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ABSTRACT 

Self-healing is a new technology that is about promoting the recovery of mechanical 

properties of concrete without any external aid, to reduce maintenance costs. However, 

previous studies have reported some issues related to the encapsulation of healing agent, 

as capsules are unable to survive mixing process, or may slip without breaking due to 

their low bonding strength. Moreover, it was reported that autogenous healing has very 

limited ability in term of healable crack widths, while autonomous healing had an issue 

where capsules may not break and release the healing agent. Even more, it was reported 

that MgO expansive agent may cause strength reduction to concrete, which is 

disadvantageous. Therefore, this study aims to propose new surface modifications to 

polystyrene capsules; smooth, rough and weakness lines cylindrical sphere polystyrene 

capsules, that helps to enhance their ability to survive mixing process without being 

damaged, and with high bonding strength. In addition to that, this study is suggesting an 

enhancement to the autogenous and autonomous healing systems by including silica 

fume. Also, an investigation and comparison to the healing and sealing performance of 

autogenous, autonomous and a combination of both systems is conducted, together with 

an assessment to the healing compounds developed on the microstructure level for each 

healing system.  

 

 

In this study, there are four mix combinations consists of OPC, silica fume and MgO 

expansive agent, with three variables which are smooth, rough and weakness lines 

capsules to carry sodium silicate (Na2SiO3) healing agent. The scope of work focuses on 

two main issues; (i) study of mineral admixtures in autogenous self-healing, and (ii) 

study the potential improvement to the encapsulation method used for autonomous self-

healing. For the first issue, the evaluation was based on; (i) the healing ability of cement 

compounds by expansive admixture only, and (ii) the healing ability of cement 

compounds by a combination of mineral and expansive admixtures. Whereas the second 

issue focuses on; (i) capsule modification, (ii) evaluation of healing ability of cement 

compounds by encapsulated sodium silicate only, and (iii) evaluation of healing ability 
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of cement compounds by a combination between encapsulated method and mineral 

admixtures. 

 

  

The evaluation of capsules was conducted based on their compressive strength, bonding 

strength, mixing survivability and the ability to survive elevated temperatures. Whereas 

for self-healing assessment, specimens were divided into two sets; the first set was left 

un-cracked, while the second set of specimens were pre-cracked after 7 days of water 

immersing curing using two different pre-cracking methods; the first method used for 

cubes by applying 80% of ultimate compressive strength, while the second method used 

for prisms by bending using 3-points flexural. Thereafter, specimens of both sets were 

re-immersed in water for further curing durations of 28, 56, 90 and 120 days. The healing 

and sealing performance of cement paste, mortar and concrete were assessed based on; 

the compressive and flexural strength regain, and crack sealing based on crack depth and 

area. Thereafter, microstructure assessment was conducted to determine the healing 

compounds developed on the crack planes using SEM and FTIR tests. Moreover, 

statistical analysis using ANOVA and multiple linear regression (MLR) were conducted 

to evaluate the effect of using silica fume, the difference in performance of each healing 

mechanism and to formulate prediction equations for strength recovery.   

 

 

In conclusion, this research confirmed the efficiency of the new encapsulation surface 

modifications in term of mixing survivability and bonding strength, which was reflected 

on the self-healing performance. In addition to that, silica fume was proved to be able to 

successfully enhance the autogenous healing, and the combined self-healing system was 

proved to be superior in comparison to both autogenous and autonomous self-healing 

systems in term of strength recovery and crack sealing performance.  
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PEMULIHAN KEKUATAN DAN PRESTASI PENYEMBUHAN BAHAN 

BERASASKAN SIMEN YANG MENGANDUNGI PENGIKAT 

PENYEMBUHAN AUTOGENOUS DAN EJEN PENYEMBUHAN 

BERKAPSUL AUTONOMOUS 

Oleh 

ABDULMOHAIMEN IMAD MOHAMMED 

Jun 2021 

Pengerusi : Noor Azline Binti Mohd. Nasir, PhD 

Fakulti : Kejuruteraan 

ABSTRAK 

Pemulihan diri ialah teknologi baharu yang direka untuk menggalak pemulihan 

ketermampatan konkrit tanpa sebarang bantuan luar, untuk mengurangkan kos 

penyelenggaraan. Walau bagaimanapun, kajian terdahulu telah melaporkan beberapa isu 

yang berkaitan dengan enkapsulasi agen pemulihan, kerana kapsul tidak dapat bertahan 

lama dalam proses pencampuran, atau mungkin tergelincir tanpa pecah kerana kekuatan 

ikatannya yang rendah. Selain itu, juga dilaporkan bahawa keupayaan permulihan 

automatik sangat terhad dari segi lebar keretakan yang boleh dipulih, manakala 

pemulihan autonomous mempunyai isu di mana kapsul mungkin tidak dapat pecah dan 

melepaskan agen pemulihann. Lebih-lebih lagi, dilaporkan bahawa agen ekspansif MgO 

boleh menyebabkan kemerosotan pada kekuatan konkrit, yang merupakan satu 

kelemahan. Atas sebab-sebab ini, kajian ini bertujuan untuk mencadangkan modifikasi 

permukaan yang baharu; sejenis kapsul bulat silinder yang licin, kasar dengan garis 

kelemahan yang diperbuat dari polistirena, yang mampu bertahan dalam proses 

pencampuran tanpa sebarang kerosakan, dengan kekuatan pecahan yang tinggi. Di 

samping itu, kajian ini juga ingin buat peningkatan baharu kepada proses pemulihan 

autogenous, dengan menggunakan kapsul agen pemulihan. Justeru, kajian terhadap 

prestasi pemulihan dan pengedap pemulihan autogenous, autonomous dan autogenous 

yang baru dicadang untuk dijalankan, bersama-sama dengan penilaian kepada sebatian 

pemulihan yang dibina pada tahap struktur mikro untuk setiap sistem pemulihan. 

Dalam kajian ini, terdapat empat kombinasi campuran yang terdiri daripada OPC, asap 

silika dan agen ekspansif MgO, bersama dengan tiga pembolehubah iaitu kapsul licin, 

kasar dan dengan garis kelemahan untuk bungkus agen pemulihan natrium silikat 

(Na2SiO3). Skop kajian fokus pada dua isu utama; (i) kajian campuran mineral dalam 

proses pemulihan diri autogenous, dan (ii) kajian potensi peningkatan kepada kaedah 

enkapsulasi yang digunakan untuk pemulihan diri autonomous. Bagi isu pertama, 

penilaian adalah berdasarkan; (i) keupayaan pemulihan campuran simen melalui 
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campuran ekspansif sahaja, dan (ii) keupayaan pemulihan campuran simen dengan 

gabungan mineral dan campuran ekspansif. Manakala isu kedua fokus pada; (i) 

pengubahsuaian pada kapsul, (ii) penilaian keupayaan pemulihan campuran simen oleh 

natrium silikat terkapsul sahaja, dan (iii) penilaian keupayaan pemulihan campuran 

simen dengan gabungan antara kaedah terkapsul dan campuran mineral. 

 

 

Penilaian kapsul telah dijalankan, kemampatan, kekuatan ikatan, ketahanan campuran 

dan ketahanan suhu tinggi. Manakala untuk penilaian pemulihan diri, spesimen 

dibahagikan kepada dua set; set pertama tanpa diretak, manakala set kedua di pra-retak, 

spesimen telah di pra-retak selepas 7 hari proses pengawetan dibawah air menggunakan 

dua kaedah pra-retak yang berbeza; kaedah pertama digunakan pada kubus dengan 

menggunakan 80% kekuatan kemampatan yang tertinggi, manakala kaedah kedua 

digunakan pada prisma dengan membongkok menggunakan lenturan 3-titik. Selepas itu, 

spesimen kedua-dua set direndam semula dalam air untuk teruskan proses pengawetan 

selama 28, 56, 90 dan 120 hari. Prestasi pemulihan dan pengedap pes simen, mortar dan 

spesimen konkrit dinilai berdasarkan kekuatan mampatan dan kelenturan, dan kesan 

pengedap retak berdasarkan kedalaman dan keluasan retakan. Selepas itu, penilaian 

struktur mikro telah dijalankan untuk menentukan sebatian pemulihan yang ada pada 

bahagian keretakan menggunakan ujian SEM dan FTIR. Selain itu, analisis statistik 

menggunakan ANOVA dan regresi linear berganda (MLR) telah dijalankan untuk 

menilai kesan penggunaan asap silika, perbezaan prestasi setiap mekanisme pemulihan 

dan untuk dapat formulasi persamaan ramalan untuk kekuatan pemulihan. 

 

 

Kesimpulannya, penyelidikan ini mengesahkan prestasi modifikasi permukaan yang 

baharu dari segi ketahanan campuran dan kekuatan ikatan, yang telah dicerminkan pada 

prestasi pemulihan diri. Di samping itu, asap silika telah terbukti dapat berjaya 

meningkatkan proses pemulihan autogenous, dan gabungan proses pemulihan telah 

terbukti lebih baik berbanding dengan sistem pemulihan diri autogenous dan 

autonomous dari segi pemulihan kekuatan dan prestasi pengedap keretakan. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

 

Concrete is a material that is susceptible to cracking due to different causes such as; 

compression, tension, shrinkage, fire, weathering and others. Durability of concrete is 

affected by cracks and becomes weaker due to the leaking of water and acids that comes 

with the rain, causing damage to the core and reinforcements of concrete, which as a 

result, reduces the age of concrete and causing various problems to the structure. In the 

current time, maintenance works are conducted to seal these cracks and stop them from 

getting wider to prevent water and chemicals from leaking to the concrete core. 

However, maintenance works are costly and need much effort, which turn the eyes of 

researchers towards other methods to contain this problem. In the recent years, studies 

about designing new concretes containing other materials in order to enhance its 

properties and increase the lifetime of structures. However, due to the unavailability of 

such materials in all regions, normal concrete is the most widely used material up to 

now, and the need to enhance it is essential. Recently, a new method was presented to 

overcome the durability problem, this method called as self-healing, which is defined as 

the restoration of mechanical properties without any human intervention. This method is 

still considered very new and started to get researchers’ attention during the last 2 

decades, as the “self-healing” term started to become more common as shown in Figure 

1.1.  

 

 

 
 

Figure 1.1: Yearly Publications Containing “self-healing” Words Extracted from 

Google Scholar (Roig-Flores, 2018) 
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Self-healing currently is still being developed to overcome any obstacles and enhance 

its mechanism. Different types of self-healing were studied over the previous years, such 

as autogenous, bacterial, chemical and mineral admixtures self-healing mechanisms, 

each type has its own pros and cons which will be discussed in this study. However, this 

study presents a new modification to the self-healing by enhancing the autogenous 

healing using encapsulated sodium silicate (Na2SiO3) and magnesium oxide (MgO) 

expansive agent. Moreover, new encapsulation designs and modifications were also 

proposed to overcome the encapsulation problems faced by other researchers in term of 

mixing resistance, bonding and strength of the capsules used. 

 

 

1.2 Problem Statement 

 

 

The durability is the most important challenge facing normal concrete, no matter what, 

cracks normally happen in concrete used in structural components such as beams, slabs, 

foundations, columns and other elements, which may lead to structural failures 

afterwards. For this reason, continuous maintenance works are required to be conducted 

to prevent such cracks from worsening and cause permanent damage. However, these 

maintenance works are costly and require skilled labour to deal with, and in addition to 

that, some cracks are not visible or accessible. Therefore, researchers have been paying 

attention to develop new materials that have the ability to heal the damage and restore 

the original condition of concrete depending on a number of chemical reactions, these 

materials are referred to as self-healing agents. 

 

 

Normal concrete has an autogenous ability to heal microcracks under special conditions, 

however; its autogenous healing ability is limited to cracks of very small sizes. Van 

Tittelboom et al., (2012), Sisomphon et al., (2012) and Qureshi & Al-Tabbaa (2016) 

have studied different types of expansive minerals and crystalline admixtures to enhance 

the autogenous healing ability of concrete. MgO expansive agent showed an 

extraordinary performance in term of sealing and healing, due to its ability to react with 

water and produce Mg(OH)2 expansion product, that has larger size than the original 

MgO particles. However, it was reported that the healable crack width is very limited, 

due to the amount of un-hydrated MgO particles available on the crack planes when the 

cracking occurs. In addition to that, it was reported that the addition of MgO had caused 

a reduction in the strength (Zheng et al., 1991; Cao et al., 2018). For this reason, 

autogenous healing needs further enhancements to be able to deal with cracks, with 

minimal strength reduction to the cementitious composite. 

 

 

On the other hand, other researchers such as; Joseph et al., (2010), Thao (2011) and Vijay 

et al., (2017) have investigated the application of chemical agents and bacterial species 

as healing agents by delivering them to the damaged position using extended tubes or 

capsules as in autonomic healing. Delivery of healing agent using capsules as carrier is 

the most promising method, as these capsules are added during mixing or casting 

process. However, a successful encapsulation method depends on several factors such 

as the size of the capsule, compatibility with the cementitious composite, ability to 

survive during mixing process and the ability to break and release of healing agent when 

needed. For instance, microcapsules are a group of capsules with a very small size that 

ranging from few hundred microns and up to few millimetres in diameter. These capsules 
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were reported to be disadvantageous due to their small size, and the ability to carry very 

small amounts of healing agent (Nishiwaki, 1997), which limits their ability in term of 

strength recovery. Moreover, Beglarigale et al., (2021) have reported that the addition of 

microcapsules may case strength reduction to the sample, which is mostly related to the 

reduction in the density caused by these capsules (Salman et al., 2021). 

 

 

Macro capsules, on the other hand, that have larger sizes and are able to carry larger 

volumes of healing agents, were also used in the recent years by several researchers such 

as; Escobar et al., (2013) Van Tittelboom & De Belie (2013), Kanellopoulos et al., 

(2015) and Qureshi et al., (2016), who used glass and ceramic capsules as healing agent 

carriers. However, a common problem was faced by these capsules which is related to 

their inability to survive mixing process (Kanellopoulos et al., 2015), due to the 

brittleness of glass and ceramic. Several researchers have tried to overcome this problem 

by introducing polymeric capsules (Hilloulin et al., 2015; Araújo et al., 2018), as these 

capsules have lower brittleness factor than that of glass and ceramic. However, another 

issue was faced by these capsules related to their bonding strength, as some capsules 

may slip without breaking (Araújo et al., 2018), and thus, no healing agent is released to 

the crack, and no healing process takes place. Therefore, an enhancement to the bonding 

strength of polymeric capsules is needed. 

 

 

Apart from size and material, the shape of the capsule is also a concern, as it was reported 

that spherical capsules have better chances in surviving mixing process (Sisomphon & 

Copuroglu, 2011), but are harder to break when crack occurs due to their spherical shape 

that can distribute the stresses without breaking. Whereas, cylindrical shape capsules, in 

general, have lower probability to survive during mixing process due to their shape 

which make them unable to bear the mechanical stresses (Van Tittelboom & De Belie, 

2013), although; they have better chances in breaking when crack occurs. However, 

cylindrical capsules may also not break when needed, either due to their orientation 

inside the sample, as it is hard to break if they were oriented parallel to the crack, or due 

to the wall thickness of the capsule (Thao et al., 2009), or due to the crack size, as very 

thin cracks are mostly not wide enough to lead to the breakage of the capsule even if the 

capsule was oriented favourably. This issue raises another problem with autonomic 

healing where the capsule may not crack, and as result, no healing agent is released. 

Thus, there is an actual need to enhance the healing system without depending only on 

the encapsulated healing agent. 

 

 

Based on the literature, this study is evaluating the enhancement of autogenous healing 

ability of cement composites with a combination of mineral admixtures (i.e. silica fume 

and MgO), by adding them directly during mixing process, to overcome the issue related 

to the strength reduction caused by microcapsules or pellets addition. 

 

 

This study is also examining the compatibility of the encapsulation method used for 

autonomous healing in term of bonding strength and ability to survive mixing process, 

by evaluating the surface modifications. 
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Furthermore, this study is evaluating the addition of MgO and silica fume alongside 

encapsulated sodium silicate, to enhance the healing process by not depending on the 

breakage of the capsules and the release of liquid sodium silicate, instead; MgO and 

silica fume will have the ability to heal and seal the cracks that are smaller in size and 

do not cause the crack of the capsule. In addition to that, MgO and silica fume can also 

contribute to the self-healing process even if the capsules are cracked and released the 

healing agent, and by this way; additional healing may happen on the microstructure 

level due to this enhancement in the autogenous healing. 

 

 

1.3 Objectives of Study 

 

 

The main goal of this research is to understand the healing mechanism of autogenous 

and autonomous self-healing mechanisms of cement compounds. The work aims to give 

new sight of enhancement approaches for both self-healing mechanisms. In order to 

achieve this goal, the following objectives have been identified: 

 

1. To propose surface modifications on polystyrene capsules to expand its 

potential, and assess the performance of these modifications in term of 

characteristics and compatibility within cement-based composites. 

2. To propose the inclusion of silica fume alongside MgO to enhance the 

autogenous self-healing of cement compounds and categorize the healing 

product of the blended cement compounds.  

3. To evaluate the healing efficiency of autonomous self-healing performance 

using encapsulated sodium silicate with and without incorporation of mineral 

admixtures. 

4. To develop an appropriate combination of self-healing mechanisms and 

determining the potential self-healing enhancements for cement compounds. 

 

 

1.4 Scope and Limitations of Study 

 

 

Basically, the research is broadly divided into two main phases; (i) study of mineral 

admixtures in autogenous self-healing, and (ii) study the potential improvement to the 

encapsulation method used for autonomous self-healing. Both phases were examined for 

potential enhancement in self-healing of cementitious compounds. In the first stage, the 

autogenous self-healing is divided into two parts, which are; (i) evaluation of healing 

ability of cement compounds by expansive admixture only, and (ii) evaluation of healing 

ability of cement compounds by a combination of mineral and expansive admixtures. 

While in the second stage, the autonomous self-healing is divided into three parts, which 

are; (a) capsule modification, (b) evaluation of healing ability of cement compounds by 

encapsulated sodium silicate only, and (c) evaluation of healing ability of cement 

compounds by a combination between encapsulated method and mineral admixtures. For 

both stages, the healing and sealing investigations were conducted on three phases, 

which are; paste, mortar and concrete. Prior to that, the capsule modification for 

autonomous self-healing mechanism is conducted by modifying the capsule surface 

texture to enhance the bonding and mixing survivability of the capsule. The assessment 

of mixing survivability was conducted using three mixing speeds (i.e. low, medium and 

high) and based on the changes in pH level, Fourier transform infrared spectroscopy 
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(FTIR), and also the physical observation for any damages. In addition to that, the 

compressive strength, bonding strength and the ability of capsules to survive elevated 

temperatures were also investigated. For all 3 phases of testing medium (i.e. cement 

paste, mortar and concrete), the samples were divided into two groups; the first group 

was left un-cracked, while the second group of samples was pre-cracked after 7 days of 

curing by water immersing method. Crack generating was conducted using two different 

methods; compression and 3-points bending, in order to obtain different crack sizes, 

depths and positions. After pre-cracking, all samples were re-immersed in water to 

continue their curing for the durations of 28, 56, 90 and 120 days. Thereafter, samples 

were re-tested to evaluate their self-healing ability by measuring their performance in 

term of mechanical properties recovery and sealing after the prementioned curing 

durations. The evaluation includes testing for cement paste, mortar and concrete for 

compressive strength, 3-points bending strength, crack depth and area reduction using 

UPV and digital microscope monitoring respectively. The entire research program is 

illustrated in Figure 1.2. 

 

 

 
 

Figure 1.2: Scope of Study 
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Moreover, microstructure investigation was conducted to define and analyse the 

chemical compounds developed on the crack planes after healing process, these were 

assessed using scanning electron microscope (SEM) and Fourier transform infrared 

spectroscopy (FTIR) tests. The healing was quantified by measuring the regained 

strength related to the strength of un-cracked specimens, while sealing performance was 

assessed depending on the changes in depth and area of the crack. The results are then 

analysed and the performance of each healing combination was compared to control, and 

to other combinations, to define the best healing system. It is noteworthy that, in this 

study, there are four mix combinations; OPC only, OPC with silica fume, OPC with 

MgO, and OPC with both silica fume and MgO. Also, there are two variables which 

includes two different capsule modifications (rough and weakness lines) carrying 

sodium silicate solution, alongside the original smooth capsule that is evaluated in the 

capsule compatibility stage. 

 

Limitations of the study, on the other hand, are as follows: 

 

1. This study does not cover the self-healing performance in term of water 

absorption, penetration and porosity. 

2. The healing performance in structural elements such as columns, slabs or beams 

need to be studied in future works. 

3. Further investigations needed to define the effect of capsule presence on steel 

reinforcements, and while these reinforcements are damaged after healing 

process. 

 

 

1.5 Significance of Study 

 

 

Based on the existing studies, the use of MgO as expensive agent was found to be 

promising in autogenous self-healing. Nevertheless, it was also reported that the 

presence of MgO decreased the strength of the cement-based composites. Thus, this 

study proposed a combination between mineral admixture (i.e. silica fume) and 

expansive agent MgO, as the mineral admixture is expected to offset the strength 

reduction caused by the expansive agent. On the other hand, the literature has also found 

that there are some critical problems associated with encapsulation method, the main 

problems are; bonding strength between the capsule and the cement matrix. In relation 

to this, the study suggests surface modifications for polystyrene capsules to extend the 

potential usage of polystyrene capsule as a carrier for encapsulation method. 

Furthermore, this study also claims that the improvements in the cementitious 

combination of blended cements may help in enhancing the bonding characteristic of 

capsule. Even more, it was reported that polystyrene capsules have the ability to survive 

during mixing process, however; some designs are more susceptible to break during 

mixing than others, thus; this study is presenting round ends capsules to increase their 

resistance. It was also noticed that a combined approach between encapsulation and 

blended cements methods, which also known as combination between autonomous and 

autogenous self-healing mechanisms, is not a common approach in self-healing concept. 

Thus, this study is basically proposing an enhanced self-healing system depending on 

the current autogenous and autonomous self-healing systems, which is expected to 

overcome the limitations of the current self-healing mechanisms. In investigating the 

efficiency of the healing mechanisms involved with the proposed enhancement methods, 

this study is assessing the healing performance of cement paste, mortar and concrete 
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composites using strength recovery, crack sealing and microstructural tests. 

Furthermore, the analysis using statistical approach was also carried out to predict the 

behaviour of self-healing ability of cement composites. 

 

 

1.6 Thesis Layout 

 

 

This thesis consists of 5 chapters, starting by introduction chapter (Chapter 1), which 

consist of a brief introduction, problem statement, objectives, scope and limitations of 

work and the significance of the work. 

 

 

Thereafter, Chapter 2 presents a comprehensive summary to the literature related to the 

history of self-healing, its concepts, types, mechanisms, healing agents and delivery 

methods, together with the main findings obtained by previous studies. In addition to 

that, experimental works conducted by other researchers to assess the healing 

performance are also included in this chapter. 

 

 

The methodology used in this study is explained in Chapter 3, including the materials 

preparations, mix designs, casting, curing, capsule modifications and crack inducing 

methods. Moreover, this chapter also presents the details of experimental works 

conducted to evaluate the compatibility of the surface modified capsules and the healing 

and sealing performances, together with the methods used to collect and prepare the 

specimens for microstructure assessment. In addition to that, data analysis section is 

included in this chapter. 

 

 

After that, analysis and discussion of results are presented in Chapter 4, which is mainly 

consists of 4 parts. The first part focuses on the results related to the compatibility of the 

capsules, which includes the strength of the capsules, survivability during mixing, 

bonding strength and the behaviour under elevated temperatures. The following three 

parts of this chapter present the analysis and discussion of results for autogenous healing 

system, autonomous healing system, and a comparison between these two healing 

systems, respectively. Each part of these three presents the strength recovery and crack 

sealing results for cement paste, mortar and concrete specimens, together with the 

findings related to the microstructure. The relationship between strength recovery and 

crack sealing for each healing system is also discussed in this chapter. At the end, a 

summary is given for the results obtained at the age of 28 and 120 days for all the three 

healing systems of cement paste, mortar and concrete specimens. 

 

 

Finally, in Chapter 5, the conclusion drawn from the study is presented, together with 

recommendations for future works.
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