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The introduction of green diesel produced from the deoxygenation of non-edible 

feedstock is an alternative to conventional fuels. Hereby, the evaluation of catalytic 

deoxygenation of palm fatty acid distillate (PFAD) was carried out in an environment 

free of H2 to produce green diesel over mono-metallic (Co & Mn) and bimetallic 

catalysts (Co-Mo, Co-Ag, and Mo-Ag) supported on activated carbon (AC) derived from 

waste coconut shells. The biomass-derived AC prepared from waste coconut shells 
offers a competitive edge from the aspect of production cost. Based on the catalytic 

deoxygenation activity, the Co(10wt.)/AC catalyst showed a higher yield and selectivity 

than the Mn(10wt.)/AC. It was found that Co(10wt.)/AC catalysts exhibited high 

deoxygenation activity with hydrocarbon yield (C8-C20) was (71%) and (C15+C17) 

selectivity was (46%), attributed to strong acid–base-sites, which consecutively 

favouring C–O bond cleavage through the deoxygenation route. Further studies were 

carried out on bimetallic catalysts (Co-Mo, Co-Ag, and Mo-Ag) on AC supports. The 

effect of Mo in bimetallic catalyst Co10Mon/AC at various concentrations (n=5–20 wt.%) 

was investigated on the deoxygenation reactions performance. Based on the study 

results, the bimetallic catalyst Co(10wt.)-Mo(10wt.)/AC exhibited high catalytic performance 

with 92% hydrocarbon components (C8-C20) yield and 89% selectivity for (C15 +C17). 

This is owing to the good physicochemical properties of the catalyst, such as high strong 
acid-base sites, high crystallite size, good surface area and pore volume. Furthermore, it 

was stable until the sixth run maintaining hydrocarbon diesel components yield and 

selectivity of (C15 +C17) >80%. On the other side, the Co-Ag/AC and Mo-Ag/AC catalyst 

performed well in deoxygenation reactions, the optimization of a series of Co(10wt.%)-

Ag(Z)/AC and Mo(10wt.%)-Ag(n)/AC catalysts (z & n: 5–20 wt.%) was also investigated. 

Astoundingly, the bimetallic catalyst Co(10wt.%)-Ag(10wt.%)/AC and Mo(10wt.%)-

Ag(20wt.%)/AC exhibited a synergistic effect between the active metals Co-Ag and Mo-

Ag with the activated carbon support (AC). The aforementioned catalysts have amazing 

physicochemical properties such as high surface area, high porosity, good dispersion of 

active metals on the support, strong acid and base density. These properties significantly 

https://synonyms.reverso.net/synonym/en/likewise
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facilitated the selective deoxygenation (deCOx) pathway of the fatty acids by exhibiting 

the greatest hydrocarbon (C8–C20) fractions yield of 92% & 93% and selectivity of 

(C15+C17) 95% & 90%. In addition, the Co(10wt.%)-Ag(10wt.%)/AC and Mo(10wt.%)-

Ag(10wt.%)/AC catalysts also exhibit high stability and can be reused for up to eight cycles 

by producing hydrocarbons (C8 - C20) ~ 75-90 % and selectivity (C15+C17) ~ 70-90 %. 
Moreover, these catalysts showed an excellent coke inhibition with less than 5 wt.% of 

coke determined by TGA analysis. Thus, it can be believed a potentially promising 

catalyst for the production of green diesel, at the same time providing economic 

opportunities and added value to the palm oil industry. In summary, the bimetallic 

catalysts Co(10wt.%)-Ag(10wt.%)/AC and Mo(10wt.%)-Ag(10wt.%)/AC showed high catalytic 

activity represented in superior yield and selectivity besides distinguished reusability. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

PEMBANGUNAN MANGKIN BERASASKAN PENYOKONG KARBON 
UNTUK PENGHASILAN DIESEL HIJAU MELALUI 

PENYAHOKSIGENAN ASID LEMAK BEBAS

Oleh 

SAFA GAMAL NASSER MOHAMMED 

Mac 2022 

Pengerusi :   Profesor Datuk ChM. Ts. Taufiq Yap Yun Hin, PhD 

Fakulti :   Sains 

Pengenalan diesel hijau yang dihasilkan daripada penyahoksigenan bahan mentah yang 

tidak boleh dimakan adalah alternatif kepada bahan api konvensional. Dengan ini, 

penilaian penyahoksigenan pemangkin bagi distilat asid lemak sawit (PFAD), minyak 

jarak (JCO), dan sisa minyak masak (WCO) telah dijalankan dalam persekitaran bebas 

H2 untuk menghasilkan diesel hijau dengan menggunakan mangkin logam (Co & Mn) 

dan pasangan logam (Co-Mo, Co-Ag, dan Mo-Ag) yang disokong pada karbon aktif 
(AC) yang diperolehi daripada sisa tempurung kelapa. AC dari bio-jisim yang disintesis 

daripada sisa tempurung kelapa menawarkan kelebihan daya saing dari aspek kos 

pengeluaran. Berdasarkan aktiviti penyahoksigenan, mangkin Co(10wt.)/AC menunjukkan 

hasil dan pemilihan yang lebih tinggi daripada Mn(10wt.)/AC. Didapati bahawa mangkin 

Co(10wt.)/AC mempamerkan aktiviti penyahoksigenan yang tinggi dengan 71% 

penghasilan hidrokarbon (C8-C20) adalah dan 46% pemilihan (C15+C17) yang disebabkan 

oleh bilangan tapak asid-bes yang tinggi dan memihak kepada pemecahan ikatan C–O 

melalui laluan penyahoksigenan. Kajian susulan telah dijalankan ke atas mangkin 

pasangan logam (Co-Mo, Co-Ag, dan Mo-Ag) pada penyokong AC. Kesan Mo dalam 

pasangan mangkin logam Co10Mon/AC pada pelbagai kepekatan (n=5–20 wt.%) telah 

dijalankan melalui tindak balas penyahoksigenan. Berdasarkan keputusan kajian, 

mangkin pasangan logam Co(10wt.)-Mo(10wt.)/AC menunjukkan prestasi yang tinggi 
dengan menghasilkan 92% komponen hidrokarbon (C8-C20) dan 89% pemilihan (C15 

+C17). Ini disebabkan oleh sifat fizikokimia mangkin seperti bilangan tapak asid-bes kuat

yang tinggi, saiz kristal yang tinggi, luas permukaan dan liang mangkin yang baik.

Tambahan pula, mangkin ini menunjukkan kestabilan yang tinggi dan boleh digunakan

semula sehingga enam kitaran dengan mengekalkan hasil diesel hidrokarbon dan

pemilihan (C15 +C17) >80%. Selain itu, mangkin Co-Ag/AC dan Mo-Ag/AC

menunjukkan prestasi yang baik dalam tindakbalas penyahoksigenan, oleh itu,

pengoptimum terhadap satu siri mangkin Co(10wt.%)-Ag(Z)/AC dan Mo(10wt.%)-Ag (n)/AC

(z & n: 5–20 wt.%) telah dijalankan. Hasil kajian menunjukkan mangkin pasangan

logam Co(10wt.%)-Ag(10wt.%)/AC dan Mo(10wt.%)-Ag(20wt.%)/AC mempamerkan interaksi
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sinergistik antara logam aktif Co-Ag dan Mo-Ag dengan penysokong karbon aktif. 

Mangkin tersebut mempunyai sifat fizikokimia yang mengagumkan seperti luas 

permukaan yang tinggi, keliangan yang tinggi, penyebaran logam aktif yang baik pada 

sokongan, asid kuat dan ketumpatan bes. Sifat-sifat ini memudahkan laluan deCOx 

terpilih bagi asid lemak dengan menghasilkan pecahan hidrokarbon (C8–C20) sebanyak 
92% & 93% dan pemilihan (C15+C17) sebanyak 95% & 90%. Selain itu, pemangkin 

Co(10wt.%)-Ag(10wt.%)/AC dan Mo(10wt.%)-Ag(10wt.%)/AC juga mempamerkan kestabilan yang 

tinggi dan boleh diguna semula sehingga lapan kitaran dengan penghasilan ~75−90% 

hidrokarbon (C8–C20) dan pemilihan (C15+C17) sebanyak 70–90 %. Di samping itu, 

mangkin ini menunjukkan pembentukan kok yang sangat baik dengan kurang daripada 

5% berat kok yang ditentukan oleh analisis TGA. Justeru itu, mangkin ini berpotensi 

digunakan untuk menghasilkan diesel hijau dan pada masa yang sama menyediakan 

peluang ekonomi dan nilai tambah kepada industri minyak sawit. Secara ringkasnya, 

pemangkin pasangan logam Co(10wt.%)-Ag(10wt.%)/AC dan Mo(10wt.%)-Ag(10wt.%)/AC 

menunjukkan aktiviti mangkin yang tinggi dalam penghasilan hidrokarbon dan 

pemilihan (C15+C17) selain kebolehgunaan kitaran semula mangkin. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 An Overview to Sustainable Energy, Biofuel and Green Diesel 

Global energy consumption expanded at a pace of 2.9% in 2018, nearly twice the 10-

year average of 1.5%, and the fastest since 2010, but slowed down again to 1.3% in 2019. 

Energy consumption growth rates, represented by natural gas and renewable energy 

(Looney, 2020; Spencer, 2019), have increased despite modest GDP (Gross domestic 

product) growth and rising energy prices. The use of fossil resources as a main feedstock 

to produce fuels and chemicals along with the growing environmental issues concerns 
about greenhouse gas emission and the depletion of petroleum reserves, spurred the 

society to utilize alternative resources.  

The current rapid development in the road transport sector is driving the demand for 

diesel oils. The global request for diesel oil is growing swifter than any other petroleum 

product where diesel oil has been projected to experience an increase of about 33.2 

million barrels daily in the year 2040, as compared to the 27.5 million barrels per day 

that was recorded in 2015 (Nilsson, 2016) . As regarding transportation related activities, 

biofuels are known to be the only substitutes that support neutrality of carbon and are 

thus becoming paramount progressively, due to their ability to easily integrate into the 

existing infrastructure (Lup et al., 2017). Furthermore, to mitigate the dependability on 

fossil fuels, liquid transport fuel production obtained from renewable sources, is 
expanding globally. There have been many efforts to produce biofuels, however, most 

of them focused on single-component fuels such as ethanol, butanol, and recently, there 

has been an increase in research tailored at producing long-chain hydrocarbons that can 

be consumed in diesel engines (Lee and Nikraz, 2015; Snunkhaem Echaroj, 2015).      

More so, researches on biofuels have already commenced incorporation to the transport 

sector, with the inclusion of bioethanol as well as biodiesel, which comprise fatty acid 

methyl esters (FAMEs); as this depends on in-edible vegetable oil, lignocellulosic, and 

waste materials. Biodiesel is an inexhaustible fuel substitute that has the ability of being 

consumed in a diesel motor, either being blended with petroleum-diesel fuel or in a pure 

state. With regards to ecological appraisal and sustainability, biodiesel assists in the 

reduction of particulate emission, as well as in cutting down greenhouse gases emission 

so as to lessen air defilement. However, biodiesel (FAME) comprises higher oxygen 
content that makes it experience less density in energy as well as reduced oxidation 

stability, as compared to petroleum diesel (Lup et al., 2017).  

Since the last decade, different technologies have been evolved to produce renewable 

diesel from biomass materials to serve as a replacement for petroleum diesel. Thus, the 

deoxygenation of biomass to form hydrocarbons has obtained considerable attention as 
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a promising technology that can help in producing green diesel due to the resemblance 

of the attained hydrocarbons properties with that of the petroleum diesel. Additionally, 

the costs of operational processes are less than the present process utilized in present-

day petroleum refineries, thus the need for the process of hydrodeoxygenation (HDO) 

has emerged. Moreover, the process of hydrodeoxygenation involves the direct 
formation of bio-oil through eliminating of oxygen atoms, resulting in the preserving the 

carbon atom number in the parent compounds, with water as a by-product in the H2 

ambient (Ameen et al., 2017). From an economic point of view, deoxygenation is 

beneficial because it cuts the costs related to utilization of H2 in the hydrodeoxygenation 

process. In general, the deoxygenation of fatty acids is performed through two major 

reaction pathways to produce green diesel, i.e., decarbonylation and decarboxylation 

(deCOx), whereby (i) the decarbonylation (DCO) pathway involves the elimination of 

carbonyl groups through C-C and C-O bond scission to produce straight-chain alkenes 

by releasing of CO and water as by-products (Oi et al., 2020) (Eq. 1), and (ii) the 

decarboxylation (DCO2) pathway, which involves the elimination of carboxylic groups 

through C-C bond scission and the release of CO2 to produce a straight-chain alkane with 

one carbon atom less than the original fatty acid (Eq. 2) 

Decarbonylation pathway 

R-COOH → R′-CH =CH2 +CO (g) + H2O                                              (Eq. 1.1) 

 

Decarboxylation pathway 

R-COOH → R-H + CO2 (g)                                                                    (Eq. 1.2) 

 

R, R′ = alkyl groups 

Consequently, deoxygenation is one of the pioneer treatment procedures utilized to 

upgrade bio-oil into green diesel. Thus, the bio-oil upgrading via deoxygenation process 

renders as a practical choice desired to produce oxygen free green diesel with better 

properties like higher heating value, lower density, lower viscosity, and greater oxidation 

stability (Hongloi et al., 2022). Due to these reasons, green diesel exhibits the most 
promising biofuel replacement for conventional fuels and with outstanding fuel 

properties better than biodiesel. Furthermore, green diesel originating from biological 

sources resembles petrol-diesel-like fuels and adheres to ASTM D975 specifications, 

which is not mono-alkyl esters (Munoz et al., 2012).  

In light of the above proposition, the community is forced to develop a new technology 

for obtaining biofuels by benefitting from the availability of renewable raw materials 

(Datta and Mandal, 2016). The suitable feedstock selection for production of green diesel 

is exceptionally vital for industrial implementations. Generally, feedstock selection has 

been subjected to the following criteria (1) availability of the feedstock, (2) economic 

feasibility, and (3) geographically easy to access feedstock. Commonly, edible and 

inedible vegetable oils are used for biofuel production. However, edible oils encounter 
some difficulties associated with fuel-food competitions. Various natural vegetable oils 

and animal fats have proved to be promising renewable resources. Amongst them, fatty 
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acids are the fundamental constituents of plant and animal oils/fats such as waste cooking 

oil (Romero et al., 2016), refined palm oil (Srifa et al., 2014), rapeseed oil (Lovás et al., 

2015) and palm fatty acid distillates (PFADs) (Kiatkittipong et al., 2013). Since Malaysia 

is considered among the largest producers of crude palm oil (CPO), refining a large 

amount of crude palm oil will generate a massive amount of PFAD – 780,000 t 

(“Essential Palm Oil Statistics Palm Oil Analytics,” 2017). 

Meanwhile, oils that are inedible such as jatropha oil, Karanja oil, rapeseed oil and 

rubber oil are expensive for use in the production of biofuel (Ooi et al., 2019; Asikin-

Mijan. et al., 2020). Biofuels derived from renewable sources like vegetable oils and 

biomass can be used a as substitute fuel, lowering the amount of fossil fuels consumed 

and thus greenhouse gas emissions (Isa and and Ganda, 2018; Ooi et al., 2019). Liquid 

biofuels made from renewable bio-resources like free fatty acids (FFAs) feedstock have 

attracted great interest in the recent times as is evident from the literature published in 

this field. (Asikin-Mijan et al., 2020; Wu et al., 2017). Amid inedible vastly utilized 

vegetable oils used in producing biofuels, comprises the PFAD – one that is increasingly 

used especially in South East Asia. Furthermore, in the crude palm oil (CPO) refining 

process, free fatty acids are excluded as by-products and are called palm fatty acid 
distillates (PFAD). The PFAD is not of human-edible grade, it is utilized as feedstock in 

soaps and the oleochemical industry, and as fuel for local power/process heat. PFAD is 

a promising feedstock for green diesel production and it is cheaper than edible oils, it 

has a high fatty acid content >85wt.% (Ibrahim et al., 2019). PFAD contains large 

amounts of saturated palmitic acid and mixed C18 acids. This is in addition to the 

abundance of supply, flexibility, and low price, which makes PFAD a promising and 

desirable renewable feedstock for green diesel production that will reduce emissions of 

greenhouse gases (Baharudin et al., 2020).  

Regarding green diesel production via deoxygenation reactions, the catalyst is 

considered as an important factor in acquiring the main products with high yield and 

selectivity. The ability of catalysts could be enhanced via optimization of the operational 
conditions, treatment, as well as modification procedures. The treatment activity 

contributes to the creation of sites with stronger, hyper-active Brønsted-Lewis acid-base 

as well as magnified crystal sizes that can help enhance deoxygenation efficacy, 

reusability, as well as selectivity in producing green diesels of high quality, yet lesser 

oxygen components (Mahdi et al., 2021). The choice of active metal catalyst for 

deoxygenation processes is critical since it has a crucial impact on product yield and 

quality. Though many researches have investigated fatty acids deoxygenation alongside 

plant oils, all were limited to the use of special catalysts. In a study by Snare et al., a 

group of metals were investigated (Pd, Pt, Ru, Ni, Rh, Ir, and Os), and these were 

purportedly supported either on carbon or metal oxides (Pattanaik and Misra, 2017). 

Eventually, they concluded that fatty acids, as well as their esters, are transformed 

directly into straight-chained hydrocarbons via the process of deoxygenation are 
favourable particularly on activated carbon-supported Pd and Pt metals. Nevertheless, 

the high expense of the aforementioned metals is unfavourable compared to catalysts 

that are more convenient for deoxygenation from the economic perspective (Pang et al., 

2019). Consequently, the restriction with regards to noble metals being made available 

across the globe has spurred the need to investigate other inexpensive catalysts such as 
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transition metals Ni, Co, Cu, Mo, Ag, Zn, Mn and W for biomass upgrading. (Cheah et 

al., 2021; Ramesh et al., 2019). Among the transition metals, Co exhibited excellent 

decarboxylation activity by the formation of saturated unbranched compounds, in 

addition to unsaturated olefinic compounds via decarbonylation pathways, which led to 

the production of  water as a by-product (Asikin-Mijan et al., 2018). Srifa et al., (2014) 
studied palm oil deoxygenation for the production of green diesel over monometallic 

catalysts (Co, Ni, Pd, and Pt), which is also supported on γ-Al2O3. Notably, the results 

revealed that the Co-based catalyst tends toward the decarbonylation route as well as/or 

either the decarboxylation which has similarity to the reaction of hydrodeoxygenation. 

Meanwhile, Ni, Pd, and Pt-based catalysts favoured the reactivity of the decarbonylation 

process far beyond that of hydrodeoxygenation. However, Pd and Pt noble metals show 

great HDO activity, yet are generally selective towards aromatic ring hydrogenation 

rather than deoxygenation. Consequently, Ni catalyst was favoured towards excessive 

cracking reaction, which lowers the diesel range hydrocarbon yields and causes catalyst's 

deactivation due to its high acidity. Surprisingly, the Co-based catalyst seems promising 

in deoxygenation, as it showed high catalytic performance in the deoxygenation reaction 

through its excellent acidic–basic sites. Júlia de Barros Dias Moreira et al. (2020) studied 
the Macauba acid oil deoxygenation over a Co-base catalyst supported on activated 

carbon. From the results, it was discovered that there was an occurrence reactivity via 

deCOx, yielding around 96% bio-hydrocarbons, in the range of both green diesel as well 

as kerosene (Moreira et al., 2020). To reinforce the catalytic activity of a Co-based 

catalyst, oxides of selected metals like Mo, W, Fe, Ca, Mn, Ag, and Ni have been used 

as a promoter in deoxygenation under H2-free conditions (Choo et al., 2020). The 

aforementioned promoters were added to the main metal to form the binary metal oxide 

catalysts. 

Agricultural residues are beneficial in providing raw materials for the preparation of 

catalytic supports, and the use of cheap and highly effective metals opened the way to 

apply them in deoxygenating different kinds of animal fats as well as vegetable oils 
(Mahdi et al., 2021). As a substitute of catalyst promoter, a major role is usually played 

by the catalyst support in enhancing the reactivity of the deoxygenation process. This is 

due to the ability of the support to develop dispersion of metals, while synonymously 

increasing the active sites on the catalyst (Aliana-Nasharuddin et al., 2019). Furthermore, 

carbon is deemed an auspicious support, one that could be attributable to specific area, 

alongside the carbon structure itself, in a thermally stabilized order; thence, reducing the 

active metal sintering in the course of deoxygenating reactivity (Wang et al., 2018). 

Activated carbon (AC) as catalyst support preserves a brilliant future because of its 

distinguished physical properties such as lower coke formation propensit, high surface 

area, as well as thermal stability, which helps in mitigating active metal sintering in the 

course of deoxygenation reaction.  

In literature, only a few investigations on the catalytic deoxygenation of rich-fatty acids 
feedstock on carbon-based bimetallic catalysts are present. Kiatkittipong et al., (2013) 

in their study, informed that higher catalytic activities were exhibited by the Pd/C 

catalyst in the hydrotreatment of fatty acid distillates (PFAD), where the diesel-range 

products yield was >80%, while it showed weak catalytic activity with crude palms 

triglyceride, Degummed Palm Oil (DPO), as well as Crude Palm Oil (CPO), 
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respectively. In reference to the findings, it could be conclusively stated that AC as a 

catalyst support, provides better catalytic stability, and thus increased deoxygenation 

activity.  

1.2 Problem Statements 

The growth of motorization and industrialization worldwide, has led to high petroleum-

based fuel demand (Liu et al., 2015). Today, the wellsprings of petroleum fuel are 

drained and depleted, which had caused the increment in fossil fuel price and makes the 

supplanting of fossil fuel with biofuel more critical than ever. However, biofuel conveys 

a significant expense tag in the industry because of the costly feedstock and high 
maintenance. Therefore, the use of inedible waste contributes to reducing the cost of 

biofuel production. Furthermore, there has been a recent development among 

technologies like the vegetable oil hydrotreatment as well as the biomass to liquid fuels 

(BTL) in producing green diesel, coming up with promising routes to fulfil future energy 

soaring demands (Arun et al., 2015). Catalytic hydrotreating reaction simultaneously 

expels sulphur, nitrogen, and oxygen as hydrogen cleaves bonds from carbon-

heteroatom or carbon-carbon, in a molecule.  Meanwhile, the hydrodeoxygenation 

(HDO) process is typically applied in the refinery industry which involves direct 

conversion of fatty acids, where molecules of organic–oxygen that are found in 

feedstocks, undergo hydrogen-based reactions at high temperatures (250–400 °C) as 

well as pressure (3–10 MPa). The obtained products are hydrocarbon paraffin-based-
biofuels free of oxygen, preserving the carbon atoms number with a byproduct of H2O 

(Arun et al., 2015). Therefore, the hydrodeoxygenation process is less preferable in green 

diesel production due to cost of consumed H2 during the reaction phase. Otherwise, fatty 

acids deoxygenation, is proceeded by reactivity phases of both decarbonylation (DCO) 

and decarboxylation (DCO2) respectively to yield green diesel products by removal of 

oxygen as CO2/CO via a direct cleavage of the C–C bond (Krobkrong et al., 2018). 

Despite the DCO route final product having one carbon less compared to the feedstock, 

it is more preferred than the HDO. The process is carried out with the exception of an 

external source of H2, of which there is self-generated H2 gas via water-gas-shift in the 

course of the reaction, thus facilitating a reaction of hydrogenolysis (Xing et al., 2018), 

alongside the inert atmospheric condition mitigating the cost of using a high-pressure 

equipment.  

Regarding green diesel production, the catalyst is a critical factor in improving the 

proficiency of the process. Heterogeneous catalysts, which proved a high capability and 

functionality were used. Besides the catalytic activity and stability, the heterogeneous 

catalysts are the key factors in synthesizing a novel catalyst. Of late, many researchers 

have studied catalytic deoxygenation for several fatty acids feedstock, that can help in 

producing liquid hydrocarbons using different catalysts such as noble metal catalysts, 

which comprise of a high catalytic activity in the deoxygenation reaction with or without 

hydrogen gas, but economic limitations due to high production costs make them 

unappealing (Hongloi et al., 2022). Meanwhile, the sulphide metal catalyst has some 

drawbacks which are accountable for the contamination of the final product with sulphur 

coupled with the issue of corrosion, because sulphidation (oxides to sulphides) occurred 
in the active sites of the catalyst surface (Khan et al., 2019). To outperform these 

https://synonyms.reverso.net/synonym/en/unappealing
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difficulties, transition metal oxides have proved to be of special significance regarding 

their catalytic performance and unique properties, such as sustainability, minimal 

quantity required, reusability, and presence of both basic and acidic properties (Cheng 

et al., 2016). Amongst those, the monometallic type has  caught phenomenal attention in 

the catalytic deoxygenation of fatty acids, specifically Fe (Yu et al., 2014), Ni (Miao et 
al., 2016), Mo (Krobkrong.et al., 2018),  and Co (Zhang et al., 2014). Amid various 

TMO catalysts, Co-based catalysts showed high catalytic performance in the 

deoxygenation of palm oil, triolein, and stearic acid. This is attributed to the high 

reactivity exhibited by Co-based catalysts to convert free fatty acid feedstock into diesel-

range hydrocarbon as primary products (Asikin-Mijan et al., 2018; Crawford et al., 2019; 

Srifa et al., 2014). Furthermore, it has been suggested that the primary role of Co-based 

catalysts is to promote C–C and C–O cleavage via decarboxylation/decarbonylation 

pathways (Asikin-Mijan  et al., 2018). 

According to Shim et al. (2018) (Shim.J et al., 2018), the Co-based catalyst coupled with 

Mo metal successfully deoxygenated oleic acid and produced green diesel with 88.9% 

conversion and 48.1% C9–C17 selectivity. Furthermore, Asikin-Mijan et al. (2018) 

reported that the 10 wt.% of Co metal in the (Co-Ca) supported on mesoporous SiO2-
Al2O3 showed a great catalytic deoxygenation reaction of triolein exclusively via 

decarboxylation/decarbonylation pathways by inducing the C–C cleavage and C–O 

cleavage and produced high hydrocarbon n-(C8-C20) yield of 73% (Asikin-Mijan et al., 

2018). Nevertheless, Crawford et al. (2019) (Crawford et al., 2019) investigated the 

deoxygenation reaction of stearic acid by utilizing cobalt-based catalyst supported on 

zeolite NaX which achieved high conversion of stearic acid to liquid fuels 95% at 300C. 

While Muhammad. F.K et al. (2020) ( Muhammad. F.K et al., 2020) examined the 

catalytic activity of Ni-Co/SBA-15 catalyst in deoxygenation of PFAD at 350 ℃, 2 h 

reaction time, and 10% of catalyst loading, which exhibited high deoxygenation activity 

with 88% hydrocarbons yield of (C8-C17) and 85% selectivity of diesel-range (C13–C17). 
Besides, the Ni-Co/SBA-15 catalyst showed good reactivity and is consistent with good 

stability for five runs. Consequently, the cobalt-based catalysts showed high catalytic 

deoxygenation activity with a superior yield of green diesel by C–C and C–O cleavage 

via decarboxylation/decarbonylation pathways. This is attributed to the good 

physicochemical properties of the catalyst, such as large number of  strong acid-base 

sites, high crystallite size, good surface area, and pore volume (Zhang et al., 2014). 

Furthermore, catalyst support plays an essential role in enhancing the dispersal of active 

metal sites that offers additional interaction with the reactants, which efficiently 

accelerate the deoxygenation reaction rate.  Impressively, carbon-based support comes 

with a lot of benefits, some of which comprises high surface area, high thermal stability, 

economical and eco-friendly (Wang et al., 2018). Mesoporous activated carbon (AC) has 

a bright future as catalyst support due to its large pore size, which allows entering of big 
particle of feedstock and active metals; thus increasing the deoxygenation activity. 

Besides, mesoporous activated carbon (AC) has unique properties such as strong 

adsorption capacity, excellent mechanical properties, low affinity towards coke 

formation, inertness, and non-toxicity (Jain et al., 2016). Moreover, AC is thermally 

stable, which minimizes sintering of active metals during the deoxygenation reaction. 



© C
OPYRIG

HT U
PM

 

 

7 

Several scholarly works has been reported about activated carbon (AC) development 

being derived from coconut shells in the manufacturing of biodiesel (Shobhana-

Gnanaserkhar et al., 2020) however, till recently, the utilization of coconut-shell-derived 

AC in deoxygenation reactions for the production of green diesel, has not been studied 

vastly. Furthermore, Co-supported carbon proved its efficiency in the deoxygenation 
reaction of fatty acids as well as their derivatives for producing green diesel (Moreira et 

al., 2020). Therefore, the current work gives highlight the effectivity of several TMO 

(Mn, Co, Mo) alongside Ag supported over AC for PFAD deoxygenation in H2-free 

conditions and solventless to produce green diesel. Indirectly, waste management from 

a palm oil factory also could be improved.  

1.3 Hypothesis of the Research 

The catalytic activity of the heterogeneous catalyst is strongly related to their surface 

characteristic and density of the active site. In this work, the carbon-derived coconut 

shell was activated with sulphuric acid/phosphoric acid to generate the acid functional 

groups on the carbon structure. Theoretically, a high density of acid active sites will 

escalate the activity of the catalysts, thus more acid sites introduced on the activated 

carbon surface, resulted in more catalytic activity. In practice, the green diesel is 

produced at 350 °C in a semi-batch reactor for several hours. Thence, in this research, 

the nitrogen stream with a vigorous blending of the reactant and catalyst enhanced the 

reaction rate of the deoxygenation process. The nitrogen flow that expelled the products 
out of the reactor increased the reaction rate significantly and raised the yield of the green 

diesel, hence reducing the time needed to complete the reaction. 

1.4 Scope of Research 

The wet-impregnation method utilized for the preparation of mesoporous carbon support 
promoted mono Co, Mo, Mn, and binary Co-Mo and Co-Ag systems, which in return 

manifested improvement in the physical properties of the catalysts. The mesoporous 

metal oxides and their mixtures supported activated carbon-derived coconut shells in 

exhibiting unique physicochemical properties, which reflected in their performance 

through the deoxygenation process. The use of mono and bimetallic catalysts supported 

on activated carbon was successfully assessed through the results of the deoxygenation 

of PFAD under a neutral atmosphere and the absence of H2. The assessment was 

performed via optimization of the process parameters to find out the proper condition 

and the typical metal oxide concentration through series of deoxygenation experiments. 

The optimization of the catalysts is carried out via "one-variable-at-a time" (OVAT). 

Thence, the deoxygenation catalysts were characterized, the liquid and gas products were 

also analyzed, and the results were exhibited through tables and graphs.  



© C
OPYRIG

HT U
PM

 

 

8 

1.5 Objectives of the Research  

The main objective of this research is to develop a method for synthesis of activated 

carbon catalyst derived from coconut shells and thus doping it with transition metals by 

wet impregnation method to produce green diesel using palm fatty acid distillate 

feedstock (PFAD) via deoxygenation reaction. The aim of this study is divided into the 

following sections: 

 

1.  To synthesize and characterize the mesoporous activated carbon catalysts and 

their doping with TMOs metal (Co, Mn, Mo, and Ag). 

2.  To examine the catalytic performance of the synthesized catalysts and 

deoxygenation reaction optimization at different parameters for the production 

of green diesel. 

3.  To evaluate the reusability and stability of the synthesized catalysts in the 

catalytic deoxygenation of PFAD. 

4.  To analyze the fuel properties of green diesel in compliance with the American 

Society for Testing and Materials method (ASTM). 
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