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As global warming comes and the prices of fuel keep rising, the clean and 
environmental friendly features of electric vehicles are increasingly focused. The 
electric vehicle is ideally compatible with the existing situation due to its efficiency 
compared to the Internal Combustion Engine (ICE). For full electric vehicles, the 
battery is the only source of energy, and the battery faces issues such as longer 
charging period. In general, Battery Electric Vehicle (BEV) has limited driving 
range due to battery capacity storage. The regenerative braking system (RBS) 
became important for electric vehicles that could allow motor vehicles function 
as a generator and alternator for the recovery process of kinetic energy during a 
braking event. 
 

During regenerative braking, the kinetic energy produced by the engine during 
deceleration and the energy needs to be recycled to extend driving range. The 
energy will be transmitted to charge the battery or store it in the energy storage. 
If the braking force distribution is not adequately regulated, the controller might 
fail to generate the necessary braking torque. In reality, the battery pack will 
cause harm due to overcharging induced by uncontrolled recovery. Appropriate 
braking system are required to be established in order to optimise the energy 
transferred during the regenerative braking process.  
 

The presence of classical regenerative braking is to optimise the regeneration of 
kinetic energy by reconciling regenerative technology with braking efficiency and 
vehicle behaviour. However, the existing result is insufficient where only 1056.6 
kJ per cycle for the Urban Dynamometer Driving Schedule (UDDS) and 4599 kJ 
per cycle for New European Driving Cycle (NEDC). This research introduced 
new topology of Integrated Regenerative Braking Force Distribution (IBFD) for 
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optimum braking and vehicle stability by combining average speed distribution 
of the braking force with National Renewable Energy Laboratory (NREL) braking 
design. The average speed level for the urban driving cycle in Malaysia is 31.89 
km/h. The average braking force is used to optimise the default braking 
distribution mechanism. 
 

This research verify conventional Sliding Mode Control Super-Twisting (SMCST) 
controller because it is useful due to it robustness against the disturbances and 
uncertainties. Even though the conventional SMCST controller confirms the 
stability, nevertheless it gives unsatisfied performance to obtain the desired State 
of Charge (SoC). Thus, the modified Sliding Mode Control Super-Twisting with 
hybrid fuzzy-gain scheduling optimisation component was proposed. The 
proportional gain was added to the switching control for faster response to the 
desired sliding surface. The modified SMCST is pairing with IBFD. Based on the 
results for NEDC, driving cycle using modified SMCST with IBFD braking, the 
energy transmitted is 600 kJ more than NREL, average motor efficiency increase 
to 0.85, overall efficiency 2.799 and the SoC is 0.899. The slip ratio output at 32 
km/h deceleration is -0.19 that proved the stability of this topology. The proposed 
methodologies successfully integrate the regenerative and friction braking forces 
to achieve the control goal. 
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Ketika pemanasan global dan harga bahan bakar terus meningkat, ciri-ciri 
kenderaan elektrik yang bersih dan mesra alam semakin menjadi perhatian. 
Kenderaan elektrik sesuai dengan keadaan sekarang kerana kecekapannya 
berbanding dengan Mesin Pembakaran Dalaman (ICE). Dengan kenderaan 
yang dikendalikan sepenuhnya tenaga elektrik, bateri adalah satu-satunya 
sumber tenaga, dan bateri tersebut menghadapi masalah seperti masa 
pengisian dan memerlukan pengisian yang lebih lama. Secara amnya 
Kenderaan Elektrik Bateri (BEV) mempunyai jarak pemanduan yang pendek 
kerana kapasiti bateri yang terhad. Sebagai perkembangan pesat dari pelbagai 
jenis kenderaan elektrik untuk memelihara bahan bakar karbon dan 
menyelamatkan iklim, sistem brek regeneratif (RBS) menjadi penting bagi 
kenderaan elektrik yang memungkinkan kenderaan bermotor berfungsi sebagai 
penjana dan pengganti untuk proses pemulihan tenaga kinetik semasa 
membrek. 
 

Semasa brek regeneratif, tenaga kinetik yang dihasilkan oleh enjin semasa nyah 
pecutan dan tenaga perlu dikitar semula untuk meningkatkan jarak pemanduan. 
Tenaga akan dihantar untuk mengecas bateri atau menyimpannya di stor 
tenaga. Sekiranya pengedaran daya brek tidak diatur dengan secukupnya, 
pengawal mungkin gagal menghasilkan tork brek yang diperlukan. Pada 
hakikatnya, pek bateri akan menyebabkan bahaya akibat pengecasan 
berlebihan yang disebabkan oleh pemulihan yang tidak terkawal. sistem brek 
yang baik diperlukan untuk mengoptimumkan tenaga yang dipindahkan semasa 
proses brek regeneratif. 
 

Kehadiran brek regeneratif klasik tidak mencukupi untuk mengoptimumkan 
penjanaan semula tenaga kinetik dengan menggabungkan teknologi regeneratif 
dengan kecekapan brek dan tingkah laku kenderaan. Walau bagaimanapun, 
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hasil yang ada tidak mencukupi di mana hanya 1056.6 kJ setiap kitaran untuk 
Jadual Pemanduan Dynamometer Bandar (UDDS) dan 4599 kJ setiap kitaran 
untuk Kitaran Pemanduan Eropah Baru (NEDC). Penyelidikan ini 
memperkenalkan topologi baru pengagihan daya brek regeneratif bersepadu 
untuk brek dan kestabilan kenderaan yang optimum dengan menggabungkan 
taburan kelajuan purata daya brek dengan rekaan brek Laboratorium Tenaga 
Diperbaharui Nasional (NREL). Tahap kelajuan purata bagi kitaran memandu 
bandar di Malaysia ialah 31.89 km/j. Daya brek purata digunakan untuk 
mengoptimumkan mekanisme pengedaran brek sedia ada. 
 

Penyelidikan ini mengimplementasikan pengawal super-putar mod gelongsor 
(SMCST) konvensional kerana ia terkenal dengan ketahanan terhadap 
gangguan dan ketidakpastian. Walaupun pengawal SMCST konvensional 
mengesahkan kestabilan, namun ia memberikan prestasi yang tidak 
memuaskan untuk mendapatkan State of Charge (SoC) yang diinginkan. Oleh 
itu, mod gelongsor yang diubah super-memutar dengan komponen 
pengoptimuman penjadualan gandaan fuzzy hibrid dicadangkan. Gandaan 
berkadar ditambahkan pada kawalan pensuisan untuk tindak balas yang lebih 
pantas ke permukaan gelangsar yang diingini. pengawal SMCST yang diubah 
suai dipasangkan dengan pengedaran daya brek bersepadu. Berdasarkan hasil 
untuk kitaran pemanduan NEDC menggunakan SMCST yang diubahsuai 
dengan pengereman bersepadu, tenaga yang dihantar adalah 600 kJ lebih 
banyak daripada NREL, kecekapan motor rata-rata meningkat menjadi 0.85, 
kecekapan keseluruhan 2.799 dan SoC adalah 0.899. Keluaran nisbah slip pada 
perlambatan 32 km / j adalah -0.19 membuktikan kestabilan topologi ini. 
Metodologi yang dicadangkan berjaya mengintegrasikan daya brek regeneratif 
dan geseran untuk mencapai matlamat kawalan. 
 

 

 

.Click here to enter text. 

Click here to enter text. 
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INTRODUCTION 

 
 
Electric vehicles (EV) are entirely relying on an electrical propulsion system, and 
no internal combustion engine is used. All control is dependent on batteries as a 
source of energy. Thus, the quality of electrical energy is the most significant 
benefit during power conversion through its proposition scheme. Massive 
research and development activity has recently been documented in both 
academics and industry [1]. Electric powered vehicles promise a significant 
reduction in carbon emissions, local air pollution, and greenhouse gas 
emissions. They will also be more efficient, environmentally sustainable, quiet 
and secure [2], [3]. 
 

Due to environmental concerns and increasing energy demands, electric 
vehicles have steadily expanded their exposure to customers and producers in 
recent years. In line for to the decrease in air quality, which is a problem for the 
environment, and the increase in oil prices, EVs are the alternative option for 
transport. Electrical Energy Storage (EES) technology refers to transferring 
energy from one source to a storage form and keeping it in energy storage. The 
energy collected can be transformed back to electrical energy as desired [4]. 
Unlike a hybrid electric vehicle (HEV), a battery-driven electric vehicle (BEV) is 
entirely powered by an electric motor and a battery without any assistance of a 
traditional internal combustion engine. As a consequence, BEV is the most 
effective vehicle to reduce emissions and reduction in fossil fuel energy [5], [6]. 
A battery-driven electric motor replaces the need for an Internal Combustion 
Engine (ICE) vehicle and a fuel tank. While not in service, BEVs may be plugged 
in for charging.  
 

Electric vehicle will minimise emissions, which energy supply should be available 
worldwide for potential usage as well as the cost should be low with a great 
performance of the vehicle. In addition, electric vehicles are perfectly adapted as 
electric vehicle drivetrain is much more efficient than the ICE vehicle. The motor 
performance is about 90%, battery efficiency is approximately 75% and power 
converter efficiency is around 90%. Therefore, electric vehicle performance's 
overall efficiency is approximately 75%, which in contrast to ICE vehicles is very 
high. The effectiveness of the ICE is very low. The engine itself has about 30-
37% gasoline efficiency and about 40% diesel, but when energy is on the wheel 
it only has 5-10% efficiency [7], [8]. Moreover, the EV and ICE powertrain 
efficiency is approximately 70% and 20%, respectively, although this gap will 
substantially decrease when considering primary energy efficiency [9]. Besides, 
when the energy sources used in an electric vehicle are produced from 
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renewable energy, these vehicles contribute to a to a reduction in fossil fuel 
energy and emission [6].  
 

Malaysia plans to introduce 100,000 units of electric vehicles and 2,000 electric 
buses with the national car company's capacity by 2030. The EV launch would 
reduce fossil fuel reliance for the transport industry and reduce greenhouse gas 
(GHG) emissions [10]. In addition, the energised BLDC motor took up the first 4 
seconds. The motor was stopped by its own inertia after 4 seconds, and 
regenerative braking was performed after that period. Voltage was expected to 
be induced in phases as the motor decelerated. To store the generated energy 
in the battery, this voltage must be increased to a higher value than the battery 
voltage [11]. 
 

The comparison of the major components of the ICE and BEV is defined in Table 
1.1. The battery serves the same function in an electric vehicle as the fuel tank 
in an ICE, storing energy until it is desired. An ICE uses a fuel injection system 
to control the flow of energy in order to regulate the speed and acceleration of 
the vehicle. In a BEV, a controller controls the flow of energy. At the required 
rate, the controller provides electrical energy to the motor. The rate is varied 
according to the position of the accelerator pedal. The power output is used for 
rotating the drive wheels in both vehicle types. 
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Table 1.1: Comparison of an ICE and EV [6] 

 
ICE Purpose EV 

Gasoline tank Stores the energy to run the vehicle Battery 
Gasoline pump Replaces the energy to run the 

vehicle 
Battery charger 

Gasoline engine Provides the force to move the 
vehicle 

Electric motor 

Fuel injection 
system 

Controls acceleration and speed Controller 

Generator/ 
alternator 

Converts AC to DC to charge the 
battery and run the accessories 

Inverter and 
DC/DC converter 

Not needed Converts DC to AC to power 
traction motor 

Inverter 

Emission Reduces pollutants from the 
exhaust 

Not needed 

Mechanical to 
heat 

Energy conversion during braking Kinetic to 
electrical 

 

 
1.1 Problem Statement 

 

 
For battery operated EV, the battery is the only energy source, and these 
batteries are confronted with problems such as longer charging and recharging 
times and limited performance in the driving range. Electric vehicles have faced 
a limited driving range compared to traditional vehicles. Running out of energy is 
the same as braking down. A maximum charging cycle takes an average of 1-2 
hours, which is about 120 times the time required to refuel a car [12]. 
Regenerative braking is more crucial in city driving, where the brakes are used 
more frequently[13]. In addition, at average city speed, 33.23 km/h the final SoC 
is 37.55 % which is drop 12 % of state of charge (SoC) for 10.93 km [14]. In 
addition, to maximise the lifespan of the battery, regenerative should perform at 
10% to 90% SoC to avoid overcharging process at temperature range 20 °C to 
60 °C. The solution using Neural Network Sliding Mode Control (NNSMC) able 
to improve the energy saving and driving range to 6% [15]. However, NNSMC 
does not provide any temperature state of energy storage to avoid overheating 
and degradation of battery. 
 

Regenerative braking in BEV, which can efficiently increase automotive fuel 
economy by restoring kinetic energy throughout deceleration cycles, has been 
used in different electrified vehicles as one of the main innovations. The 
regenerative brake should be synchronised with the mechanical brake to achieve 
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high regeneration efficiency and guarantee protection for the vehicle's brake. 
Consequently, the mechanical braking system's layout and the brake mixing 
control method can significantly impact the regenerative braking control 
efficiency. 
 
 
One of the practical approaches to enhance EV's energy rate is cooperative 
regenerative braking force distribution, whereby the energy consumed during 
acceleration is recovered during braking. Regenerative braking can currently 
contribute to a 20 % to 50% improvement in fuel usage. However, the electric 
vehicle's most critical issues are their capacity to recover a large amount of 
braking energy. The presence of traditional regenerative braking does not make 
it feasible to optimise the regeneration of kinetic energy by reconciling 
regenerative energy with braking efficiency and vehicle behaviour. 
 
 
Generally, like the traditional fuel-driven vehicle braking system, it consists of 
brakes and power to slow the engine down or stop it. In electric vehicles a 
regenerative braking system is available that can benefit from the engine control 
system that decelerates the braking energy back into the battery to ensure 
regeneration. 
 
 
Moreover, the need to increase overall efficiency has contributed to the design 
of the regenerative braking system. In regenerative braking, the energy during 
deceleration is converted to electricity and used to expand the driving range. The 
harvested energy will be used to charge the battery or store in the energy storage 
[19] [20] [21] [22]. Therefore, efficient braking control designs are necessary to 
be determined in order to maximise the transmitted energy while regenerative 
braking is executed. 
 
 
If the braking force's distribution is not effectively controlled, the controller may 
fail to produce the required braking torque. The battery pack can cause damage 
due to overcharging produced by unregulated recovery. In technological trends, 
the Sliding Mode Control (SMC) design has become attention due to its 
robustness, good performance and disturbance rejection. Besides that, SMC 
also approaches critical issues such as elimination of chattering, adaptability to 
the uncertain system and enhancement of the dynamic performance of the 
closed loop system. However, the traditional SMC configuration produces a 
chattering phenomenon in control, which is why it is not applicable in real 
practise. The solution provided using the Intelligent Sliding Mode Scheme 
(ISMS) on 2018, which has a primary logic-based torque limiter, provided an 
excellent tracking of the required slip during an extreme braking scenario with 
high braking performance. It successfully achieved a significant energy recovery 
without overcharging the battery pack by efficiently implementing the chosen 
brake torque distribution. However, this method produced an overshoot of about 
0.24 while tracking the slip ratio which exceeding the ideal value 0.2 [16].  
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As a key device of the regenerative braking mechanism, the efficiency of the 
motor specifically influences the recovery of energy. The amount of energy 
transmitted using the dynamic low-speed cut-off point detection for maximising 
energy transmitted can only transmit 1056.6 kJ per cycle for the UDDS driving 
cycle and 4599 kJ per cycle for NEDC driving cycle. Next, the amount of 
recovered braking energy through the fuzzy logic control strategy introduced by 
is 2145 kJ [13]. Furthermore, the current regenerative motor efficiency of RBS is 
0.75. 
 

In addition, fuzzy logic for regenerative has been proposed by [17] using Sugeno 
method due to its viable and effective. The simulation results show that the fuzzy 
logic control strategy can obtain more regenerative braking energy than the 
default strategy, as well as an increase in overall vehicle system efficiency. In 
addition to enhancing the vehicle's overall efficiency, regeneration can 
significantly increase the life of the braking system by reducing damage on its 
components [18]. 
 

Based on previous studies, electric regenerative braking can help to improve fuel 
efficiency by 20-50% depending on electric motor size. Various efforts were 
made earlier to increase the regenerative braking energy by the proposed control 
strategy by adjusting the Continuously Variable Transmission (CVT) gear ratio 
to sustain the motor at a high-efficiency motor region. However, only 8% 
improvement of regeneration energy through this strategy [19], thus appropriate 
new regenerative braking control strategy needed in order to maximise 
transmitted regenerative braking energy.  
 
 
1.2  Aim and Objectives 

 

 
This research aims to design an algorithm for optimum energy recovery without 
overcharging the battery (regenerative only perform at 10% to 90% SoC). Lower 
SoC higher inner resistance of batteries, and charging current should be 
decreased at high SoC to prevent the deposit of Li-on (Lithium-ion). The following 
are objectives of the research. 

1. To develop Integrated Braking Force Distribution (IBFD) for optimum 
braking and vehicle stability. 

2. To develop hybrid Modified Sliding Mode Control Super-Twisting 
(SMCST) with hybrid fuzzy-gain scheduling optimisation component in 
order to reduce control error of vehicle speed based.  
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3. To evaluate the performance of Modified Sliding Mode Control Super-
Twisting (MSMCST) with hybrid fuzzy-gain scheduling optimisation 
component with conventional Sliding Mode Control Super-Twisting 
(SMCST) and National Renewable Energy Laboratory (NREL) default 
design. 

4. To analysis IBFD the driving cycle's performance in terms of SoC, 
energy transmitted, motor efficiency, temperature, slip ratio, and overall 
efficiency. 
 
 

1.3 Contribution 
 
 
This research focuses on parallel braking force distribution based on vehicle 
speed based. The main contribution of this research is development of integrated 
braking force distribution by considering the average city driving speed in order 
to obtain maximum energy transmitted during braking. The integration of average 
speed will act as optimize component for the existing braking force distribution. 
Next, the Modified Sliding Mode Control Super-Twisting has been introduce by 
introduce the proportional gain. The output speed able to track the input driving 
cycle and reduce the steady state error. In addition, fuzzy-gain scheduling has 
been introduce as tuning component in order to improve the SoC level and 
provides better performance. 
 
 
1.4 Scope 

 

 
This research demonstrates an algorithm of braking force distribution passenger 
electric vehicle with specification of total mass 903 kg without passenger. The 
mass was considered 592 kg of vehicle mass without component, 34 kg energy 
storage system, 91 kg electric motor, 50 kg transmission and 136 cargo mass. 
The mathematical model has been formulating for vehicle dynamics that consists 
of rolling resistance, aerodynamic drag and grading resistance. The parallel 
braking force distribution strategy was design by considering Malaysia’s average 

city speed at 31.89 km/h and the maximum ratio for regenerative braking is at 60 
km/h. The braking strategy is designed to recuperate maximum energy without 
overcharging the battery while maintaining the vehicle stability. The energy 
storage system was designed to execute the regenerative braking at 10% to 90% 
of SoC to prevent from overcharging. This algorithm has been test for dry asphalt 
condition with four types of driving cycle to investigate the proposed algorithm 
performance such as New European Driving Cycle (NEDC), Federal Test 
Procedure (FTP 75), Urban Dynamometer Driving Schedule (UDDS) and West 
Virginia University City Cycle (WVUCITY) driving cycles. 
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1.5 Summary 

 

 
This thesis is organised into five chapters. Chapter 1 briefly introduces the 
research work, which includes research background, problem statement, aim 
and objectives, and scope of the work.  
 

In the second chapter, all related literature review with refer to regen are 
reviewed. The principle of regenerative braking consists of vehicle dynamics, 
electric motors, batteries, braking force distribution, regenerative braking control 
and sliding mode control in regenerative braking. Summary of existing finding, 
advantage and disadvantage is tabulated. 
 

In the third chapter, the methodology of design the integrated braking force 
distribution through Malaysia's average speed at 31.89 km/h method is 
presented. Next, the controller algorithm design using conventional sliding mode 
super-twisting and hybrid sliding mode super-twisting with fuzzy and gain 
scheduling as optimisation mechanism is discussed. 
 

Chapter 4 presents the results and findings obtained through four types of driving 
cycle comprehensive analysis on NREL default topology, conventional SMCST, 
and modified SMCST. Also, comparative evaluation for several important 
parameters such as SOC, motor efficiency, overall efficiency, energy 
transmitted, and temperature are presented. 
 

Chapter 5 concludes the work, contribution of the research, and suggestions for 
future works.
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