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By

MABRUKA ALI JUMA ALTWER

April 2022

Chairman : Prof Adem Kılıçman, PhD
Faculty : Science

Interval-valued fuzzy soft sets are an extension of fuzzy soft sets, which are used
in decision-making to indicate insufficient evaluation, uncertainty, and vagueness.
Lower membership degree and upper membership degree are two types of infor-
mation considered by interval-valued fuzzy soft sets. In the literature, there are
various interval-valued fuzzy soft set-based decision-making algorithms. However,
these algorithms are unable to overcome the issue of comparable alternatives, and
as a result, they might well be ignored due to a lack of a comprehensive model.
In addition, generalizing preorder and equivalence of interval-valued fuzzy soft
sets have been proposed. This generalization shows a deeper insight into the
decision-making processed based on preference relationship. In this thesis, we
develop two multi algorithms based on the interval-valued fuzzy soft topology to
overcome different situations in decision-making problems.

In the first step, we present the interval-valued fuzzy soft topology concept as
the basic framework of this work and we study some topological properties. This
includes interior, closure, and continuity. Quasi-separation axioms in an interval-
valued fuzzy soft topology, known as q-Ti spaces for i = 0,1,2,3,4, together with
several of their basic properties are investigated.

In the second phase, we consider two crisp topological spaces, known as a lower
topology induced by the interval-valued fuzzy soft topology (IV FST ), denoted
as τ l

e,β and an upper topology induced by the interval-valued fuzzy soft topology
(IV FST ), denoted as τu

e,α . Some properties of these topologies are also studied.
The induced topologies and quasi-separation axioms in interval-valued fuzzy soft
topology are discussed.
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In the third phase, we introduce two preorder relations and two equivalence
relations over X for the two topological structures τ l

e,β and τu
e,α . We also present

some properties of these preorder and equivalence relations, and links between
them are studied. The links between two preorder and equivalence relations and
interval-valued fuzzy soft quasi-separation axioms are studied.

In the application phase of this thesis, we provide a representation of the results
acquired in the previous steps in order to compute and define various algorithms that
assist group decision-making using interval-valued fuzzy soft sets. The weighted
interval-valued fuzzy soft set presented is applied to solve group decision-making
using interval-valued fuzzy soft sets.

ii
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

TOPOLOGI LEMBUT KABUR BERNILAI SELANG DAN
APLIKASINYA DALAM MASALAH MEMBUAT KEPUTUSAN

BERKUMPULAN

Oleh

ALTWER MABRUKA ALI JUMA

April 2022

Pengerusi : Prof Adem Kılıçman, PhD
Fakulti : Sains

Set lembut kabur bernilai selang ialah lanjutan set lembut kabur, yang digunakan
dalam membuat keputusan untuk menunjukkan penilaian yang tidak mencukupi,
ketidak pastian dan kekaburan. Darjah keanggotaan bawah dan darjah keanggotaan
atas merupakan dua jenis maklumat yang dipertimbangkan oleh set lembut kabur
bernilai selang. Dalam sorotan literatur, terdapat pelbagai algoritma yang membuat
keputusan berasaskan set lembut kabur bernilai selang. Walau bagaimanapun,
algoritma ini tidak dapat mengatasi isu alternatif yang setanding, dan akibatnya,
ia mungkin diabaikan kerana kekurangan model yang komprehensif. Di samping
itu, membuat generalisasi tertib awalan dan kesetaraan set lembut kabur bernilai
selang telah dicadangkan. Generalisasi ini menunjukkan gambaran yang lebih
mendalam tentang proses membuat keputusan yang diutamakan ke atas hubungan
pilihan. Dalam tesis ini, kami membangunkan dua algoritma berbilang berdasarkan
topologi lembut kabur bernilai selang untuk mengatasi situasi yang berbeza dalam
permasalahan membuat keputusan.

Dalam langkah pertama, kami mengemukakan konsep topologi lembut kabur
bernilai selang sebagai rangka kerja asas kajian ini dan kami menyelidiki beberapa
sifat topologi. Ianya termasuk pedalaman, penutupan, dan keselanjaran. Aksiom
pemisahan kuasi dalam topologi lembut kabur bernilai selang, yang dipanggil ruang
q−Ti bagi i = 0,1,2,3,4, bersama dengan beberapa sifat asasnya juga dikaji.

Dalam fasa kedua, kami mempertimbangkan dua ruang topologi krisp, dikenali
sebagai topologi bawahan teraruh oleh topologi IVFS, ditulis sebagai τ l

e,β dan
topologi atasan teraruh oleh topologi IVFS, ditulis sebagai τu

e,α . Beberapa ciri-ciri
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topologi tersebut dikaji. Topologi terauh τ l
e,β dan τu

e,α serta aksiom pemisahan kuasi
dalam topologi lembut kabur bernilai selang dibincangkan.

Dalam fasa ketiga, kami memperkenalkan dua hubungan tertib awalan dan dua
hubungan kesetaraan ke atas X bagi kedua-dua struktur topologi τ l

e,β dan τu
e,α . Kami

juga mengemukakan beberapa ciri-ciri hubungan tertib awalan dan kesetaraan,
berserta perkaitan di antara mereka. Perkaitan di antara dua hubungan tertib awalan
dan kesetaraan serta aksiom pemisahan kuasi dalam topologi lembut kabur bernilai
selang telah dikaji.

Dalam fasa aplikasi tesis ini, kami menyediakan perwakilan keputusan yang diper-
oleh dalam langkah-langkah sebelumnya untuk mengira dan mentakrifkan pelba-
gai algoritma yang membantu membuat keputusan berkumpulan menggunakan set
lembut kabur bernilai selang. Set lembut kabur bernilai selang berpemberat yang
dibentangkan digunakan untuk menyelesaikan pembuatan keputusan berkumpulan
menggunakan set lembut kabur bernilai selang.
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CHAPTER 1

INTRODUCTION

1.1 Background

In this section, we provide some background about various pertinent topics of this
study.

The fuzzy set(FS) theory incorporates impreciseness of data and evaluations by
imputing the degrees to which objects belong to a set. Its appearance induced the
rise of several related theories, which codify subjectivity, imprecision, uncertainty
or roughness of evaluations. Their rationale is to produce new and more flexible
methodologies to realistically model various concrete decision problems.

In 1965, Zadeh proposed (FS) theory as a mathematical approach for describing
fuzzy phenomena in mathematics. Zadeh defined the concept of a (FS) theory in the
following way:

Definition 1.1 Zadeh (1965) Let X be a universe set. A fuzzy set µ on X is defined by
a membership function µ : X → [0,1], where the value µ(x) denotes the membership
degree of x ∈ X belong to the fuzzy set µ.

The fuzzy set µ is also denoted as follows:

µ = {(x,µ(x) : x ∈ X}.

Some theories describe decision parameters, such as (FS) theory, (SS) theory, and
rough set theory. In every situation, we use one of them. For example, in fuzzy
set theory, we have an exact value for membership degree all the time. However,
sometimes in the data collection step, we tend to miss data [unknown/ incomplete
data], or sometimes we are not sure about the membership function such as ex or 1

x .

1.1.1 Soft Set Theory and Interval-Valued Fuzzy Soft Set Theory

Soft set (SS) theory was developed by Molodtsov (1999), which provided a broad
mathematical framework for handling uncertain, vaguely specified objects with de-
fined features. Soft sets are based on the concept of parameterizations, which have
breached the boundaries of membership function.
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Definition 1.2 Molodtsov (1999) A pair (F,E) is known as a soft set (SS) over an
initial universe set X, where F resembles a mapping stated by F : E → P(X), while
P(X) denotes the power set of X, while E indicates the set of parameters.

In other words, a soft set over X is parameterized family of subsets X . Moreover, E
is referred to as the soft parameter set of (F,E). Here, F(e) may be considered for
all e ∈ E as a collection of e-approximate elements (F,E).

The fuzzy set theory and rough set theory are all special cases of the soft set theory,
according to Aktaş and Cagman (2007). Besides that, Yao (1998) investigates the
connections and differences between fuzzy set theory and rough set theory. More-
over, many authors discussed the link between fuzzy set theory and soft set theory.
For example, Molodtsov (1999) proposed that the fuzzy set theory is a special case
of the soft set theory. Meanwhile, Maji et al. (2002) were the first to investigate hy-
brid structures involving soft sets and fuzzy sets, proposing the notion of fuzzy soft
sets as a fuzzy expansion of classical soft sets and discussing some of their essen-
tial features. Furthermore, Alcantud (2016b) examined several fuzzy set and soft set
transformation relations. He established that every fuzzy set is a particular case of
a soft set and that every soft set on a finite field U is a fuzzy set. Finally, Liu et al.
(2019) compared fuzzy set and soft set theories from the perspective of transforma-
tion. The authors proved that every fuzzy set theory could resemble a soft set theory
and showed that any soft set theory could be regarded as a fuzzy set theory.

Definition 1.3 Maji et al. (2001) A pair ( f ,E) is called an FS set over X if the
mapping f is given by f : E → [0,1]X for all e ∈ E and x ∈ X, with membership
function fe = X → [0,1].

Many problems have been effectively solved using the concept of fuzzy soft
sets(Cagman et al. (2011a), Cagman et al. (2010), Kong et al. (2009), Tripathy et al.
(2016), Jun et al. (2010), Roy and Maji (2007), Çelik and Yamak (2013), Feng
et al. (2010a), Alcantud (2016a), Alcantud and Mathew (2017),Aktaş and Cagman
(2016)).

There are many extended soft sets, for example, rough soft set (Feng et al. (2010b)),
interval-valued fuzzy soft set (Son (2007), Yang et al. (2009)), intuitionistic fuzzy
soft set (Xu et al. (2010b)) and multi-fuzzy soft set (Yang et al. (2013)).

For interval-valued fuzzy set theory, which was first proposed by Son (2007) com-
bines the soft set theory and interval-valued fuzzy set. It has been considered a more
effective technique of depicting ambiguous information in a larger range.

Definition 1.4 Son (2007) A pair ( f ,E) is called an IV FS set over X if the mapping
f is given by f : E → [0,1]X , where for any e ∈ E and x ∈ X, we have f (e)(x) =
[ f−(e)(x), f+(e)(x)].

2
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The IV FS set is quickly becoming an interesting research topic due to its advantages
as presented by (Feng et al. (2018)). This includes algebraic structure(Liu et al.
(2014a), Liu et al. (2014b)), matrix theory (Rajarajeswari and Dhanalakshmi (2014)),
parameter reduction (Ma et al. (2013), Ma and Qin (2020)), information measure
(Dong et al. (2021), Jiang et al. (2013), Peng and Yang (2015)) and decision-making
problems (Yang et al. (2009), Feng et al. (2010c), Yuan and Hu (2012), Xiao et al.
(2013), Saeed (2016), Yang and Peng (2017), Chen and Zou (2017), Peng and Garg
(2018)).

1.1.2 Topology and Interval- Valued Fuzzy Topology

Topology is a branch of mathematics studying spatial space structure, and it is the
foundation for most pure and applied mathematics.

Definition 1.5 Mondal and Samanta (1999) Topology over a set X is a collection τ

of subsets of X , called the open sets, satisfying

1- /0 and X belong to τ,

2- Any union of elements of τ belongs to τ,

3- Any finite intersection of elements of τ belong to τ.

Then, τ is called topology over X, and the pair (X ,τ) is called topological space.
Similar to the ordinary topologies, the indiscrete topology over X contains only /0,
and X , comprises entire topological space. Every member of τ is referred to as an
open set in X. Moreover, a closed set is the complement of an open set.

Definition 1.6 (Mondal and Samnta,1999) The interval-valued fuzzy point (IV F-
point)x̃ with support x ∈ X as well as lower and upper λ−,λ+, respectively, for any
interval [λ−,λ+]⊆ [0,1] and for each y ∈ X is defined by

x̃(y) =

{
[λ−,λ+], if y = x
0 otherwise.

Definition 1.7 (Mondal and Samanta, 1999)Let (X ,τ) be an IV F topological space
and x̃ denote an interval-valued fuzzy point (IV F-point) having support x and lower
and upper values λ−,λ+, respectively. The IV F set g is called the interval-valued
fuzzy neighborhood (IV FN) of IV F-point x̃ if there exist the IV F-open set f in X
such that x∈̃ f ≤ g.

Proposition 1.1 (Mondal and Samanta, 1999)

3
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1. If f is an IV FN of the IV F-point x̃ and f ≤̃h, then h is also IV FN of x̃.

2. If f and g are two IV FN of the IV F-point x̃, the f ∧̃g is also IV FN of x̃.

3. If f is an IV FN of the IV F-point x̃1 and g is an IV FN of the IV F-point x̃2,
then f ∨̃g is also an IV FN of x̃1 and x̃2.

4. If f is an IV FN of the IV F-point x̃, then there exists IV FN g of x̃ such that
g≤̃ f and g is an IV FN of the IV F-point ỹ for all ỹ ∈ g.

Definition 1.8 (Mondal and Samanta, 1999) Let (X ,τ) be an interval-valued fuzzy
topological space and suppose f is an IV F. Then

1 The IV F-closure of f is the IV F set defined by

CL( f ) = ∧̃{g : g is IV F-closed set and g≤̃ f}

2 The IV F-interior of all IV F-open subsets of f is the IV F set defined by

Int( f ) = ∨̃{h : h is IV F-open set and f ≤̃h}

Definition 1.9 (Mondal and Samanta, 1999) Suppose that (X ,τ1) and (Y,τ2) are
two IV FS topological spaces. Then, a mapping Φ : (X ,τ1)→ (Y,τ2) is said to be:

1 An IV F-continuous map if Φ−1(g) is an IV F-open set of X , for all IV F-open
set g of Y.

2 An IV F-open map if Φ( f ) is an IV F-open set of Y, for each IV F-open set g
of X .

3 An IV F-homeomorphism map if Φ is IV F-bijective and Φ−1 is IV F-
continuous.

Definition 1.10 (Kharal and Ahmad, 2011) Let S (X1,E1) and S (X2,E2) be the
collections of all sets of X1 and X2,respectively. Suppose that FA ∈S (X1,E1) and
GB ∈S (X2,E2) such that A⊆E1 and B⊆E2. If ΦU : X1→X2 and ΦP : E1→E2 are
two mappings, where U,P denoted the set of the universe and the set of parameter
respectively, then

1. The map Φ : S (X1,E1)→S (X2,E2) is called a soft map from X1 to X2 for
the soft set FA, the soft set Φ(FA) ∈S (X2,E2) is given by:

(Φ(F))(ε) =

{
ΦU (∪

e∈Φ
−1
P (ε)∩A

F(e)) if Φ
−1
P (ε)∩A 6= /0

/0 otherwise,
(1.1.1)

for all ε ∈ E2.

4
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2. The inverse image of the soft set GB under soft mapping Φ is a soft set
Φ−1(GB) ∈S (X1,E1) is defined by:

(Φ−1(G))(e) =
{

Φ
−1
U (G(ΦP(e))) if ΦP(e) ∈ B

/0 otherwise,
(1.1.2)

for any e ∈ A⊆ E1.

Definition 1.11 (Kandil et al., 2011) An interval-valued fuzzy topological space
(X ,τ) is called:

1 An interval-valued fuzzy quasi T0 space (IV Fq-T0 space) if every two IV F-
points x 6= y in X , there exists IV F-open set U such that x ∈U and y /∈U or
y ∈U and x /∈U.

2 An interval-valued fuzzy quasi T1 space (IV Fq-T1 space) if every two IV F-
points x 6= y in X , there exists two IV F-open sets U and V such that x ∈U and
y /∈U and y ∈V and x /∈V.

3 An interval-valued fuzzy quasi T2 space (IV Fq-T2 space) if every two IV F-
points x 6= y in X , there exists two disjoint IV F-open sets U and V such that
x ∈U and y ∈V, U∧̃V = /0.

4 An interval-valued fuzzy quasi regular space (IV Fq-regular space) if every
IV F-closed set F and x ∈ X such that x /∈ F, there exists two disjoint IV F-
open sets U and V such that F⊆̃U and x ∈V.

5 An interval-valued fuzzy quasi normal space (IV Fq-normal space) if every
two disjoint IV F-closed sets F and H, there exists two disjoint IV F-open sets
U and V such that F⊆̃U and H⊆̃V.

6 An interval-valued fuzzy quasi T3 space (IV Fq-T3 space) if it is both IV Fq-
regular space and IV Fq-T1 space.

7 An interval-valued fuzzy quasi T4 space (IV Fq-T4 space) if it is both IV F-
normal space and IV Fq-T1 space.

Using the matrix form of interval-valued fuzzy relations, authors in Rajarajeswari
and Dhanalakshmi (2014) represented a finite IVFSs fE as the following

Definition 1.12 (Rajarajeswari and Dhanalakshmi, 2014) Let fE be an IV FS over
X . The matrix

fE =
[
[ f−i j , f+i j ]

]
n×m

=

[ f
−
e1
(x1), f+e1

(x1)] ... [ f−e1
(xm), f+e1

(xm)]
... ...

...
[ f−en(x1), f+en(x1)] ... [ f−en(xm), f+en(xm)]


n×m

5
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is called an n×m IV FS-matrix of the interval-valued fuzzy soft set fE .

Here, | E |= n, | X |= m and f−i j = f−ei
(x j), f+i j = f+ei

(x j) for i = 1, ...,n and j =
1, ...,m.

Accordingly, the concepts of union, intersection, complement, etc., can be repre-
sented by matrix format in the finite case.

Proposition 1.2 (Zulqarnain and Saeed, 2017) Let [[ f−i j , f+i j ]]n×m be an interval-
valued fuzzy matrix of interval-valued fuzzy soft set fE . Then

1. [[0,0]]cn×m = [[1,1]]n×m.

2. [[ f−i j , f+i j ]
c]cn×m = [[ f−i j , f+i j ]]n×m.

3. ([[ f−i j , f+i j ]]n×m∪̃[[g−i j ,g
+
i j ]]n×m)

c = [[ f−i j , f+i j ]]
c
n×m∩̃[[g−i j ,g

+
i j ]]

c
n×m.

4. ([[ f−i j , f+i j ]]n×m∩̃[[g−i j ,g
+
i j ]]n×m)

c = [[ f−i j , f+i j ]]
c
n×m∪̃[[g−i j ,g

+
i j ]]

c
n×m.

1.2 Problem Statement

The application of interval-valued fuzzy soft sets has been recently studied. Some
research have been tried to adopt soft sets and interval-valued fuzzy topology.
However, these methods cannot overcome the issue of comparable alternatives and
might be ignored due to the lack of a comprehensive priority approach. As a result,
these techniques have limited ability to evaluate options based on the preferences of
decision-makers. To put it another way, while a linear ordering system is optimal in
any group decision-making (GDM) problem, there are some real-world situations
where some things are incomparable. In order to provide a partial solution to this
problem, a non-linear ordered structure, such as a preorder relation or a preference
relationship, may be utilized.

1.3 Objectives

The thesis’s major goal is to provide a more efficient decision-making system based
on interval-valued fuzzy soft sets. This research focuses on the development of
interval-valued fuzzy soft theory and the application of interval-valued fuzzy soft
sets to decision-making. To achieve this goal, we present the following objectives:

• To study interval-valued fuzzy soft topology.

• To introduce two different crisp sets called α-upper set and β -lower set of
each parameter e and then, to construct two different crisp topologies called

6



© C
OPYRIG

HT U
PM

α-upper-e topology, β -lower-e topology and investigate some properties of
these two different crisp topological spaces.

• To investigate some binary relationships on the universal set X based on two
different crisp topological spaces.

• To provide an algorithm for solving decision-making problems based on
interval-valued fuzzy soft topology.

Figure 1.1 shows the contributions of this thesis.

Figure 1.1: The diagram of contributions

1.4 Thesis Organization

The major goal of this thesis is to provide an interval-valued fuzzy soft topological
approach for solving decision-making problems. The thesis is organized in the
following way to attain this goal:

In Chapter 1, we give a broad overview of the numerous mathematical theories that
deal with uncertainty. In addition, we provide background information on topology
binary relations and decision-making theory. In this chapter, we also discuss the
problem statement and objectives of this thesis.

Chapter 2 is a literature review, where we are particularly interested in interval-
valued fuzzy soft sets and their use in decision-making.

Chapter 3 covers some theoretical aspects of our research on an interval-valued soft

7
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sets. Firstly, we present topological properties of interval-valued fuzzy soft sets,
for instance, interval-valued fuzzy soft interior, interval-valued fuzzy soft closure,
and fuzzy soft continuity. In addition, interval-valued fuzzy soft neighborhood and
soft quasi neighborhood of the interval-valued fuzzy soft point are also studied.
Interval-valued fuzzy soft quasi-separation axioms are studied in this chapter.

Chapter 4 studies several topological structures associated with interval-valued
fuzzy soft topology. Firstly, we introduce two crisp sets, known as the lower
crisp set and the upper crisp set of the interval-valued fuzzy soft set. Then, we
built two topological spaces known as lower topology and upper topology on
the universal set X using the upper and lower crisp sets. The link between these
two topologies and interval-valued fuzzy soft quasi-separation axioms is constructed.

Chapter 5 provides some binary relations over the universal set X and shows that
these are related to the previous results presented in Chapter 4.

The application part of our research is covered in Chapter 6. This chapter starts with
the results of the matrix representations in chapters 4 and 5 and then continues to a
method for classifying and ranking objects. Some algorithms for solving a ranking
problem in decision-making are designed based on interval-valued fuzzy soft sets.
We also validated our results by giving some illustrative examples.

Finally, chapter 7 presents a conclusion and recommendations related to the future
development of this work.

8



© C
OPYRIG

HT U
PM

BIBLIOGRAPHY
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Khameneh, A. Z., Kiliçman, A., and Salleh, A. R. (2014). Fuzzy soft product topol-
ogy. Annals of Fuzzy Mathematics and Informatics, 7(6):935–947.
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