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Chatbots that can answer user questions have a great future to assist humans 
to be very productive. Question-answering (QA) chatbots can be implemented 
using machine learning (ML) or rules. ML chatbots are better compared to rule-
based chatbots because ML chatbots are expandable with continuously training. 
Since its inception for the machine-learning-based translation problem domain 
in 2014, the sequence-to-sequence (Seq2Seq) training approach has shown 
remarkable progress in developing chatbots. Nevertheless, Seq2Seq chatbots 
have a weakness whereby it tends to produce irrelevant responses and is not 
meaningful hence may reduce the chatbot acceptance. The flaw is caused by 
three factors: “Language Model Influence”, “Question Encoding Overfitting”, and 
“Answer Generation Overfitting”. Besides, many chatbots are developed using 
the single-task learning (“STL”) method which executes only the response 
generation task. Recent works utilize multi-task learning (MTL) to overcome the 
weakness, but they still produce generic answers which are not consistent with 
the questions. Therefore, this research presents “SEQ2SEQ++”. “SEQ2SEQ++” 
is a Seq2Seq MTL learning method which comprises of four (4) components 
(“Multi-Functional Encoder” (MFE), “Answer Decoder”, “Answer Encoder”, 
“Ternary-Classifier” (TC)) and is trained using “Dynamic Weights” algorithm and 
“Comprehensive Attention Mechanism” (CAM). All these methods and 
mechanisms are novel approaches proposed in this work. Experiments were 
conducted on two (2) publicly available published academic datasets (SQuAD 
and NarrativeQA) to measure the performance of the suggested method against 
two current MTL methods (“MTL-LTS” and “MTL-BC”).  “MTL-BC” 
executes response generation and binary question-response categorization in 
parallel. “MTL-LTS” executes first-word generation subsequently response 
generation in sequential order. Experiment outcomes show that “SEQ2SEQ++” 
outexecutes the benchmark works on all assessment metrics used in this study. 
For the “BLEU” metric, “SEQ2SEQ++” performed 44.42% superior to “MTL-BC” 
on NarrativeQA and 17.31% superior to “MTL-BC” on SQuAD correspondingly. 
On “WER”, “SEQ2SEQ++” performed 58.83% superior to “MTL-LTS” on 
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NarrativeQA and 37.26% superior to “MTL-BC” on SQuAD correspondingly. As 
for “Distinct-2”, “SEQ2SEQ++” performed 0.73% superior to “MTL-BC” on 
NarrativeQA and 0.21% superior to “MTL-LTS” on SQuAD correspondingly. 
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Robot perbualan atau lebih dikenali sebagai chatbot mempunyai potensi besar 
untuk melengkapkan manusia dalam pelbagai bidang dan melakukan tugas 
seperti menjawab soalan. Chatbot penjawab soalan dilaksanakan sama ada 
dengan sistem berasaskan peraturan atau pembelajaran mesin. Tidak seperti 
sistem berasaskan peraturan, chatbot berasaskan pembelajaran mesin dapat 
belajar dan menjadi lebih pintar dari masa ke masa dan lebih senang 
ditingkatkan. Pembelajaran urutan-ke-urutan (Seq2Seq) adalah salah satu 
pendekatan yang paling popular dalam chatbot berasaskan pembelajaran 
mesin dan menunjukkan kemajuan yang besar sejak diperkenalkan pada tahun 
2014. Walau bagaimanapun, chatbot berdasarkan pembelajaran Seq2Seq 
menunjukkan kelemahan di mana ia cenderung menghasilkan jawapan yang 
umum dan tidak konsisten dengan soalan, sehingga menjadi tidak bermakna 
dan oleh itu, dapat menurunkan kadar penggunaan chatbot. Kelemahan ini 
boleh dikaitkan dengan tiga masalah: pengekodan soalan terlebih sesuai 
(question overfit), penjanaan jawapan terlebih sesuai (“answer generation 
overfitting”), dan pengaruh model bahasa (“language model influence”) . Selain 
itu, kebanyakan chatbot dibangunkan berdasarkan kaedah satu-tugas (single-
task learning - “STL”) yang hanya melakukan tugas penjanaan jawapan. 
Beberapa penyelidikan terkini menggunakan kaedah pembelajaran pelbagai-
tugas (multi-task learning - MTL) untuk mengatasi kelemahan tersebut. Walau 
bagaimanapun, kaedah MTL yang sedia ada menunjukkan peningkatan yang 
sangat sedikit berbanding “STL” di mana mereka masih menghasilkan jawapan 
yang umum dan tidak konsisten. Oleh itu, penyelidikan ini mencadangkan 
pendekatan baru untuk Seq2Seq berdasarkan MTL yang disebut SEQ2SEQ ++ 
yang terdiri daripada “Multi-Functional Encoder” (MFE), “Answer Decoder”, 
Answer Encoder, dan “Ternary-Classifier” (TC). Selain itu, SEQ2SEQ ++ 
menggunakan mekanisma dynamic task loss weight dan mekanisma 
“Comprehensive Attention Mechanism” (CAM). Eksperimen ke atas set data 
NarrativeQA dan SQuAD telah dijalankan untuk mengukur prestasi kaedah 
yang dicadangkan berbanding dua kaedah sedia ada iaitu “MTL-BC” dan “MTL-
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LTS”. Kedua-dua “MTL-BC” dan “MTL-LTS” adalah kaedah MTL. “MTL-BC” 
melaksanakan tugas penjanaan jawapan dan klasifikasi soalan-jawapan binari 
manakala “MTL-LTS” melaksanakan ramalan perkataan pertama dan kemudian 
penjanaan jawapan. Hasil kajian menunjukkan bahawa peningkatan yang 
signifikan secara statistik berbanding dua kaedah sedia ada untuk semua metrik 
yang digunakan untuk kajian ini. Untuk metrik “BLEU”, “SEQ2SEQ++” 
menunjukkan prestasi 44.42% lebih baik daripada “MTL-BC” atas set data 
NarrativeQA dan 17.31% lebih baik daripada “MTL-BC” atas set data SQuAD. 
Untuk metrik WER, “SEQ2SEQ++” menunjukkan prestasi 58.83% lebih baik 
daripada “MTL-LTS” atas set data NarrativeQA dan 37.26% lebih baik daripada 
“MTL-BC” atas set data SQuAD. Bagi metrik “Distinct-2”, “SEQ2SEQ++” 
menunjukkan prestasi 0.73% lebih baik daripada “MTL-BC” atas set data 
NarrativeQA dan 0.21% lebih baik daripada “MTL-LTS” atas set data SQuAD. 
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CHAPTER 1 
 

INTRODUCTION 

 
 
1.1 Motivation 

 
 

Chatbots are artificially intelligent systems that can communicate with humans 
using normal language. Alan Turing, who asked  "Can machines think?" in his 
paper "Computing Machinery And Intelligence," is credited with creating interest 
in chatbot development (Turing, 1950).   A chatbot named "ELIZA" was created 
in 1966 to research natural language communication between humans and 
machines. (Sharma et al., 2017; Shum et al., 2018; Weizenbaum, 1966).  Since 
then, hundreds of thousands of chatbots have been created with the help of 
proprietary and independent chatbot platforms developed by technology firms for 
instance Microsoft, Google, and Amazon (Walker, 2018).  

 

 

Figure 1.1: Types of Chatbots 
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Transactional and conversational chatbots are the two types of chatbots (Figure 
1.1). Users use transactional chatbots to complete a specific job, for-instance 
booking restaurant or hotel reservations, to achieve a specified goal. Casual and 
more formal question-answering (QA) chatbots are two types of conversational 
chatbots. Casual chatbots (language models) can converse with people and act 
as a friend for humans. A language model is a machine learning algorithm that 
learns to predict the likelihood of a sequence of words. It guesses the next word 
based on the words it has already generated. One of the most recently proposed 
language models, the GPT-3 (Brown et al., 2020) has shown great potential in 
chatbot modeling. Language models for instance GPT-3 can converse in natural 
language on general everyday conversation topics. The more formal QA 
chatbots aim at providing specific answers to questions based on the knowledge 
gathered by learning the facts from a structured knowledge base (KB) or 
unstructured documents. Therefore, a QA chatbot is more targeted to provide 
concise answers for a specific question in domains for instance customer support 
it was trained on (Andrenucci & Sneiders, 2005). Artificial intelligent (AI) chatbots 
could scale much more quickly compared to humans. As a result, QA chatbots 
are quickly gaining traction in areas including help desk, general queries, and 
education (Palasundram et al., 2019). Chatbots also help to keep expenses 
down when compared to using humans via a variety of channels like phone, 
email, live chat, and message boards (Hardalov et al., 2018). 

 

Extraction, generation, and selection are three methods to obtain a 
chatbot answer (Figure 1.1). The process of separating an answer from a text 
paragraph is known as extraction. Selection is the process of ranking and picking 
an answer from a set of options. The task of creating a series of words to make 
a response is called generation. Sequence to sequence (Seq2Seq) learning is a 
popular technique for generating natural answers. The Seq2Seq based models 
are first trained with question-response pairs. Once training is completed, the 
chatbot can provide answers to user queries. Even though the Seq2Seq based 
models can generate words that make up the answer, some of the generated 
words may be unrelated which makes the answers meaningless and irrelevant 
to the question. This issue is discussed further in more detail in the next section. 
 

   
1.2 Problem Statement 

 

Numerous studies  (Huang & Zhong, 2018; Liu et al., 2019; Peng et al., 2019; Y. 
Wang et al., 2019; Yang et al., 2018) show that the Seq2Seq method (Cho et al., 
2014) tends to generate high-frequency words as the answer which may not be 
relevant to the question. This weakness can be imputed to “language model 
influence”, “answer generation overfitting”, and “question encoding overfitting”. 
The following points provide a more detailed explanation of the three (3) issues. 
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Issue 1: Language Model Influence 
 

After model training, the RNN decoder acquires language model capability which 
means it can generate a word or sequence of words based on the preceding words 
even without being given a question. Eventually, the decoder's capability to 
generate words on its own overtakes the question's influence when generating the 
answer and could cause the model to produce irrelevant responses. To address 
“language model influence”, attention mechanisms are utilized for decoding. Using 
the attention mechanism, a model executes computation to identify which part of 
the question is important to generate the response. The benchmark works “MTL-
BC”(Huang & Zhong, 2018) and “MTL-LTS” (Zhu et al., 2016) utilized the global 
attention mechanism (GAM) as proposed in (Bahdanau et al., 2015).  

 
 
Nevertheless, this attention mechanism concentrates only on the decoder’s latest 
encoding when performing attention computation on the question encoding. Even 
though the decoder’s latest encoding constitutes past states, the influence of 
earlier states diminishes towards the end. The produced words from earlier time 
steps lose their influence as the decoding advances. Even though the purpose of 
the attention mechanism is to allow a greater influence of the question (make 
decoder concentrate on a particular section of the questions) during response 
generation, existing attention mechanisms create an imbalance where the 
question’s influence becomes much greater compared to the decoder’s which 
makes the model unable to cope well with unseen questions. This presents 
an opportunity to search for an attention mechanism that can balance the 
decoder's influence with the question at hand, resulting in a more relevant and 
meaningful response. 
 
 
Issue 2: Answer Generation Overfitting 
 
 
The Seq2Seq approach finds the optimal sequence of words that comprises the 
response by lowering cross-entropy loss.  Inconsistent word frequency, in 
contrast, drives the Seq2Seq model to produce high-frequency words, resulting 
in “answer generation overfitting”.  

 
 

There are several popular methods to address “answer generation overfitting” 
for-instance multitask learning (MTL) (Huang & Zhong, 2018; R. Zhang et al., 
2017), reinforcement learning (RL) (Asghar et al., 2017; Li, Monroe, et al., 2016; 
Yang et al., 2018) and adversarial learning (AL) (Tuan & Lee, 2019; Xu et al., 
2020). Even though popular, reinforcement and adversarial learning approach 
learning can be unstable, most methods are still dependent on warm start using 
cross-entropy loss functions. The loss function used for one dataset may not be 
suitable for another dataset. It also requires custom reward functions to evaluate 
the model. A more practical approach is the MTL method.  In MTL, additional 
tasks are learned together with the response generation task. Nevertheless, a 
constant tasks loss weight approach is employed to calculate the MTL loss in 
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current Seq2Seq MTL models. The additional task is often allocated a small 
constant like 0.01 and 0.1 (Huang & Zhong, 2018).  
 

 
Nevertheless, because there are no defined guidelines or formulae for 
establishing the actual number to be used, finding the weight for each task is a 
difficult process. Before a task's final weight can be determined, random values 
must be assigned and tested. Before arriving at a specific value for the task loss 
weights, researchers must conduct multiple trial and error studies. For example, 
in “MTL-BC”(Huang & Zhong, 2018), the task loss weight used for the auxiliary 
task (binary categorization) is 0.1. This value was determined after many trials 
by the author. There may also be a better value compared to 0.1 for instance 
0.08 or 0.12 for example.  Furthermore, various datasets may need the usage of 
different values. The weights that work for one dataset might not work for 
another. This method of trial and error is very tedious. When there are greater 
two (2) tasks, it gets significantly more difficult, if not impossible. This provides a 
research opportunity to identify a more competent approach to determine the 
weights for the auxiliary tasks. 
 
 
Issue 3: Question Encoding Overfitting 
 
 
Seq2Seq QA models are routinely trained with specialized datasets albeit limited 
amount of data, for-instance the knowledge base for frequently asked questions 
and can cause question encoder to overfit. When dealing with unknown 
questions, “question encoding overfitting” leads the model to suffer. 

 
 

Existing MTL approaches (Ghazvininejad et al., 2018; Liu et al., 2019; Ren et al., 
2019) require additional input for instance facts, emotion, or conversation topics 
categories to train the additional tasks. In contrast, additional inputs may not be 
practical or obtainable for all question-answering instances. As a result, a 
strategy that can address model overfit without relying on extra input is required. 
“MTL-BC”(Huang & Zhong, 2018) and “MTL-LTS” (Zhu et al., 2016) are the only 
two MTL methods known to this author that doesn’t depend on any additional 
input.  

 

“MTL-BC” utilizes binary question-response categorization as a supplementary 
task. This categorization task is trained together to reduce model overfit. Binary 
categorization refers to an action whereby an answer is categorized as either 
right or wrong. Nevertheless, this is not the natural way to categorize an answer 
because a generated response can also be half-correct. This provides a 
research opportunity to identify a more appropriate response categorization 
method. 
 
 
“MTL-LTS” is a sequential MTL training strategy in which the model learns to 
generate the first word before moving on to generate a full answer in two phases. 
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To reduce model overfitting, this is a fantastic concept. Sequential MTL, in 
contrast, faces a "negative transfer" issue that is a circumstance in which 
mastering the first assignment may jeopardize mastering the second (Pan & Yang, 
2010). This provides a research opportunity in Identifying a more appropriate 
method to include first-word generation into an MTL model.  
 
 
1.3 Research Objectives 
 
 
This research aims to resolve response generation issues to create a model that 
can produce relevant answers. Four (4) objectives are identified to fulfill the aim. 
They are: - 
 
i) To present the “Comprehensive Attention Mechanism” (CAM) as a 

novel attention mechanism for decoding answers as an alternative to the 
widely used GAM.  
 

ii) To resolve the overfitting issue during response generation by proposing 
a novel MTL loss computation algorithm called  “Dynamic Weights” 
(DL) which automatically computes and assigns weights for each task. 
 

iii) To present innovative methods called ”Multi-Functional Encoder” 
(MFE) and “Ternary Classifier” (TC) to tackle the “question encoding 
overfitting” issue. 
 

iv) To propose a Seq2Seq based MTL model (“SEQ2SEQ++”) and a new 
training algorithm to integrate CAM, DL, MFE, and TC  to capitalize on 
each method’s strengths 
 
 

1.4 Research Scope 

 
 
1.4.1 Methods 
 
 
This work focuses on question-answering (response generation) as a single turn 
conversation task (a pair of question and response) under the MTL framework 
as defined in (Huang & Zhong, 2018) that is a key reference for this research.  
The MTL framework was chosen since it was discovered throughout the 
literature research that it can address Seq2Seq model issues from various 
angles such as language model influence and question and response encodings. 
Attention mechanism, beam search, and additional embedding can all be 
combined with the MTL approach to increase the quality of the answers 
generated. 
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Three areas of improvement were identified which are attention mechanism, 
question encoding, and response generation Existing models that were used for 
comparing results are: - 
 
i) “STL”: A single-task model utilizing GAM (Bahdanau et al., 2015). that 

is the most popular attention mechanism used in Seq2Seq learning. It 
was selected to study the limitations and effects of existing attention 
mechanisms in response generation. This is also used as the control 
method for this study. 
 

ii) “MTL-LTS”: “MTL-LTS” is a two-phased MTL method that uses a 
sequential MTL methodology and GAM. The model learns to 
generate first-word only in phase one subsequently full response 
in phase two (Zhu et al., 2016). It was selected to study the limitations 

and effects of sequential against parallel multi-task learning for response 
generation. 
 

iii) “MTL-BC”: A MTL approach with constant weights and a binary 
question-response classifier and GAM (Huang & Zhong, 2018). It was 
selected to study the limitations and effects of question-response 
categorization as an auxiliary task in multi-task learning for response 
generation. 
 
 

1.4.2 Datasets 
 
 
The datasets used in this research are NarrativeQA (Kočiský et al., 2017) and 
SQuAD (Rajpurkar et al., 2016) which are state-of-art for reading 
comprehension-based questions answering where the question, answer, and 
paragraph with the answer is provided. A detailed description of these datasets 
is provided in chapter 3 section 3.3. 

 
 

1.4.3 Assessment Metrics 
 
 
To measure each model performance, Bilingual Evaluation Understudy (“BLEU”) 
(Papineni et al., 2002), Word Error Rate (“WER”) (Mikolov et al., 2010), and 
“Distinct-2” (Li, Galley, Brockett, Gao, et al., 2016) metrics have been utilized. A 
detailed description of these metrics is provided in section 3.2. 
 
 
1.5 Research Contributions 
 
 
The primary contribution of this research work are:- 
 
i) proposal of four (4) new methods as listed below 
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a. “Comprehensive Attention Mechanism” (CAM) that is presented as a 
replacement for existing attention mechanisms to resolve the “language 
model influence” problem 
 

b. Dynamic Weights (DL) algorithm to overcome the “answer generation 
overfitting” problem. It is a novel computation algorithm that replaces the 
constant weights methodology. It's a way of calculating and implementing 
the weight for each task loss automatically. 

 
c. “Multi-Functional Encoder” (MFE) and “Ternary-Classifier” (TC) to resolve 

the “question encoding overfitting” issue. Besides question encoding and 
first-word generation, a new task called last-word prediction is introduced 
in this work as part of MFE. Additionally, this work also introduces another 
new task called TC.  

 
ii) proposal of a new Seq2Seq based MTL model (“SEQ2SEQ++”) and a new 

training algorithm to integrate all the newly suggested methods to 
capitalize on each method’s strengths to all resolve chatbot response 
generation issues. 
 
 

1.6 Thesis Outline  
 
 
The rest of this thesis is organized as follows: - 
 
Chapter 2 provides a comprehensive literature review of the Seq2Seq model 
including design, implementation, and training algorithm, issues in Seq2Seq 
based response generation, and the existing approaches to address those 
issues including datasets utilized for training and metrics used to measure the 
performance. The strengths and weaknesses of the existing methods are 
discussed. Chapter 2 ends with the identification of gaps of existing approaches 
in addressing the issues in Seq2Seq learning.  

 
 

Chapter 3 presents the methodology applied to perform this research work. The 
research phases undergone are explained in detail. The dataset identified to 
perform the experiments and the metrics utilized to measure the performance of 
the experimental models are also elaborated in chapter 3.  

 
 

Chapter 4 discusses the design and implementation of the “Comprehensive 
Attention Mechanism” (CAM) that is suggested to resolve the “language model 
influence” issue. Design and implementation of benchmark works (Bahdanau et 
al., 2015; Huang & Zhong, 2018) are also discussed for detailed comparison and 
analysis. Experiments conducted for SQuaD and NarrativeQA datasets and their 
results are presented and discussed. 
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Chapter 5 discusses the design, implementation, and training algorithm called 
Dynamic Weights (DL) that is suggested to resolve “answer generation 
overfitting” in a Seq2Seq based MTL model. The design and implementation of 
the benchmark model (Huang & Zhong, 2018) which utilizes constant tasks loss 
weight mechanism are also discussed. Experiments conducted for SQuaD and 
NarrativeQA datasets and their results are presented and discussed. 

 
 

Chapter 6 discusses the design, implementation, and training algorithms of the 
“Multi-Functional Encoder” (MFE) and Ternary Classifier (TC). Both methods are 
suggested to resolve “question encoding overfitting” in a Seq2Seq model. The 
design and implementation of the auxiliary tasks in the benchmark works (Huang 
& Zhong, 2018; Zhu et al., 2016) are also discussed. Experiments conducted for 
SQuaD and NarrativeQA datasets and their results are presented and discussed. 

 
 

Chapter 7 discusses the design of “SEQ2SEQ++”, its implementation, and the 
training algorithm. “SEQ2SEQ++” implements CAM, DL, MFE, and TC as 
discussed in chapters 4, 5, and 6 respectively. Experiments were conducted 
against benchmark works (Bahdanau et al., 2015; Huang & Zhong, 2018; Zhu et 
al., 2016) for SQuaD and NarrativeQA datasets, and their results are presented 
and discussed. 
 
 
The conclusion for this thesis research which includes a summary of the 
literature review, experiments conducted, results from the experiments, and 
analysis as well as the future work recommendations are presented in the final 
chapter 8. 
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