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Evolutionary algorithms have been extensively used to resolve problems associated 

with multiple and often conflicting objectives. The objective of a multi-objective 

optimization algorithm is to define the collection of best trade-offs between objectives. 

Among multi-objective evolutionary algorithms proposed in the literature, particle 

swarm optimization (PSO)-based multi-objective (MOPSO) algorithm has been cited 

to be the most representative. One characteristic of MOPSO with Pareto optimality 
scheme is associated with selection mechanism for archive update. However, the PSO 

algorithm produces a group of non-dominated solutions which makes the choice of a 

“suitable” Pareto optimal or non-dominated solution more difficult. According to the 

literature, crowding distance as one of the most efficient algorithms was developed 

based on density measures to treat the problem of selection mechanism for archive 

update. Issues arising from these methods are not conducive to balancing diversity and 

convergence performances. The present study proposed a modified selection 

mechanism for archive updates in MOPSO (MOPSO-CD). The approach of the 

proposed mechanism was based on dominance concept and crowding distances to 

obviate falling in local optima instead of global optima as well as to have a balance 

between diversity and convergence by using the Pareto dominance concept after 

calculating the value of the crowding degree for each solution. For optimum results in 
performance analysis, the optimal value of the MOPSO-CD was evaluated using 

(ZDT), (WFG), and (DTLZ) with two or three objectives over D2MOPSO, 

AgMOPSO, MMOPSO, and EMOSO algorithms. Results showed that MOPSO-CD 

had better performance and a strong superiority in the IGD with the lowest mean of 

9.50E-4, while the HV showed the lowest mean of 9.40E-1 compared to other 

algorithms. Ten datasets sourced from KEEL repository were used to measure the 

performance of Fuzzy MOPSO-CD with a modified archive update mechanism 

(FMOPSO-CD). The FMOPSO-CD was compared with multi-objectives evolutionary 

algorithms (D-MOFARC, GRBCs), and PSO (FMOPSO, FMOPSO-SA). The 

FMOPSO-CD's accuracy consistently outperformed other algorithms in all datasets 
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where the best performance accuracy was 99%. Moreover, interpretability also 

recorded better results on testing problems, where most of the number of rules were 

fewer than 33. A clustering algorithm based on MOPSO-CD with a modified archive 

update mechanism (MCPSO-CD) was used to estimate the optimal number of clusters. 

For optimum results in performance analyses, the technique was evaluated using nine 
datasets: five datasets were artificially generated, while four were real-world datasets 

sourced from KEEL over MCPSO and IMCPSO algorithms. The study recorded that 

the procedure exemplified a state-of-the-art method with significant differences 

observed in most of the datasets examined. For Shape cluster datasets, the proposed 

MCPSO-CD method with value of above 7.0 performed better in most datasets in 

terms of mean ARI. It was superior to the clustering algorithm methods in most real-

world datasets with means ARI of over 0.35. MOPSO-CD was proposed as an 

improvement in multi-objective fuzzy classification in terms of interpretability and 

accuracy as well as improvement in multi-objective clustering technique in terms of the 

optimal number of clusters. 
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Algoritma evolusi telah diguna pakai dengan meluas bagi menyelesaikan masalah 

berkaitan dengan kepelbagaian objektif dan yang sering bercanggah. Tujuan 

pengoptimuman algoritma berbilang objektif adalah untuk menakrifkan koleksi 

pertukaran yang terbaik antara objektif.  Antara algoritma evolusi yang dicadangkan di 

literatur, pengoptimuman particle swarm (PSO) berdasarkan algoritma berbilang 

objektif (MOPSO) telah dinyatakan sebagai yang paling tipikal. Satu ciri MOPSO 
dengan skema optimum Pareto adalah berkaitan dengan mekanisma pemilihan untuk 

kemaskini arkib. Walau bagaimanapun, algoritma PSO menghasilkan sekumpulan 

penyelesaian tidak dominan yang membuat pemilihan kesesuaian Pareto atau 

penyelesaian masalah tidak dominan menjadi lebih sukar. Mengikut literatur, jarak 

kesesakan sebagai algoritma yang paling cekap, telah dibangunkan berdasarkan ukuran 

ketumpatan bagi mengatasi masalah mekanisma pemilihan dalam kemaskini arkib. Isu-

isu yang timbul daripada kaedah ini adalah tidak kondusif bagi mengimbangi 

kepelbagaian dan prestasi tumpuan. Kajian ini mencadangkan satu mekanisma 

pemilihan yang diubahsuai bagi kemas kini arkib dalam MOPSO dengan penjarakan 

kesesakan (MOPSO-CD). Pendekatan yang diambil bagi mekanisma yang dicadangkan 

adalah berdasarkan konsep dominan dan penjarakan kesesakan untuk mengelak 

terjatuh ke dalam optima tempatan, tetapi sebaliknya terjatuh ke optima global selain 
daripada memperolehi keseimbangan antara keberbagaian dan penumpuan dengan 

menggunakan konsep penguasaan Pareto setelah mengambilkira nilai darjah kesesakan 

bagi setiap penyelesaian. Bagi mendapatkan keputusan yang optimum dalam analisis 

prestasi, nilai optimum MOPSA-CD telah diuji dengan menggunakan (ZDT), (WFG), 

dan (DTLZ) dengan dua atau tiga objektif ke atas algoritma D2MOPSO, AgMOPSO, 

MMOPSO, dan EMOSO. Keputusan menunjukkan MOPSO-CD mempunyai prestasi 

yang lebih baik dan keunggulan yang kuat di IGD dengan nilai purata terendah 9.5E-4, 

sementara HV menunjukkan nilai terendah 9.4E-1 berbanding algoritma lain.  Sepuluh 

set data yang diperolehi daripada repositori KEEL telah digunakan untuk menilai 

prestasi MOPSA-CD kabur dengan mekanisma arkib algoritma pelbagai kemaskini 
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(FMOPSO-CD). Perbandingan telah dibuat antara FMOPSO-CD dengan algoritma 

berbilang objektif (D-MOFARC, GRBCs), dan PSO (FMOPSO, FMOPSO-SA).  

Ketepatan FMOPSO-CD's didapati mengatasi prestasi algoritma dalam semua set data 

dimana prestasi tepat yang terbaik adalah 99%. Tafsiran juga merekodkan keputusan 

yang baik semasa menguji masalah dimana kebanyakan bilangan peraturan adalah 
kurang daripada 33. Algoritma kelompok berdasarkan MOPSO-CD dengan mekanisma 

kemaskini arkib yang diubah sesuai (MCPSO-CD) telah digunakan untuk 

menganggarkan bilangan kelompok yang optimum. Bagi keputusan yang optimum 

dalam analisis prestasi, kaedah ini telah dinilai dengan menggunakan sembilan set data: 

lima set data dibangunkan secara tiruan, sementara empat set data diperolehi daripada 

KEEL keatas algoritma MPSO dan IMCPSO. Kajian mendapati bahawa prosidur ini 

merupakan kaedah terkini dengan merekodkan perbezaan yang ketara dalam 

kebanyakan set data yang dikaji. Bagi set data kelompok Shape, kaedah MPSO-CD 

yang disyorkan adalah lebih baik dalam kebanyakan set data segi purata ARI yang 

melebihi 0.70.  Ia adalah lebih baik daripada purata kaedah kelompok algoritma dalam 

set data dunia sebenar dengan purata ARI yang melebihi 0.35. MOPSO-CD adalah 

disyorkan sebagai penambahbaikan dalam klasifikasi fuzzy berbilang objektif dari segi 
kebolehtafsiran dan ketepatan, dan penambahbaikan dalam teknik pengelompokan 

pelbagai objektif dari segi bilangan kelompok yang optimum. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

An optimization algorithm can be defined as a procedure of finding the optimal or best 

solution for a maximum or minimum value of a given function (Yang, 2018) and is 

executed by comparing various solutions until an optimum or satisfactory solution is 

found. With the advent of computer technology, Fletcher, (2013) cited that 

optimization is generally done by choosing a range of values subject to several 

constraints. Earlier, Deb (2001) reported that multi-objective optimization constitutes a 
process of optimizing consistently and simultaneously a collection of objective 

functions to optimize a group of conflicting objectives.  

Abbass, Sarker, and Newton (1999) proposed that multi-objective particle swarm 

optimization (MOPSO) can be considered as the most representative and ideal 

approach to these conflicting situations. Deb (2001) cited that a solution is being Pareto 

optimal or non-dominated when there is no other satisfactory solution being found that 

enhances one objective without compromising another. He labeled multi-objective 

algorithms that lead to a group of non-denominated solutions as Pareto optimal often 

represented as a vector such that there are two objectives to a concurrent problem.  

Generally, a multi-objective optimization problem deals with the situation where 

multiple objectives need to be optimized concurrently. This suggests that a single 
solution is analyzed based on different criteria. Evolutionary algorithm (EA), a subset 

of evolutionary computation, is mostly used to handle this situation. EA is a 

computational process that involves iteration or repetition of a mathematical or 

computational procedure when calculating the desired result using repeated cycles of 

operations (Eckart, Deb & Lothar, 2000). EA generally is characterized by a 

population of solution candidates. It has a reproduction process that enables the 

combination of existing solutions in generating new solutions. In a natural selection, 

EA usually determines which individuals of the current population participate in the 

new population.  

There are several multi-objective evolutionary optimization algorithms (MOEA) that 

have been commonly used when confronting optimization problems. These include 

particle swarm optimization (PSO) (Kennedy, & Eberhart, 1995), simulated annealing 

(SA) (Van Laarhoven, & Aarts, 1987), and genetic algorithm (GA).  
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Zhang et al. (2018) justified why PSO is better than other MOEA in tackling 

optimization problems. This is because, intuitively, it has a simple representation and a 

relatively low number of adjustable parameters, which make it the most commonly 

used PSO for many problems that require approximate solutions. In the present study, 

PSO was chosen in addressing optimization problems. 

1.2 Research Motivation 

A fuzzy rule-based classification system (FRBCS) has been acknowledged to have the 

ability to deduce knowledge from present data that can be understood by a human. 

FRBCS techniques have been known to be among the most useful machine learning 
that can be used to produce an interpretable system for users (Gacto, Alcalá & Herrera, 

2011). The system may have been improved by an expert in manual form or made 

automatically based on the set of data that labeled a confident spectacle. Its automation 

system can be considered as an optimization problem as it focuses more on improving 

accuracy without considering the rules generated (Fazzolari, Alcalá & Herrera, 2014; 

Gorzałczany & Rudziński, 2017). The operational procedures of the system have not 

only considered the accuracy of the system, but also the interpretability that indicates 

the capability to describe efficiently the operational procedure of a model.  

A clustering problem generally involves dividing a set of data into different groups 

according to their common features. The structure of the data is explored and its 

objects are grouped into clusters, with each cluster containing similar objects. 
Therefore, objects of a given cluster are very similar with small distances between 

clusters members, while objects of different clusters are very distinct based on a 

similarity measure function. Clustering can therefore be considered as an optimization 

problem. 

MOEAs are generally aimed at optimizing a set of objectives, and at the same time, 

these objectives conflict with each other. The most suitable solution to fuzzy 

classification and clustering problems is the application of MOEAs. Zhang et al., 

(2018) indicated that in optimization problems, PSO is better than MOEA as it has a 

simple representation and relatively low number of adjustable parameters. For this 

reason, the multi-objective PSOs are effectively recommended to trade-off accuracy-

interpretability and to estimate the optimal number of clusters. However, MOPSO with 

crowding distance (MOPSO-CD) remains an open problem in terms of selection 

mechanism for archive update. 

1.3 Problem Statement  

Scrutinizing the intrinsic characteristics of MOPSO with Pareto optimality scheme, 

there appeared to be some issues that needed to be addressed about the selection 
mechanism for archive update (Kuo & Han, 2011; Kuo & Gosumolo, 2019; Toscano-

Pulido,  Coello & Santana-Quintero, 2007; Pulido, 2005). The issue was associated 
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with the execution of PSO search and the newly generated non-dominated solutions 

collected into the external archive. As the size of the archive is finite, where the 

number of non-dominated solutions in incremental particles can crowd in certain 

regions in the external archive of the objective space, it was necessary to use a proper 

selection mechanism for archive update, which could help to guide the direction of 

search toward true Pareto optimal. 

Literature has it that crowding distance is one of the most effective algorithms 

developed to process the problem of selection mechanism for archive update (Al 

Moubayed, Petrovski & McCall, 2014; Kukkonen & Deb, 2006; Sierra & Coello, 

2005). The issues with these methods are that they are not conducive to balancing 

diversity and convergence performances. To address this issue, Zhu et al., (2017) and 

Lin et al., (2015) used a selection mechanism for archive updates based on crowding-

distance as well as Pareto dominance. The disadvantage of this selection mechanism is 

the necessity to check dominance to remove dominated solution consequently to apply 

crowding-distance to remove most crowding, suggesting a drawback of the selection 

mechanism. Thus, a selection mechanism is needed to obviate falling in local optima 

instead of global optima and to have a balance between diversity and convergence. 
Fuzzy classification and clustering can be considered multi-objective optimization 

problems. However, existing methods have made several improvements in the 

selection mechanism for archive updates by addressing classification and clustering 

problems separately. 

Multi-objective PSOs with selection mechanisms for archive update based on both 

Pareto dominance and crowding-distance have been effectively recommended to treat 

accuracy-interpretability trade-offs and estimate the optimal number of clusters. 

Several multi-objectives fuzzy classifications have been proposed in the literature 

(Gorzalczany & Rudziński, 2017; Antonelli et al., 2016; Fazzolari, Alcalá & Herrera, 

2014; Jiménez, Sánchez, & Juárez, 2014; Gorzalczany & Rudziński, 2012; Gacto, 

Alcalá & Herrera, 2008; Gacto, Alcalá & Herrera, 2007). 

In other MOEAs, a non-dominated solution has to be found in each generation and 

computational effort must be done for Pareto optimal solution. This complicated 

computational effort is due to less theoretical evidence to Pareto optimal solution. 

Therefore, PSO is better in many situations due to an intuitively simple representation 

and relatively low number of adjustable parameters.  Dinh, Nguyen & Tran, 2013, 

2014), used fitness sharing with MOPSO to enhance the interpretability-accuracy 

trade-off in a fuzzy rule-based system. Their studies achieved acceptable improvement, 

but the results were considered not good enough due to the computational effort 

involved in fitness sharing. The studies limited their explanation in the population to 

certain criteria which resulted in a fall in local optima instead of global optima. 

Clustering issues based on multi-objective clustering algorithms have been proposed in 

the literature (Armano & Farmani, 2016; Abubaker, Baharum & Alrefaei,  2015; Yang, 
Sun & Zhang, 2009). Gong et al. (2017) proposed a multi-objective clustering 
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framework that uses PSO. Even though the approach provided advancement in the 

performance as suggested, it showed a setback in clustering distribution solutions that 

harmed the performance of the selection mechanism, thereby making the optimization 

models fall into local optima rather than the global optima. In the present study, 

MOPSO-CD with a modified archive update mechanism was used in both accuracy 
and interpretability trade-offs for fuzzy classification and to estimate the optimal 

number of clustering. 

1.4 Research Objectives 

The main objective of the present research is to propose a new MOPSO-CD for the 
improvement in accuracy and interpretability in fuzzy classification and to estimate the 

optimal number of clusters using the clustering technique. To achieve the main 

objective, the following sub-objectives were established: 

 

• To modify archive update algorithm in MOPSO-CD. 

• To apply the modified archive update algorithm into multi-objective fuzzy 

classification PSO (FMOPSO-CD) for improving fuzzy classification in 

terms of interpretability and accuracy.  

• To apply the modified archive algorithm into multi-objective clustering PSO 

(MCPSO-CD) in estimating the optimal number of clusters. 

 
 

1.5 Research Scope  

This research can be divided into three parts. Firstly, the research used MOPSO as it is 

the most commonly used among other multi-objective evolutionary optimizations. 
secondly, the selection mechanism for archive update was based on crowding distance, 

as it is the most dominate selection mechanism among others (Zhu et al., 2017; Lin et 

al., 2015; Al Moubayed, Petrovski, & McCall, 2014; Kukkonen & Deb, 2006; Sierra & 

Coello, 2005). The third part, MOPSO-CD with an enhanced selection mechanism for 

archive update was used to solve: fuzzy classification: Contributions of Study 

The study presents the following contributions: 

 

i. A new MOPSO-CD based modified selection mechanism for archive 

update. In this respect, when non-dominated solutions are added to the 

archive, crowding value is calculated to sort all solutions in descending 

order based on the value before applying the CheckDominance to remove all 

dominated solutions from the archive; 

ii. Enhanced multi-objective fuzzy classification PSO FMOPSO-CD as a trade-

off between interpretability and accuracy for fuzzy classification. is 

enhanced.  The procedure is composed of two steps: fuzzy model generation 

and optimization processes of the candidate systems optimized by MOPSO-
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CD. In the first step, the fuzzy model is applied to original data to produce 

the initial population, subsequently followed by, optimization in MOPSO-

CD. The output is Pareto optimal solution which is characterized by various 

levels of accuracy-interpretability trade-offs; 

iii. Enhancement of MCPSO-CD based on modified archive update mechanism 
for the optimal number of clustering. The procedure consists of an 

optimization level and a decision-making level designed for clustering 

purposes. The former provides the optimal solution for a given clustering 

problem, known as the Pareto solution and each of the solutions is grouped 

with a different sum of clusters in the embedded form. To this extend, 

MCPSO-CD uses these solutions to automatically determine the optimal 

clusters. Lately, the best among the solutions is selected. 

 

 

1.6 Organization of the Thesis 

This thesis is organized as follows:  

 

Chapter 1 is an introductory chapter that discusses the problem statement, objectives, 

scope, and research contributions;  

 
 

Chapter 2 is the literature review, which included previous studies on optimization 

techniques. Existing works on MOPSO and selection mechanisms for archive update 

were explained to highlight the existing gaps or exploit strengths and weaknesses;  

 

 

Chapter 3 presents the general methodology of the study to include selection 

mechanisms for archive updates in MOPSO-CD; 

 

 

Chapter 4 presents a detailed description of (FMOPSO-CD) framework for a trade-off 

between interpretability and accuracy;  
 

 

Chapter 5 presents a detailed description of the MCPSO-CD framework optimal 

number of clustering;  

 

 

Chapter 6 presents the implantation of FMSPSO-CD and MCPSO-CD on selected 

datasets. Results of the comparison are presented. 

 

 

Chapter 7 presents the conclusions of the study and recommendations for future work. 
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