accrual of solid waste. The 

majority of industrial effluents contain more than one type of organic contaminants; 

thus, the use of adsorbents can be expanded to remove additional soluble organic 

compounds and in particular, substances that contain hydroxyl and nitro groups. 
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1.6 Thesis outline 

This thesis has been organized into six chapters and covers all the detail aspects of this 

research study.  

Chapter 1 covers the background, problem statement, research objectives, scopes, and 

novelty of the study. 

Chapter 2 presents the detailed and up to date literature review on phenolic compounds 

contaminants especially PNP in wastewater, sources, toxicity effects and various 

treatment technologies for their removal. The theoretical backgrounds of adsorption 

study for the adsorbate-adsorbent system are explained. The description of the latest 

information of various adsorbents' preparation methods provided as well. 

Chapter 3 shows the overall research methodology and procedures. All materials and 

chemicals related to mentioned goals are offered. The second part showed the 

engineering of the adsorbents followed by characterization approaches of the 

adsorbents including FTIR, XRD, FESEM, BET, pHpzc and TG-DTG. The last part 

includes adsorption studies in detail. 

Chapter 4 contains the results and discussion and description of the adsorbents, 

preparation, characterizations, and their performance for PNP adsorption. 

Chapter 5 presents overall conclusions and the recommendations for future studies. 
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