

UNIVERSITI PUTRA MALAYSIA

MOBILE SYNCHRONIZATION FRAMEWORK TO ENHANCE LARGE
OBJECT MANAGEMENT IN MOBILE CLOUD STORAGE SERVICE

YUNUS PARVEJ FANIBAND

FSKTM 2022 1

© C
OPYRIG

HT U
PM

i

MOBILE SYNCHRONIZATION FRAMEWORK TO ENHANCE LARGE
OBJECT MANAGEMENT IN MOBILE CLOUD STORAGE SERVICE

By

YUNUS PARVEJ FANIBAND

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in ulfilment of the Requirements for the Degree of Doctor of Philosophy

June 2021

© C
OPYRIG

HT U
PM

ii

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons,
photographs, and all other artwork, is copyright material of Universiti Putra Malaysia
unless otherwise stated. Use may be made of any material contained within the thesis for
non-commercial purposes from the copyright holder. Commercial use of material may
only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OPYRIG

HT U
PM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Doctor of Philosophy

MOBILE SYNCHRONIZATION FRAMEWORK TO ENHANCE LARGE
OBJECT MANAGEMENT IN MOBILE CLOUD STORAGE SERVICE

By

YUNUS PARVEJ FANIBAND

June 2021

Chairman : Ts. Iskandar Ishak, PhD
Faculty : Computer Science and Information Technology

Supporting large file upload and retrieval is crucial for the mobile cloud storage services,
as file sizes are trending larger and mobile users’ access or share files in large size. These
files range from large PDFs to media files in various formats such as MPEG videos.
These files need to be used offline, sometimes updated and shared among users. The
mobile environment with frequent disconnections and limited bandwidth, impact the
data and transaction management as well as the data consistency guarantees. Most of the
mobile frameworks use a data-sync paradigm in order to handle disconnected operations,
in which data is stored locally on the device and replicated to the cloud asynchronously.

Many applications are storing large amounts of structured and unstructured data.
However, it is challenging for mobile synchronization frameworks to manage data
consistency in such environment. This is due to the fact that handling large data and
maintaining consistency are very challenging in cases of local storage and updates.

This research proposes an enhanced cloud-based mobile synchronization framework to
address the two main problems that is data management for large objects and end-to-end
support for data consistency for large objects. This research work proposes techniques
to improve large file object access and synchronization in mobile cloud environment
based on segmentation and object chunking. This framework mainly focuses on large
file handling and providing support for both table and objects data models that can be
tuned for three consistency semantics: resembling strong, causal and eventual
consistency. Experimental results conducted using representative workloads showed that
the proposed enhanced Mobile Synchronization framework can handle large files with
the size ranging from 100MiB up to 1GiB and is able to reduce synchronization time
with object chunking (2, 4, 8 and 16 MiB) in the experiment settings by 65.4% for upload
and 93.7% for download on average when compared to other frameworks.

© C
OPYRIG

HT U
PM

ii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

RANGKA KERJA PENYEGERAKAN MUDAH ALIH UNTUK
MENINGKATKAN PENGURUSAN OBJEK BESAR DALAM
PERKHIDMATAN PENYIMPANAN AWAN MUDAH ALIH

Oleh

YUNUS PARVEJ FANIBAND

Jun 2021

Pengerusi : Ts. Iskandar Ishak, PhD
Fakulti : Sains Komputer dan Teknologi Maklumat

Sokongan muat naik dan mendapatkan fail yang besar adalah penting untuk
perkhidmatan storan awan mudah alih kerana saiz fail semakin berkembang dan akses
pengguna mudah alih atau berkongsi fail dalam saiz yang besar. Fail-fail ini terdiri
daripada PDF besar kepada fail media dalam pelbagai format seperti video MPEG. Fail-
fail ini perlu digunakan di luar talian, kadangkala dikemas kini dan dikongsi di kalangan
pengguna. Persekitaran mudah alih dengan sambungan yang kerap terputus dan lebar
jalur terhad, memberi kesan kepada pengurusan data dan transaksi serta jaminan
ketekalan data. Kebanyakan rangka kerja mudah alih menggunakan paradigma
penyegerakan data untuk mengendalikan operasi yang terputus sambungan, di mana data
disimpan secara setempat pada peranti dan direplikasi ke awan secara tak segerak.

Banyak aplikasi menyimpan sejumlah besar data berstruktur dan tidak berstruktur.
Walau bagaimanapun, mengurus konsistensi data dalam persekitaran sedemikian adalah
mencabar bagi rangka kerja penyegerakan mudah alih. Ini disebabkan oleh pengendalian
data yang besar dan mengekalkan konsistensi adalah sangat mencabar dalam kes storan
dan kemas kini tempatan.

Penyelidikan ini mencadangkan rangka kerja penyegerakan mudah aih berasaskan awan
yang dipertingkatkan untuk menangani dua masalah utama iaitu pengurusan data untuk
objek besar dan sokongan hujung ke hujung untuk konsistensi data bagi objek besar.
Kerja penyelidikan ini mencadangkan teknik untuk menambah baik capaian dan
penyegerakan objek fail besar dalam persekitaran awan mudah alih berdasarkan
segmentasi dan pemotongan objek. Rangka kerja ini tertumpu terutamanya pada
pengendalian fail besar dan menyediakan sokongan untuk kedua-dua model data jadual
dan objek yang boleh ditala untuk tiga semantik konsisten: menyerupai konsistensi yang
kuat, sebab dan akhirnya. Keputusan eksperimen yang dijalankan menggunakan beban

© C
OPYRIG

HT U
PM

iii

kerja yang mewakili menunjukkan bahawa rangka kerja penyegerakan mudah alih yang
dipertingkatkan boleh mengendalikan fail besar dengan saiz antara 100MiB hingga
1GiB dan mampu mengurangkan masa penyegerakan dengan pemotongan objek (2, 4, 8
dan 16 MiB) dalam eksperimen tetapan sebanyak 65.4% untuk muat naik dan 93.7%
untuk muat turun secara purata jika dibandingkan dengan rangka kerja lain.

© C
OPYRIG

HT U
PM

iv

ACKNOWLEDGEMENTS

Alhamdulillah, thank you, Allah, for the strength that He has given me, for the wisdom
that He has granted me, and for the unconditional love that He has shown me until I can
pursue and completed my Doctor of Philosophy degree. Without You, I would never have
the perseverance to make it until the end.

I would like to thank my advisor Dr Iskandar, without whom this thesis would not have
been possible. He taught me design, implementation, and evaluation skills that are critical
in completing this dissertation. His patience, encouragement and unparalleled expertise
and insight in experimental systems research have been a constant source of guidance
throughout the thesis research process. I also would like to thank other members of my
thesis committee, Dr Fatimah Sidi and Dr Marzanah A. Jabar for their valuable help that
significantly improves both the technical content and the presentation of this dissertation.

My stay at the Faculty of Computer Science and Information Technology of UPM would
not have been as enjoyable and rewarding without the wonderful people who made it a
great place to do research in computer science. I am deeply indebted to my faculty and
classmates, for their invaluable help in my development as a researcher both technically
and personally. I also would like to thank my officemates, past and present, for creating
an intellectually stimulating environment.

My parents taught me the value of hard work and instilled in me the desire to be successful.
Without their love and sacrifice, I never could have come this far. Thanks also to my
daughter, Hiba and son Ayaan, for reminding me that there is so much more to life than
computer science. Finally, my wife, Reshma, deserves greater thanks than I can possibly
give. Over the past many years, she has been an immeasurable source of strength, love,
comfort, and support.

YUNUS PARVEJ FANIBAND

© C
OPYRIG

HT U
PM

vi

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been
accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The
members of the Supervisory Committee were as follows:

Iskandar bin Ishak, PhD
Senior Lecturer, Ts
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairman)

Fatimah binti Sidi, PhD
Associate Professor, Ts
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

Marzanah binti A. Jabar, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

ZALILAH MOHD SHARIFF, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 10 February 2022

© C
OPYRIG

HT U
PM

vii

Declaration by graduate student

I hereby confirm that:
 this thesis is my original work;
 quotations, illustrations and citations have been duly referenced;
 this thesis has not been submitted previously or concurrently for any other degree at

any institutions;
 intellectual property from the thesis and copyright of thesis are fully-owned by

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research)
Rules 2012;

 written permission must be obtained from supervisor and the office of Deputy Vice-
Chancellor (Research and innovation) before thesis is published (in the form of
written, printed or in electronic form) including books, journals, modules,
proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture
notes, learning modules or any other materials as stated in the Universiti Putra
Malaysia (Research) Rules 2012;

 there is no plagiarism or data falsification/fabrication in the thesis, and scholarly
integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies)
Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research)
Rules 2012. The thesis has undergone plagiarism detection software

Signature: Date:

Name and Matric No: Yunus Parvej Faniband

© C
OPYRIG

HT U
PM

viii

Declaration by Members of Supervisory Committee

This is to confirm that:
 the research conducted and the writing of this thesis was under our supervision;
 supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate

Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman
of Supervisory
Committee:

Dr. Ts. Iskandar bin Ishak

Signature:

Name of Member
of Supervisory
Committee:

Associate Professor Dr. Ts. Fatimah binti Sidi

Signature:

Name of Member
of Supervisory
Committee:

Associate Professor Dr. Marzanah binti A. Jabar

© C
OPYRIG

HT U
PM

ix

TABLE OF CONTENTS

Page

ABSTRACT i
ABSTRAK ii
ACKNOWLEDGEMENTS iv
APPROVAL v
DECLARATION vii
LIST OF TABLES xiii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xvi

CHAPTER

1 INTRODUCTION 1
1.1 Background Concepts 1
1.2 Motivation 3
1.3 Problem Statement 7
1.4 Research Objectives 9
1.5 Research Scope 10
1.6 Research Contributions 10
1.7 Organization of the Thesis 11

2 LITERATURE REVIEW 13

2.1 Introduction 13
2.2 Mobile Backend as a Service (MBaaS) framework 13

2.2.1 MBaaS’s definition 14
2.2.2 General services of a MBaaS framework 15
2.2.3 SDKs and APIs 17

2.3 Replication process in Sync Frameworks 18
2.3.1 Types of Replication Techniques 18
2.3.2 Replication deployment architectures 22

2.4 Consistency models in Sync frameworks 23
2.4.1 Data- centric models (Server-side consistency

models) 23
2.4.2 Client- centric models (Client-side consistency

models) 24
2.4.3 Reliability of data sync frameworks and mobile

apps to maintain data consistency and
granularity 26

2.5 Distributed Databases 28
2.6 Classification of Consistency, Synchronization and

Replication frameworks in Mobile Computing 31
2.6.1 Frameworks for Weakly-connected mobile

clients 31
2.6.2 Geo-replication frameworks for Mobile

Platforms 32

© C
OPYRIG

HT U
PM

x

2.6.3 Classification of frameworks based on PRACTI
paradigm 32

2.6.4 Mobile Synchronization service frameworks 33
2.7 Discussion on Consistency and Synchronization

Frameworks in literature 35
2.8 Case Studies 38

2.8.1 Criteria for selection of case studies 38
2.8.2 SwiftCloud 39
2.8.3 Simba 40
2.8.4 Mobius 40
2.8.5 BaasBox 41
2.8.6 Parse Server 43

2.9 Evaluation parameters of Case Studies 44
2.9.1 SwiftCloud 44
2.9.2 Simba 44
2.9.3 Mobius 45

2.10 Conflict handling and resolution in frameworks 45
2.10.1 SwiftCloud 45
2.10.2 Simba 46
2.10.3 Mobius 46
2.10.4 BaasBox 46
2.10.5 Parse Server 47

2.11 Research Findings, Discussion and Recommendations 47
2.11.1 Sync services 52
2.11.2 Consistency Support 52
2.11.3 Caching Policy and Offline support 54
2.11.4 Limitations of case studies 54

2.12 Large Object Support in frameworks 55
2.12.1 Definition of a Large object in Mobile Device

Context 55
2.12.2 Large object handling techniques in frameworks 56
2.12.3 Analysis of Large Object Support in

frameworks 57
2.13 Summary of Literature review for Large Object Support 66
2.14 Discussion on selection of Chunking and Segmentation

techniques 66
2.14.1 Chunking Technique 67
2.14.2 Segmentation Technique 71

2.15 Summary 72

3 RESEARCH METHODOLOGY 76
3.1 Introduction 76
3.2 Research Stages 76
3.3 Review of data consistency and synchronization

frameworks in Mobile Cloud Computing 77
3.4 Investigate and analyse the support for large files in

frameworks 78
3.5 Proposing an enhanced cloud-based framework to support

End-to-end data consistency support for large data object
access 78

© C
OPYRIG

HT U
PM

xi

3.6 Evaluation Metrics for proposed cloud based mobile
synchronization framework 79
3.6.1 Measurement of Sync Protocol 80
3.6.2 Evaluation of APIs for Large Objects 80
3.6.3 Measurement of Consistency Parameters 83

3.7 Performance comparison with other open-source Sync
frameworks 87

3.8 Summary 87

4 FRAMEWORK FOR LARGE OBJECT MANAGEMENT –
NETMOB 88
4.1 Introduction 88
4.2 Main modules of NetMob 89

4.2.1 Data Chunker 90
4.2.2 Large File Streaming API Helper 92
4.2.3 NetMob Data Sync 93
4.2.4 Large File Transfer 96
4.2.5 Data Compressor 99
4.2.6 NetMob API and SDK 99
4.2.7 Cloud Server (CloudNM) Component 101
4.2.8 NetMob Sync Protocol 101

4.3 Mobile Local Data Store (LDBSNM) with chunking 102
4.4 NetMob Data Model with chunking 103
4.5 Large Object Handling 103

4.5.1 Large Object Support with Segmentation and
Object Chunking 104

4.5.2 Server-side Large Object Support with
Segmentation 105

4.5.3 Client-side large objects handling method
through LevelDB with LSM 107

4.6 Method of handling Consistency of large objects in
NetMob 108

4.7 Details of contributed new modules and enhanced
components 109
4.7.1 Improvements to Client Data Store 110
4.7.2 NetMob API or SDK Enhancements 110
4.7.3 Enhancements in NetMobSync 111
4.7.4 Network Manager Improvements 112
4.7.5 Sync Protocol Enhancements 113
4.7.6 Improvements on the server side and consistency

handling 114
4.8 Comparison of architectures of proposed Mobile Sync

framework and other two open-source frameworks 115
4.9 Summary 119

5 EXPERIMENTAL RESULTS AND DISCUSSION 122

5.1 Introduction 122
5.2 Evaluation Process 122

5.2.1 Experimental Setup and Devices 123
5.3 NetMob Evaluation 125

© C
OPYRIG

HT U
PM

xii

5.3.1 Sync Protocol 125
5.3.2 CloudNM performance with CRUD and chunking

operation 126
5.4 Results and Discussion 127

5.4.1 Sync Protocol Overhead 127
5.4.2 Performance of NetMob Data retrieval and

chunking APIs 132
5.4.3 Consistency measurement of NetMob 135
5.4.4 Performance comparison with Other Sync

frameworks 140
5.5 Summary of NetMob Evaluation 143

6 CONCLUSION AND FUTURE WORK 144

6.1 Introduction 144
6.2 Conclusion of Research 144
6.3 Recommendation for Future Work 151

REFERENCES 153
BIODATA OF STUDENT 166
LIST OF PUBLICATIONS 167

© C
OPYRIG

HT U
PM

xiii

LIST OF TABLES

Table Page

1.1 Issues in Disconnected Operation 4

2.1 Comparison of Replication 21

2.2 Consistency schemes supported in proposed Mobile Sync framework 25

2.3 Summary of reference frameworks 48

2.4 Comparison of selected case studies chosen as per criteria discussed
in 53

2.5 Summary of Large Object Support in reference frameworks 58

2.6 Summary of different techniques used to support large objects in
various reference frameworks 64

4.1 NetMob APIs for Chunking support 93

4.2 Sync Failure Detection and Recovery Policy for Upstream and
Downstream 94

4.3 Recovery Action for SyncUpstream 95

4.4 Recovery action for SyncDownstream 95

4.5 NetMob APIs 100

4.6 Summary of Hoarding unit, Sync protocol, Conflict Resolution in
compared frameworks 116

4.7 Summary of Large Object Support in compared frameworks 117

4.8 Summary of different techniques used to support large objects in
compared frameworks 118

5.1 Experimental Devices 124

5.2 NetMob Sync protocol overhead 129

5.3 Comparison of Sync protocol overhead of NetMob and Simba 131

© C
OPYRIG

HT U
PM

xiv

LIST OF FIGURES

Figure Page

1.1 A global architecture of mobile environment 1

1.2 Disconnected Operations 3

1.3 Increase in files uploaded by File size 7

2.1 Backend 14

2.2 General Block diagram of Mobile Backend as a Service MBaaS
framework 14

2.3 General working of MBaaS 18

2.4 3D Design Framework classification 26

2.5 Block diagram of Mobius Architecture 41

2.6 Architecture of BaasBox 42

2.7 Architecture of Parse framework with Amazon Web Services (AWS)
as the cloud service provider 43

2.8 SSTable and Log Structured Storage in LevelDB 68

2.9 Object storage using LevelDB with SSTable and MemTable in
NetMob Client Data store (LDBSNM) 69

2.10 Cassandra Ring 70

2.11 Chunking and Segmentation process in server-side with OpenStack
Object Storage 72

3.1 Proposed Research Methodology 77

3.2 Architecture of the benchmark test applications in this research to
measure the latency during the upload and download operations 81

3.3 Architecture and Sequence Diagram of client apps involved during
measuring the consistency schemes in NetMob 86

4.1 NetMob Architecture 89

4.2 Data Model of Data Chunker module in NetMob with Chunking
mechanism 90

© C
OPYRIG

HT U
PM

xv

4.3 Algorithm of Rabin Chunking used in NetMob 92

4.4 NetMob Synchronization 93

4.5 General mechanism of downloading file in NetMob 97

4.6 General mechanism of uploading file in NetMob 98

4.7 Swift APIs that support Dynamic Large Objects (DLOs) 106

4.8 NetMob modules constituting Sync Protocol - Methods indicated with
star symbol (*) are the modified methods compared to Simba 113

5.1 NetMob Experimental setup 125

5.2 Overhead of sync protocol for a single message with 1 row with
different payloads 129

5.3 Overhead of sync protocol for a single message with 10 rows with
different payloads 130

5.4 Latency for Put, Get and Delete queries in NetMob 133

5.5 Latency for Upload operation with different chunk sizes (2, 4, 8 and
16 MiB) in NetMob 134

5.6 End-to-end latency of 100 MiB object for different consistency
schemes in NetMob 136

5.7 Data transfer for 100 MiB object in different consistency schemes of
NetMob 136

5.8 Comparison of End-to-end latency of 100 MiB object for different
consistency schemes in NetMob and Simba 138

5.9 Data transfer for 100 MiB object in different consistency schemes of
NetMob and Simba 139

5.10 NetMob comparison with other frameworks for Upload data 141

5.11 NetMob comparison with other frameworks for Download data 142

© C
OPYRIG

HT U
PM

xvi

LIST OF ABBREVIATIONS

API Application Programming Interface

C Causal Consistency

CMP Consistency scheme with PRACTI property

CRDT Conflict-Free Replicated Data Types

HU Hoarding Unit.

E Eventual Consistency

FSC Fork-sequential consistency

MBaaS Mobile Backend as a Service

MCC Mobile Cloud Computing

MRC Monotonic read consistency

MWC Monotonic write consistency

PRACTI Partial Replication, Arbitrary Consistency, Topology Independence

RAWC Read after writes consistency

RPC Remote Procedure Call

RYWC Read your writes consistency

S Strong Consistency

SC Sequential Consistency

T, O Table, Object

WFRC Write Follows Read Consistency

© C
OPYRIG

HT U
PM

1

CHAPTER 1

1 INTRODUCTION

 Background Concepts

The model of mobile cloud computing utilizes the services of cloud computing. The
mobile cloud environment comprises portable computing devices, mobile Web and
location-based services, supported by wireless communication infrastructure, to provide
mobile devices online access to large storage space and unlimited computing power. A
wireless network with mobile clients (Figure 1.1) is fundamentally a distributed system
but suffers from the primary challenges such as limited computational power and storage
of the mobile devices, intermittent loss of connectivity and battery power restrictions.
The transmission bandwidth of the mobile device is likely to be lesser than the
transmission bandwidth of the mobile support stations (MSSs) and this leads to the
phenomenon of communication asymmetry. The effective management of data in
systems with mobile client is affected with these limitations. The environment of
frequent disconnections and limited bandwidth impact the data and transaction
management as well as the data consistency guarantees.

Figure 1.1 : A global architecture of mobile environment

To provide the illusion of uninterrupted data access, the data management must hide the
constraints of mobile wireless computing. The technique of replicating data locally on
the mobile device enables the user to carry offline data without the need to always be
connected to the data server. The ability to disconnect with the network, do local
changes, and then reintegrate (synchronize) these changes back into the system makes

© C
OPYRIG

HT U
PM

2

the mobile gadget an essential extension to modern distributed databases and
collaborative tools.

Data synchronization (Perkins et al., 2015) (Satyanarayanan, 1996) (Pitoura & Samaras,
2012) is an empowering process that eliminates the critical requirement of having steady
connectivity and permits users to run data-centric mobile applications while being
offline.

Generally, the mobile applications (which are referred to as “Apps') are developed
according to the different application programming interfaces (API) abstractions
supported by the underlying mobile middleware. The middleware may provide a simple
file-based API (possibly extended with replication- specific methods). It may also
support complex abstraction such as objects, tuples, relational entities or an object which
may contain pointers to other interdependent objects. Middleware with database
replication primarily provides query-oriented CRUD APIs (Create, Read, Update and
Delete) to application developers for typical operations on data with declaratively
defined by SQL queries for update, creation/insertion, and deletion of records.

Supporting large file upload and retrieval is crucial for the mobile cloud storage services,
as file sizes are trending larger and mobile users’ access or share files of large size (Z.
Li et al., 2016) (Shanon Montelongo, 2019). Practical large object services are, however,
only available for PC clients and not for mobile apps. The key observation from the
study of both the commercial and open-source cloud storage services for mobile reveal
that out of 19 only 9 frameworks (47.36% and most of them are commercial and closed
source) support large objects and few also have limitations (in terms of maximum file
upload size, option of chunking support and the techniques of handling large objects for
better performance). Even though the commercial cloud frameworks provide support for
large objects, many frameworks do not handle large files.

Amazon DynamoDB currently limits the size of each item that app store in a table. The
maximum item size in DynamoDB is 400 KiB, which includes both attribute name
binary length and attribute value lengths. Simba's (Perkins et al., 2015) sync protocol
does not support streaming APIs to handle big size objects (e.g. Media file like Videos).
SwiftCloud (Preguiça et al., 2014) is a middleware system that implements a Key-CRDT
on top of Riak (Klophaus, 2010). The Riak designers do not recommend storing objects
over 50 MiB for performance reasons. Izzy (Hao et al., 2013b) is an initial version of
Simba and do not support large object. The Parse Server (Parse, 2018) only supports
files up to 10 MiB.

© C
OPYRIG

HT U
PM

3

 Motivation

A general architecture for mobile cloud computing environment (Figure 1.1) has two
unique sets of entities: Fixed hosts (FHs) and Mobile hosts (MHs). FHs are machines
(Works stations and Servers) with efficient computation power and reliable storage of
data and run large databases (Barbará, 1999) (Jing et al., 1999) (Barbará, 1999) (Singh
& Hasan, 2019). FHs that are connected through a fixed network. MHs with limited
processing and storage power (cellular phone, palmtops, laptops, notebooks) are not
continually communicating with the fixed network. They may be disconnected for
various reasons. Additional dedicated fixed hosts called mobile support stations (MSSs)
acts as the channel between the FH and MH through wireless LAN (local area network)
connections, cells or connections to the network with standard modems.

When the network connectivity becomes unavailable or unacceptable, the MH enters the
disconnected state. Disconnected operation (See Figure 1.2) is a three-stage changeover
between the following states (Kistler & Satyanarayanan, 1992) (Pitoura & Samaras,
2012) as follows:

Figure 1.2 : Disconnected Operations

1. Data hoarding: This is the process of preloading or pre-fetching the data in
anticipation of a foreseeable disconnection. Before going to offline mode
(disconnection), the data structures necessary for operation during
disconnection are either replicated (cached) or moved (partitioned) at the MH.

Synchronization

Disconnected
operation

Data Hoarding

Reintegration
or

© C
OPYRIG

HT U
PM

4

Table 1.1 : Issues in Disconnected Operation

State Problem Resolution

Hoarding

Unit of caching/hoarding System dependent (e.g., a file or a
database fragment)

Which items to cache (hoard)? - Application dependent, based on
purpose of the system

- Defined distinctly by the user
- Generate from the knowledge of past

operations
When to execute hoarding? - Based on regular intervals

- Before disconnection
Call for locally unavailable data - Add requests to queue for future

service
- Raise an exception/error

Disconnection

What to log? - Timestamps
- Data Values
- Operations

When to optimize the log? - Before synchronization
- Incrementally

How to optimize the log? - System dependent
How to synchronize? - Re-execute an operational log

Reintegrationor
Synchronization

How to resolve conflicts? - Automatic resolution
- Use application-semantics Provide

utility to aid the user

2. Disconnected operation: When the MH is offline (disconnected from the
network), data might be changed, added or even removed at either the MH or
the FH.

3. Synchronization or Reintegration: When the connection is reestablished,
each operation executed at the MH should be synchronized (reintegrated)
with appropriate updates executed at other sites in order to attain seamless
consistency.

For a given distributed system, the complexity of operations in each of the above three
states is determined by the interdependence of data operated on. The issues pertaining to
three states (Pitoura & Samaras, 2012) are summarized in Table 1.1.

The execution of distributed applications in local-area networks is significantly different
from wireless, mobile systems. Wireless applications must use different communication
pattern in order to address the high latency, low bandwidth, intermittent connections and
communication charges based on time and content. An application operating on a LAN
can manage good user interactions in case queries to a non-local database, but the same
application operating on a wireless network may become unresponsive due to the delay
in response. Hence wireless applications chose data replication, explicit or implicit
(caching or data hoarding), as the primary technique to address the Disconnected
operation.

© C
OPYRIG

HT U
PM

5

The introduction of multi-user and collaborative features for wireless application
increase the complexity, as multiple users have to share data objects and thus
communicate and collaborate with each other (Munson & Dewan, 1997) (Pitoura &
Samaras, 2012). In such cases there must be a sophisticated coordination mechanism
other than the conventional mechanism of locks. Thus, addressing the wireless mobile
systems constraints in the application development becomes challenging for mobile
developers, since they have to retain favourable user interaction and performance along
with tackling the data coordination issues.

Mobile services can be developed and deployed in various cloud computing scenarios.
The main service models of cloud computing are (Mell & Grance, 2011) Infrastructure
as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). With
the advent of new service model, Backend as a Service (BaaS), sometimes also referred
as Mobile Backend as a Service (MBaaS), the native mobile applications can be easily
integrated with the cloud. Throughout this dissertation the term “Mobile Backend as a
Service (MBaaS)” always refers to a “sync framework” and sometimes used as
interchangeable terms.

Synchronization frameworks should (Perkins et al., 2015) (Gheith et al., 2016):

 Facilitate non-blocking, responsive (ensure high availability) and reliable
mobile applications during disconnection.

 Support Cloud-connected multi-user, shared-data mobile apps that need to
manage the inter-dependent data not only locally but also across multiple
devices with cloud storage.

 Provide a synchronization model with tunable consistency guarantees so that
developers have the flexibility to configure how data is synchronized and data
conflict are handled.

 Provide a synchronization-aware high-level APIs that support applications
for on demand and background synchronization tasks.

 Enable support for large files (i.e., a couple of megabytes or gigabytes)
synchronization.

 Needs to be frugal in power consumption and bandwidth usage for mobile
clients and hold efficient repeated sync operations.

The model of Sync framework offers a cloud server infrastructure, to store application
data and facility of easy configuration. Developer needs to do significant work for the
application to remain responsive during interruptions in communication due to poor or
no network. The Sync framework offers a solution for the unreliable connection problem
with customized synchronization and replication processes and hence helps in
synchronizing with multiple clients. An intelligent Sync framework allows enterprise
data to take offline and facilitate sync operation by syncing data across multiple mobile
devices with the backend systems, detect and resolve the conflicts with configurable,
standards-based rules, setting precedence based on policies (Satyanarayanan, 1996)

© C
OPYRIG

HT U
PM

6

(Gheith et al., 2016). Ideally Sync framework should provide consistent state at all times
(strong consistency). But the CAP theorem for the distributed systems enforces the Sync
framework to guarantee immediate availability and tolerate network partitions in order
to provide weak form of consistency, commonly known as eventual consistency
(Agrawal, Aranya, & Ungureanu, 2013).

Each Sync framework offers a distinctive set of functionalities through APIs (REST or
wrapper libraries of the APIs) and allows programs to be written specially to execute in
the cloud. Amazon Mobile SDKs provide the means to interact with cloud services
through REST APIs. Multi-platform SDKs (iOS, Android, Fire OS, and Unity) are
offered to interact with the AWS services, including S3 (storage), DynamoDB
(database), Simple Notification Service (SNS) and Mobile Analytics (Mobile, 2016).
Apple provide iCloud service (CloudKit SDK) to store and access data in iCloud (Shraer
et al., 2018). Mobile applications are broadly classified into two types such as offline
applications and online applications (H. Wu et al., 2010a). Unlike online apps, in offline
(native) application, the mobile device and back-end system are not connected always.
In order to support continuous mobile services, offline applications will process the
presentation and business logic with the available local data on the device itself.
Periodically data is updated by synchronizing with back-end systems.

Majority of the sync frameworks support either table, or file-only data model. But the
Data centric apps need to address the use cases that interact with both inter-dependent
structured and unstructured data. While some of the frameworks provide sync protocol
that does not support streaming APIs to handle big size objects (e.g., Media file like
Videos), the other need to be improved in the area of cross-app synchronization,
optimization strategies and caching (Perkins et al., 2015) (Preguiça et al., 2014) (Chun
et al., 2012). Sync performance measurement of some cloud services showed that sync
protocol implemented in these fails to utilize bandwidth when synchronizing multiple
small files or in high real-time traffic (RTT) environment (Drago, Bocchi, Mellia,
Slatman, & Pras, 2013) (Bai & Zhang, 2017).

Handling the task of uploading and retrieving large files from and to a mobile app is a
cumbersome process for developers due to issues of latency, speed, timeouts and
interruptions (Drago et al., 2013) (Perkins et al., 2015) (Bai & Zhang, 2017) . With the
growing prevalence of sharing file of larger sizes among mobile users, providing reliable
and efficient synchronization service for large files has become an important feature.

The term "consistency" refers to the notion that the state of data such as the latest status
or the collection of changes that give rise to that state is decided by various clients
accessing a storage system somehow. For two reasons it is difficult to make sure
consistency: first, storage systems need to maintain several replicas of fault tolerance
and performance data. Second, multiple data items or objects can involve storage
operations.

© C
OPYRIG

HT U
PM

7

Recently numerous measurement research efforts have been conducted on enterprise
cloud storage services and personal cloud storage services. The investigations from (Z.
Li et al., 2016) attempted to find out mobile user access behavior in a large-scale mobile
cloud storage with a dataset of 350 million HTTP request logs. The study observed the
trend of using the cloud storage for large file sharing, with the average volume as large
as about 70 MiB, in multiple sessions for retrieving one file.

Figure 1.3 : Increase in files uploaded by File size

Another study from a cloud storage service provider (Shanon Montelongo, 2019)
analyzed a dataset of 100,000 applications. They provided the services of handling file
uploads, transformations, storage, and delivery. Their observation targeted the statistics
of uploaded trend of files ranging from different sizes and formats from the year 2015
to 2016 as shown in Figure 1.3. Their analysis concluded that all file increased 50% year
over year, but files sized 100 MiB and above increased over 170% year over year. Based
on these studies it is evident that the file sizes are trending larger and mobile users’
access or share large size of files (above 100 MiB). Some of the mobile operating
systems limit the size of the file over which over- the-air (OTA) or app-store downloads
are not allowed (Ketola, 2014). For example, Apple’s iOS platform (“iOS app OTA limit
in cellular network - Apple Community,” 2016) limit, the Cellular Data downloads to a
file size of 100 MiB. Android OS limit to the size of downloads via cellular data to
150MiB (“Reduce your app size,” 2016). Based on above studies and mobile operating
system guidelines, it can be concluded that a file with size greater 100 MiB is considered
as a large file.

 Problem Statement

Even though many mobile sync frameworks support the data replication and
management systems for mobile clients, they lack the support for large objects (more
than 100 MiB to Giga bytes) (Perkins et al., 2015) (Hao et al., 2013b) (Preguiça et al.,
2014) (Balegas et al., 2015) (Parse, 2018) (“The BaasBox Server,” 2019). The key
observation from the literature study revealed that out of 19 only 9 frameworks (47.36%

© C
OPYRIG

HT U
PM

8

and most of them are commercial and closed source) support large objects and this
include the commercial frameworks, additionally few also has limitations (in terms of
maximum file upload size, option of chunking support, configuration and the techniques
of handling large objects for better performance). Handling large data and maintaining
consistency become challenging in cases of local storage and updates, on the cloud, and
on other client mobile devices. Reliable (transparent failure handling), Consistent
(concurrent updates, sync atomicity) and Efficient (minimize traffic/battery usage) Sync
as a service framework are needed for building data centric apps that can handle large
objects (Go, Agrawal, Aranya, & Ungureanu, 2015) (Hao, Agrawal, Aranya, &
Ungureanu, 2013a).

Also, most mobile frameworks use a data-sync paradigm in order to handle disconnected
operations, in which data is stored locally on the device and replicated to the cloud
asynchronously. However, it is challenging for frameworks to manage data consistency
in such environment due to 1) the limited network bandwidth and intermittent
connectivity, which are common to mobile devices, and 2) many apps storing inter-
dependent structured and unstructured data (Agrawal et al., 2013). Most sync
frameworks support either a table, or a data template that is file-only (Perkins et al.,
2015). But the data-centric apps have scenarios to communicate with structured and
unstructured data that are interdependent, and the sync framework must ensure that no
dangling pointers from structured to unstructured exist. Because mobile apps frequently
crash or stall for a variety of reasons sources (Agarwal et al., 2010) (Ravindranath et al.,
2014), if an app is in the middle of a data operation (a local write or sync) when a failure
occurs, the sync framework must detect and recover to a consistent state.

Cloud storage providers use various techniques such as Chunking, Bundling,
Segmentation, Compression, Deduplication, and Delta encoding to maximize storage
space and speed up transmission of data (Drago et al., 2013). Notwithstanding the
efforts, the sync performance of common mobile cloud storage services is still far from
being satisfactory, and the sync time is much longer than anticipated under some
circumstances. There are several challenges to improve the performance of syncs in the
mobile / wireless environment.

De-duplication techniques to reduce redundant data transfers do not always result in sync
efficiency (Drago et al., 2013). The distributed nature of storage facilities makes realistic
implementation of the delta encoding algorithm difficult, and failure in incremental sync
results in high overhead traffic. When synchronizing a collection of files across a slow
network, the iterative sync scheme suffers from low throughput (Cui et al., 2017).

While some existing frameworks aim to boost sync efficiency by integrating multiple
capabilities, it is still unclear if such capabilities are useful or necessary in mobile /
wireless environments for good storage efficiency (Perkins et al., 2015).

© C
OPYRIG

HT U
PM

9

As commercial storage services with sync frameworks are largely closed source with
encrypted data, the researchers remain unclear regarding their designs and operating
processes. It is difficult to investigate the sync protocol specifically and determine the
root cause of sync difficulty (Cui et al., 2017a).

Eventually, as a mobile cloud storage and sync framework requires storage and network
technologies, storage techniques need to be flexible and operate effectively in a mobile
environment where mobility and changing channel conditions make communications
vulnerable to high delay or interruption (Hao et al., 2013a).

Although several mobile sync frameworks support mobile customer data replication and
management systems, they lack support for large objects (more than 100 MiB to Giga
bytes) (Perkins et al., 2015) (Hao et al., 2013b) (Preguiça et al., 2014) (Balegas et al.,
2015) (Parse, 2018) (The BaasBox Server, 2019).

Since many of the Mobile sync frameworks does not support large objects and have
some limitations (in terms of maximum file upload size, option of chunking support,
configuration and the techniques of handling large objects for better performance and
latency), this research work proposes an enhanced cloud- based Mobile Sync framework
to address the following two main problems:

1) Data management for large objects

2) End-to-end data consistency for large data objects

 Research Objectives

This research aims to improve data management for large objects and improve the end-
to-end data consistency for Mobile Sync framework. In order to achieve the aim
following are the research objectives:

1. To propose a mobile data management method based on object segmentation
and object chunking in order to improve large file object access and
synchronization in a mobile cloud environment. (Measured using Latency (in
seconds) during Upload (for varying chunk sizes (2, 4, 8 and 16 MiB)),
Download and Delete operations and also using cumulative sync protocol %
overhead with varied payload sizes.)

2. To propose an enhanced Mobile Sync framework to improve end-to-end data
consistency for large file object in mobile cloud environment. (Measured
using end-to-end latency (in seconds) for a specific size object for three
consistency schemes of Strong, Causal and Eventual, in a defined
environment).

© C
OPYRIG

HT U
PM

10

 Research Scope

The scope of this research work is defined in the following points:

 This research focus on addressing only a part of data service with the
Synchronization and off-line services for mobile devices. Specifically, this
research is focused on large file object support providing end-to-end data
consistency in MBaaS framework. So other services that are generally
integrated into MBaaS framework like Identity services, social network
integration and analytics are out of the scope of this research.

 The implementation of data Storage of proposed MBaaS sync framework, use
Cassandra to store tabular data and Open Stack Swift object storage, for
object data. Internally, the architecture of the Backend as a Service (BaaS)
provider determines how data is stored, replicated, and partitioned. This
metrics influence the systems scalability, availability, consistency, and
flexibility.

 The case studies chosen in this research are based on the mainly three criteria.
First the frameworks should be open source for detailed investigations.
Second the selected frameworks utilize different technologies to support data
management and consistency features. Thirdly support for different types of
data models like (1) File-only, (2) Table-only and combination of (3) Table
and Object.

 This research considers the investigation of open-source Mobile
synchronization frameworks in detail. Hence this work compares the
consistency performance of the enhanced framework with the parent open-
source framework Simba (Perkins et al., 2015). Also, the performance
comparison of enhanced framework for upload and download performance is
covered for open-source frameworks like ParseServer (Parse, 2018) and
BaasBox (“The BaasBox Server,” 2019) only. This work did not compare the
consistency performance with other frameworks like ParseServer
andBaasBox since it was difficult to make the setup for consistency
measurement. It was due to the fact that two frameworks ParseServer and
BaasBox does not made available required sample source code for the setup
code for Reader (Tr), Writer (Tw) and CausalTester (Tc) for the underlying
data storage provider. Also, it was difficult to provide the same evaluation
environment for all these frameworks.

 Research Contributions

This research work proposes an enhanced cloud-based Mobile Sync framework to
address two main issues concerning data management and support End-to-end data
consistency for large data objects. This research work contributes to the body of
knowledge in following aspects:

© C
OPYRIG

HT U
PM

11

1. Efficient method for large data management for mobile devices using
object segmentation and chunking: This study proposed the techniques of
Object segmentation and Chunking that manage large objects by producing a
low number of objects with large chunk size and hence, a low object-to- node
ratio resulting in faster read-writes, in a mobile cloud environment. The
approach also utilizes efficient data reduction (compression) and bandwidth
reduction techniques during the large data transfer.

2. An enhanced cloud-based sync framework to support End-to-end data
consistency and large data object access: This work design and
implemented an enhanced cloud based Mobile Sync framework to support
End-to-end data consistency support for large data object management using
Open stack swift object storage APIs and Cassandra to support both tabular
and large object data. The proposed enhanced cloud based Mobile Sync
framework (NetMob) support API Interface that allows the large objects to
be written to or read from the cloud storage and also support local reading or
writing only a part of the large object. Efficient network transfer is supported
through the chunking methods and objects are stored and synced as a
collection of fixed-size chunks. The framework also supported three types of
consistency guarantees Strong, Causal and Eventual consistency.

 Organization of the Thesis

This research entitled, "Mobile Synchronization Framework to Enhance Large Object
Management in Mobile Cloud Storage Service" comprises of an extensive study. Hence,
this research work is divided into chapters for reader understand ability.

CHAPTER 1 gives brief introduction on general architecture for mobile cloud
computing environment. The challenges in Disconnected operation are discussed in
detail along with the need for synchronization frameworks or Mobile Backend as a
Service (MBaaS) frameworks for mobile apps to easily manage data. Research
objectives, scope and contribution of this research are explained in this chapter.

CHAPTER 2 introduce the background concepts of Mobile Backend as a Service or
synchronization frameworks, different Replication strategies to support fault resilience
and Consistency models. This chapter also provide an overview of different data stores
in distributed environments. Moreover, this chapter presents a review of data consistency
and synchronization frameworks in Mobile Cloud Computing for Mobile Apps. Latest
studies done from 2010 to 2018 are considered and classified into different types. Three
reference implementations in the literature are considered in detail to investigate the
approaches to handle consistency support, sync services, conflict handling and offline
operations. The pros and cons of three reference implementations in the literature have
been presented. This chapter also presents the 3D Design Framework considered for
Consistency benchmarking of application frameworks. The report of evaluation
parameters of the three reference implementations in the literature have been presented.

© C
OPYRIG

HT U
PM

12

Furthermore, this chapter investigate and analyse the support for large files upload and
retrieval in mobile data synchronization frameworks with cloud storage services.

CHAPTER 3 presents the first part of methodology applied in this research. It specifies
the research design and categorize the process into four main phases as per the objectives
of the research. The first phase of this research reviews data consistency and
synchronization frameworks in Mobile Cloud Computing (MCC) for Mobile Apps. Next
phase investigates and analyze the support for large files upload and retrieval in mobile
data synchronization frameworks with cloud storage services. The third phase proposes
a cloud- based framework to support End-to-end data consistency support for large data
object access and is finally evaluated in the last phase of this research work.

CHAPTER 4 describes proposed enhanced cloud-based sync framework (called as
NetMob), to support End-to-end data consistency support for large data object access.
The architecture and design are described in detail along with techniques and methods
that are followed in the design of proposed enhanced cloud-based sync framework.
Different Client and Server-side modules are presented in detail with synchronization
protocol. This chapter further provide details of proposed enhanced cloud-based sync
framework data model and supported APIs. Large Object Support with Segmentation
and Object Chunking both at the client and server side is described with implementation
details. Finally, in this chapter the NetMob architecture is compared with two other
open-source mobile sync frameworks.

CHAPTER 5 reports on the evaluation methodology for the proposed enhanced cloud-
based sync framework. The experimental setup is described with included set of virtual
machines and mobile device client. The data collection methodology for conducting tests
the ability of proposed enhanced cloud-based sync framework to handle read and write
requests is described. Methods to evaluate the performance of object chunking in
proposed enhanced cloud-based sync framework is presented along with the mechanism
to test the consistency parameters. Finally, this chapter also presents the results of
experimental evaluation of the proposed sync framework to prove its significance and
efficiency. The experimental evaluation is based on latency i.e., time taken to upload or
download the files of different size under different setups. Moreover, the proposed sync
framework is analysed on varying values of system parameters, such as different sizes
of chunks (2 MiB, 4 MiB, 8 MiB and 16 MiB) and under different consistency
configurations (single replica for strong consistency and three replicas for eventual
consistency). Furthermore, the system model of proposed sync framework is validated
with experimental data.

Finally, CHAPTER 6 concludes this research work by re-visiting the research
objectives. The chapter also provide future research directions of this research.

© C
OPYRIG

HT U
PM

153

7 REFERENCES

A Fast and Lightweight Key/Value Database Library. (2017).
https://github.com/google/leveldb

Agarwal, S., Mahajan, R., Zheng, A., & Bahl, V. (2010). Diagnosing mobile applications
in the wild. Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks, 1–6.

Alapati, S. R. (2018). Cassandra data modeling, and the reading and writing of data. In
Expert apache cassandra administration (pp. 99–148). Springer.

Alvaro, P., Conway, N., Hellerstein, J. M., & Marczak, W. R. (2011). Consistency
Analysis in Bloom: A CALM and Collected Approach. CIDR, 249–260.

Amazon DynamoDB - Best Practices for Storing Large Items and Attributes. (2019).
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-use-
s3-too.html

Apache CouchDB. (2018).

Apache Hadoop 3.2.1 – HDFS Architecture. (2017).
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
hdfs/HdfsDesign.html

Archana Sharma, & Vineet Kansal. (2011). Replication Management and Optimistic
Replication Challenges in Mobile Environment. International Journal of
Database Management Systems, 3(4), 81–99.
https://doi.org/10.5121/ijdms.2011.3407

Bai, Y., & Zhang, Y. (2017). StoArranger: Enabling Efficient Usage of Cloud Storage
Services on Mobile Devices. Distributed Computing Systems (ICDCS), 2017
IEEE 37th International Conference On, 1476–1487.

Balegas, V., Duarte, S., Ferreira, C., Rodrigues, R., Preguiça, N., Najafzadeh, M., &
Shapiro, M. (2015). Putting consistency back into eventual consistency.
Proceedings of the Tenth European Conference on Computer Systems - EuroSys
’15, 1–16. https://doi.org/10.1145/2741948.2741972

Barbará, D. (1999). Mobile computing and databases-a survey. IEEE Transactions on
Knowledge and Data Engineering, 11(1), 108–117.

Belaramani, N. M., Dahlin, M., Gao, L., Nayate, A., Venkataramani, A., Yalagandula,
P., & Zheng, J. (2006). PRACTI Replication. NSDI, 6, 5.

Bermbach, D., Kuhlenkamp, J., Derre, B., Klems, M., & Tai, S. (2013). A Middleware
Guaranteeing Client-Centric Consistency on Top of Eventually Consistent
Datastores. IC2E, 114–123.

© C
OPYRIG

HT U
PM

154

Bermbach, D., & Tai, S. (2014). Benchmarking eventual consistency: Lessons learned
from long-term experimental studies. 2014 IEEE International Conference on
Cloud Engineering, 47–56.

Bermbach, D., & Tai, S. (2011). Eventual consistency: How soon is eventual? An
evaluation of Amazon S3’s consistency behavior. Proceedings of the 6th
Workshop on Middleware for Service Oriented Computing, 1.

Bermbach, D., Wittern, E., & Tai, S. (2017). Cloud service benchmarking. Springer.

Bhajantri, L. B., & Ayyannavar, V. V. (2018). Cognitive Agent Based Data
Synchronization in Ubiquitous Networks: A Survey. International Journal of
Advanced Pervasive and Ubiquitous Computing (IJAPUC), 10(2), 1–17.

Brunette, W., Sudar, S., Sundt, M., Larson, C., Beorse, J., & Anderson, R. (2017). Open
Data Kit 2.0: A Services-Based Application Framework for Disconnected Data
Management. Proceedings of the 15th Annual International Conference on
Mobile Systems, Applications, and Services, 440–452.

Brzezinski, J., Sobaniec, C., & Wawrzyniak, D. (2004). From Session Causality to
Causal Consistency. PDP, 152–158.

Brzezinski, J., Sobaniec, C., & Wawrzyniak, D. (2003). Session guarantees to achieve
PRAM consistency of replicated shared objects. International Conference on
Parallel Processing and Applied Mathematics, 1–8.

Burckhardt, S. (2013a). Bringing TouchDevelop to the cloud.

Burckhardt, S. (2013b). Bringing TouchDevelop to the cloud. Inside Microsoft Research
Blog, October.

Burckhardt, S., Fähndrich, M., Leijen, D., & Wood, B. P. (2012). Cloud types for
eventual consistency. European Conference on Object-Oriented Programming,
283–307.

Burckhardt, S., Gotsman, A., Yang, H., & Zawirski, M. (2014). Replicated data types:
Specification, verification, optimality. ACM SIGPLAN Notices, 49(1), 271–284.

Burckhardt, S., Leijen, D., Fähndrich, M., & Sagiv, M. (2012). Eventually consistent
transactions. European Symposium on Programming, 67–86.

Cao, J., Zhang, Y., Cao, G., & Xie, L. (2007). Data consistency for cooperative caching
in mobile environments. Computer.

Cattell, R. (2011). Scalable SQL and NoSQL data stores. Acm Sigmod Record, 39(4),
12–27.

© C
OPYRIG

HT U
PM

155

Chandra, S., Dahlin, M., Richards, B., Wang, R. Y., Anderson, T. E., & Larus, J. R.
(1997). Experience with a language for writing coherence protocols. Proceedings
of the Conference on Domain-Specific Languages on Conference on Domain-
Specific Languages (DSL), 1997, 5.

Chandrashekhara, S., Ki, T., Jeon, K., Dantu, K., & Ko, S. Y. (2017). BlueMountain:
An Architecture for Customized Data Management on Mobile Systems.
Proceedings of the 23rd Annual International Conference on Mobile Computing
and Networking, 396–408.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra,
T., Fikes, A., & Gruber, R. E. (2008). Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer Systems (TOCS), 26(2), 4.

Chekam, T. T., Zhai, E., Li, Z., Cui, Y., & Ren, K. (2016). On the synchronization
bottleneck of OpenStack Swift-like cloud storage systems. IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on Computer
Communications, 1–9.

Chun, B.-G., Curino, C., Sears, R., Shraer, A., Madden, S., & Ramakrishnan, R. (2012).
Mobius: Unified messaging and data serving for mobile apps. Proceedings of the
10th International Conference on Mobile Systems, Applications, and Services,
141–154.

Conway, N., Marczak, W. R., Alvaro, P., Hellerstein, J. M., & Maier, D. (2012). Logic
and lattices for distributed programming. Proceedings of the Third ACM
Symposium on Cloud Computing, 1.

Cooper, B. F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P.,
Jacobsen, H.-A., Puz, N., Weaver, D., & Yerneni, R. (2008). PNUTS: Yahoo!’s
hosted data serving platform. Proceedings of the VLDB Endowment, 1(2), 1277–
1288.

Council, F. C. I. O. (2017). MSCT.

Cui, Y., Lai, Z., Wang, X., & Dai, N. (2017a). QuickSync: Improving synchronization
efficiency for mobile cloud storage services. IEEE Transactions on Mobile
Computing, 16(12), 3513–3526.

Cui, Y., Lai, Z., Wang, X., & Dai, N. (2017b). QuickSync: Improving synchronization
efficiency for mobile cloud storage services. IEEE Transactions on Mobile
Computing, 16(12), 3513–3526.

Curino, C., Jones, E., Zhang, Y., & Madden, S. (2010). Schism: A workload-driven
approach to database replication and partitioning. Proceedings of the VLDB
Endowment, 3(1–2), 48–57.

© C
OPYRIG

HT U
PM

156

Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., & Stoica, I. (2001). Wide-area
cooperative storage with CFS. ACM SIGOPS Operating Systems Review, 35(5),
202–215.

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large
clusters. Communications of the ACM, 51(1), 107–113.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., & Vogels, W. (2007a). Dynamo: Amazon’s
highly available key-value store. ACM SIGOPS Operating Systems Review, 41(6),
205–220.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., & Vogels, W. (2007b). Dynamo: Amazon’s
highly available key-value store. ACM SIGOPS Operating Systems Review, 41(6),
205–220.

Definitions of the SI units: The binary prefixes. (2019, May 20).
https://physics.nist.gov/cuu/Units/binary.html

Diogo, M., Cabral, B., & Bernardino, J. (2019). Consistency Models of NoSQL
Databases. Future Internet, 11(2), 43. https://doi.org/10.3390/fi11020043

Drago, I., Bocchi, E., Mellia, M., Slatman, H., & Pras, A. (2013). Benchmarking
personal cloud storage. Proceedings of the 2013 Conference on Internet
Measurement Conference, 205–212.

Drago, I., Mellia, M., M Munafo, M., Sperotto, A., Sadre, R., & Pras, A. (2012). Inside
dropbox: Understanding personal cloud storage services. Proceedings of the 2012
ACM Conference on Internet Measurement Conference, 481–494.

Drive, G. (2016). Google Drive.

Dropbox. (2016). Build your app on the Dropbox platform.

Engberg, D. (2012). WhySQL?

Evernote system limits. (2017). https://help.evernote.com/hc/en-us/articles/209005247-
Evernote-system-limits

Fathalla, D. (2019). ORLease: Optimistically Replicated Lease Using Lease Version
Vector For Higher Replica Consistency in Optimistic Replication Systems
ORLease: Optimistically Replicated Lease Using Lease Version. 1080.

Firebase. (2017a). Firebase.

Firebase. (2017b). Firebase.

© C
OPYRIG

HT U
PM

157

Garcia-Lopez, P., Sanchez-Artigas, M., Cotes, C., Guerrero, G., Moreno, A., & Toda, S.
(2013). StackSync: Architecturing the personal cloud to Be in sync.

Gheith, A., Rajamony, R., Bohrer, P., Agarwal, K., Kistler, M., White Eagle, B. L.,
Hambridge, C. A., Carter, J. B., & Kaplinger, T. (2016). IBM Bluemix Mobile
Cloud Services. IBM Journal of Research and Development, 60(2–3), 7:1-7:12.
https://doi.org/10.1147/JRD.2016.2515422

Gilbert, S., & Lynch, N. (2002). Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. ACM SIGACT News, 33(2), 51.
https://doi.org/10.1145/564585.564601

Gray, J. N., Lorie, R. A., Putzolu, G. R., & Traiger, I. L. (1976). Granularity of locks
and degrees of consistency in a shared data base. IFIP Working Conference on
Modelling in Data Base Management Systems, 365–394.

Group, I. M. (2014). Pick one: 5 clouds for building mobile apps.

Guy, R. G., Heidemann, J. S., Mak, W.-K., Page Jr, T. W., Popek, G. J., Rothmeier, D.,
& others. (1990). Implementation of the Ficus Replicated File System. USENIX
Summer, 63–72.

Guy, R. G., Heidemann, J. S., & Page Jr, T. W. (1992). The ficus replicated file system.
ACM SIGOPS Operating Systems Review, 26(2), 26.

Hao, S., Agrawal, N., Aranya, A., & Ungureanu, C. (2013a). Building a delay-tolerant
cloud for mobile data. Proceedings - IEEE International Conference on Mobile
Data Management, 1, 293–300. https://doi.org/10.1109/MDM.2013.43

Hao, S., Agrawal, N., Aranya, A., & Ungureanu, C. (2013b). Building a Delay-Tolerant
Cloud for Mobile Data. 2013 IEEE 14th International Conference on Mobile
Data Management, 1, 293–300.

Huang, Y., Cao, J., Jin, B., Tao, X., Lu, J., & Feng, Y. (2010). Flexible cache consistency
maintenance over wireless ad hoc networks. IEEE Transactions on Parallel and
Distributed Systems, 21(8), 1150–1161.

Imam, A. A., Basri, S., & Ahmad, R. (2015). DATA SYNCHRONIZATION
BETWEEN MOBILE DEVICES AND SERVER-SIDE DATABASES: A
SYSTEMATIC LITERATURE REVIEW. Journal of Theoretical and Applied
Information Technology, 81(2), 364.

iOS app OTA limit in cellular network—Apple Community. (2016).
https://discussions.apple.com/thread/7797088

Jing, J., Helal, A. S., & Elmagarmid, A. (1999). Client-server computing in mobile
environments. ACM Computing Surveys (CSUR), 31(2), 117–157.

© C
OPYRIG

HT U
PM

158

Joseph, A. D., de Lespinasse, A. F., Tauber, J. A., Gifford, D. K., & Kaashoek, M. F.
(1995). Rover: A toolkit for mobile information access. ACM SIGOPS Operating
Systems Review, 29(5), 156–171.

Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., & Lewin, D. (1997).
Consistent hashing and random trees: Distributed caching protocols for relieving
hot spots on the World Wide Web. Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, 654–663.

Kemme, B., & Alonso, G. (2000). A new approach to developing and implementing
eager database replication protocols. ACM Transactions on Database Systems
(TODS), 25(3), 333–379.

Kermarrec, A.-M., Rowstron, A., Shapiro, M., & Druschel, P. (2001). The IceCube
approach to the reconciliation of divergent replicas. Proceedings of the Twentieth
Annual ACM Symposium on Principles of Distributed Computing, 210–218.

Ketola, T. (2014). Quantifying software development: Applying mobile monetization
techniques to your software development process. 2014 Computer Games: AI,
Animation, Mobile, Multimedia, Educational and Serious Games (CGAMES), 1–
4.

Kinvey. (2016). Kinvey BaaS.

Kistler, J. J., & Satyanarayanan, M. (1992). Disconnected operation in the Coda file
system. ACM Transactions on Computer Systems (TOCS), 10(1), 3–25.

Klems, M., Bermbach, D., & Weinert, R. (2012). A runtime quality measurement
framework for cloud database service systems. Quality of Information and
Communications Technology (QUATIC), 2012 Eighth International Conference
on The, 38–46.

Klophaus, R. (2010). Riak core: Building distributed applications without shared state.
ACM SIGPLAN Commercial Users of Functional Programming, 14.

Kony MobileFabric. (2017). https://www.kony.com/resources/videos/kony-
mobilefabrictm-overview/

Ladin, R., Liskov, B., Shrira, L., & Ghemawat, S. (1992). Providing high availability
using lazy replication. ACM Transactions on Computer Systems (TOCS), 10(4),
360–391.

Lakshman, A., & Malik, P. (2009). Cassandra: Structured storage system on a p2p
network. Proceedings of the 28th ACM Symposium on Principles of Distributed
Computing, 5.

Lamport, L. (1979). How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Transactions on Computers, 100(9), 690–691.

© C
OPYRIG

HT U
PM

159

Li, C., Porto, D., Clement, A., Gehrke, J., Preguiça, N. M., & Rodrigues, R. (2012).
Making Geo-Replicated Systems Fast as Possible, Consistent when Necessary.
OSDI, 12, 265–278.

Li, Z., Wang, X., Huang, N., Kaafar, M. A., Li, Z., Zhou, J., Xie, G., & Steenkiste, P.
(2016). An empirical analysis of a large-scale mobile cloud storage service.
Proceedings of the 2016 Internet Measurement Conference, 287–301.

Lloyd, W., Freedman, M. J., Kaminsky, M., & Andersen, D. G. (2011). Don’t settle for
eventual: Scalable causal consistency for wide-area storage with COPS.
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, 401–416.

Lloyd, W., Freedman, M. J., Kaminsky, M., & Andersen, D. G. (2013). Stronger
Semantics for Low-Latency Geo-Replicated Storage. NSDI, 13, 313–328.

Mahmood, T., Narayanan, S. P., Rao, S., Vijaykumar, T., & Thottethodi, M. (2016).
Achieving Causal Consistency under Partial Replication for Geo-distributed
Cloud Storage. Department of Electrical and Computer Engineering Technical
Reports.

Malkhi, D., & Terry, D. (2005). Concise version vectors in WinFS. International
Symposium on Distributed Computing, 339–353.

Mark van Seventer. (2012). A generic approach to data synchronization for HTML5
apps. VU University.

Mell, P., Grance, T., & others. (2011). The NIST definition of cloud computing.

Milani, B. A., & Navimipour, N. J. (2016). A comprehensive review of the data
replication techniques in the cloud environments: Major trends and future
directions. Journal of Network and Computer Applications, 64, 229–238.

Minelli, R., & Lanza, M. (2013). Software Analytics for Mobile Applications—Insights
& Lessons Learned. 2013 17th European Conference on Software
Maintenance and Reengineering, 144–153.
https://doi.org/10.1109/CSMR.2013.24

Mordacchini, M., Ricci, L., Ferrucci, L., Albano, M., & Baraglia, R. (2010). Hivory:
Range queries on hierarchical voronoi overlays. 2010 IEEE Tenth International
Conference on Peer-to-Peer Computing (P2P), 1–10.

Muntz, D., & Honeyman, P. (1991). Multi-level caching in distributed file systems.

Muthitacharoen, A., Chen, B., & Mazieres, D. (2001a). A low-bandwidth network file
system. ACM SIGOPS Operating Systems Review, 35(5), 174–187.

Muthitacharoen, A., Chen, B., & Mazieres, D. (2001b). A low-bandwidth network file
system. ACM SIGOPS Operating Systems Review, 35, 174–187.

© C
OPYRIG

HT U
PM

160

Muthitacharoen, A., Morris, R., Gil, T. M., & Chen, B. (2002). Ivy: A read/write peer-
to-peer file system. ACM SIGOPS Operating Systems Review, 36(SI), 31–44.

Nelson, M., Welch, B., & Ousterhout, J. (1987). Caching in the Sprite network file
system (Vol. 21, Issue 5). ACM.

Nguyen, P. (2016). Mobile Backend as a Service: The pros and cons of parse.

Nightingale, E. B., & Flinn, J. (2004). Energy-Efficiency and Storage Flexibility in the
Blue File System. OSDI, 4, 363–378.

Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton, J. E., Flinn, J., & Walker, K.
R. (1997). Agile application-aware adaptation for mobility. ACM SIGOPS
Operating Systems Review, 31(5), 276–287.

NSURLSessionConfiguration | Apple Developer Documentation. (2015).
https://developer.apple.com/documentation/foundation/nsurlsessionconfiguratio
n

OfflineSync-BaasBox: Implementation of offline synchronization feature for BaasBox.
(2015). https://github.com/simlaudato/OfflineSync-BaasBox

ONeil, P., Cheng, E., Gawlick, D., & ONeil, E. (1996). The log-structured merge-tree
(LSM-tree). Acta Informatica, 33(4), 351–385.

OpenStack Swift Object Storage Service. (2018).

Oprea, A., & Reiter, M. (2006). On Consistency of Encrypted Files. Proceedings of
Distributed Computing: 20th International Symposium (DISC ’06), 254–268.

Parker, D. S., Popek, G. J., Rudisin, G., Stoughton, A., Walker, B. J., Walton, E., Chow,
J. M., Edwards, D., Kiser, S., & Kline, C. (1983). Detection of mutual
inconsistency in distributed systems. IEEE Transactions on Software
Engineering, 3, 240–247.

Parse. (2018). Parse Platform—The Complete Application Stack.
https://parseplatform.org/

Parse Case Study. (2014). https://aws.amazon.com/solutions/case-studies/parse/

Perkins, D., Agrawal, N., Aranya, A., Yu, C., Go, Y., Madhyastha, H. V, & Ungureanu,
C. (2015). Simba: Tunable end-to-end data consistency for mobile apps.
Proceedings of the Tenth European Conference on Computer Systems, 7.

Pitoura, E., & Samaras, G. (2012). Data management for mobile computing (Vol. 10).
Springer Science & Business Media.

© C
OPYRIG

HT U
PM

161

Popov, A., Proletarsky, A., Belov, S., & Sorokin, A. (2017). Fast Prototyping of the
Internet of Things solutions with IBM Bluemix. Proceedings of the 50th Hawaii
International Conference on System Sciences.

Preguiça, N. (2018). Conflict-free Replicated Data Types: An Overview. 1–41.

Preguica, N., Zawirski, M., Bieniusa, A., Duarte, S., Balegas, V., Baquero, C., &
Shapiro, M. (2014). SwiftCloud: Fault-tolerant geo-replication integrated all the
way to the client machine. Proceedings of the IEEE Symposium on Reliable
Distributed Systems, 30–33. https://doi.org/10.1109/SRDSW.2014.33

Preguiça, N., Zawirski, M., Bieniusa, A., Duarte, S., Balegas, V., Baquero, C., &
Shapiro, M. (2014). SwiftCloud: Fault-tolerant geo-replication integrated all the
way to the client machine. 2014 IEEE 33rd International Symposium on Reliable
Distributed Systems Workshops (SRDSW), 30–33.

Protocol Buffers. (2017). https://developers.google.com/protocol-buffers

Rabin, M. O. (1981). Fingerprinting by random polynomials. Technical Report.

Ramasubramanian, V., Rodeheffer, T. L., Terry, D. B., Walraed-Sullivan, M., Wobber,
T., Marshall, C. C., & Vahdat, A. (2009). Cimbiosys: A platform for content-
based partial replication. Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation, 261–276.

Ravindranath, L., Nath, S., Padhye, J., & Balakrishnan, H. (2014). Automatic and
scalable fault detection for mobile applications. Proceedings of the 12th Annual
International Conference on Mobile Systems, Applications, and Services, 190–
203.

Raz, Y. (1993). Extended commitment ordering, or guaranteeing global serializability
by applying commitment order selectively to global transactions. Proceedings of
the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, 83–96.

Reduce your app size. (2016). https://developer.android.com/topic/performance/reduce-
apk-size

Ren, K., & Gibson, G. (2012). TABLEFS: Embedding a NoSQL database inside the
local file system. APMRC, 2012 Digest, 1–6.

Research & Drafts | SPDY | Google Developers. (2018).
https://developers.google.com/speed/protocols

Rowstron, A., & Druschel, P. (2001). Storage management and caching in PAST, a
large-scale, persistent peer-to-peer storage utility. ACM SIGOPS Operating
Systems Review, 35(5), 188–201.

© C
OPYRIG

HT U
PM

162

Rupprecht, L., Zhang, R., Owen, B., Pietzuch, P., & Hildebrand, D. (2017).
SwiftAnalytics: Optimizing object storage for big data analytics. Proceedings -
2017 IEEE International Conference on Cloud Engineering, IC2E 2017, 245–
251. https://doi.org/10.1109/IC2E.2017.19

Saito, Y., Karamanolis, C., Karlsson, M., & Mahalingam, M. (2002). Taming aggressive
replication in the Pangaea wide-area file system. ACM SIGOPS Operating
Systems Review, 36(SI), 15–30.

Saito, Y., & Shapiro, M. (2005). Optimistic replication. ACM Computing Surveys
(CSUR), 37(1), 42–81.

Salmon, B., Schlosser, S. W., Cranor, L. F., & Ganger, G. R. (2009). Perspective:
Semantic Data Management for the Home. FAST, 9, 167–182.

Satyanarayanan, M. (1996). Fundamental Challenges in Mobile Computing. Annual
ACM Symposium on Principles of Distributed Computing, 1–7.
https://doi.org/10.1145/248052.248053

Serrano-Alvarado, P., Roncancio, C., & Adiba, M. (2004). A survey of mobile
transactions. Distributed and Parallel Databases, 16(2), 193–230.

Shanon Montelongo, F. (2019). How to upload large files.
https://blog.filestack.com/thoughts-and-knowledge/how-to-upload-large-files/

Shapiro, M., Preguiça, N., Baquero, C., & Zawirski, M. (2011a). A comprehensive study
of convergent and commutative replicated data types. Inria--Centre Paris-
Rocquencourt; INRIA.

Shapiro, M., Preguiça, N., Baquero, C., & Zawirski, M. (2011b). Conflict-free replicated
data types. Symposium on Self-Stabilizing Systems, 386–400.

Sharma, A., & Kansal, V. (2011). Replication management and optimistic replication
challenges in mobile environment. International Journal of Database
Management Systems, 3(4), 81.

Shetty, P., Spillane, R. P., Malpani, R., Andrews, B., Seyster, J., & Zadok, E. (2013).
Building workload-independent storage with VT-trees. FAST, 17–30.

Shraer, A., Aybes, A., Davis, B., Chrysafis, C., Browning, D., Krugler, E., Stone, E.,
Chandler, H., Farkas, J., Quinn, J., & Others. (2018). Cloudkit: Structured storage
for mobile applications. Proceedings of the VLDB Endowment, 11(5), 540–552.

Singh, N., & Hasan, M. (2019, December 1). Efficient method for data synchronization
in mobile database. 2019 IEEE Conference on Information and Communication
Technology, CICT 2019. https://doi.org/10.1109/CICT48419.2019.9066122

© C
OPYRIG

HT U
PM

163

Sovran, Y., Power, R., Aguilera, M. K., & Li, J. (2011). Transactional storage for geo-
replicated systems. Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, 385–400.

Soyata, T., Ba, H., Heinzelman, W., Kwon, M., & Shi, J. (2015). Accelerating mobile-
cloud computing: A survey. In Cloud Technology: Concepts, Methodologies,
Tools, and Applications (pp. 1933–1955). IGI Global.

Spahn, R., Bell, J., Lee, M., Bhamidipati, S., Geambasu, R., & Kaiser, G. E. (2014).
Pebbles: Fine-Grained Data Management Abstractions for Modern Operating
Systems. OSDI, 113–129.

Tanenbaum, A. S., & van Steen, M. (2002). Principles and Paradigms. Distributed
Systems.

Tanenbaum, A. S., & Van Steen, M. (2007). Distributed systems: Principles and
paradigms. Prentice-Hall.

Tang, H., Liu, F., Shen, G., Jin, Y., & Guo, C. (2015). UniDrive: Synergize multiple
consumer cloud storage services. Proceedings of the 16th Annual Middleware
Conference, 137–148.

Tatarowicz, A. L., Curino, C., Jones, E. P. C., & Madden, S. (2012). Lookup tables:
Fine-grained partitioning for distributed databases. 2012 IEEE 28th International
Conference on Data Engineering, 102–113.

Terry, D. B., Demers, A. J., Petersen, K., Spreitzer, M. J., Theimer, M. M., & Welch, B.
B. (1994). Session guarantees for weakly consistent replicated data. Parallel and
Distributed Information Systems, 1994., Proceedings of the Third International
Conference On, 140–149.

Terry, D. B., Prabhakaran, V., Kotla, R., Balakrishnan, M., Aguilera, M. K., & Abu-
Libdeh, H. (2013a). Consistency-based service level agreements for cloud
storage. Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles - SOSP ’13, 309–324.
https://doi.org/10.1145/2517349.2522731

Terry, D. B., Prabhakaran, V., Kotla, R., Balakrishnan, M., Aguilera, M. K., & Abu-
Libdeh, H. (2013b). Consistency-based service level agreements for cloud
storage. Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, 309–324.

Terry, D. B., Prabhakaran, V., Kotla, R., Balakrishnan, M., Aguilera, M. K., & Abu-
Libdeh, H. (2013c). Consistency-based service level agreements for cloud
storage. Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, 309–324.

© C
OPYRIG

HT U
PM

164

Terry, D. B., Theimer, M. M., Petersen, K., Demers, A. J., Spreitzer, M. J., & Hauser,
C. H. (1995a). Managing update conflicts in Bayou, a weakly connected
replicated storage system (Vol. 29, Issue 5). ACM.

Terry, D. B., Theimer, M. M., Petersen, K., Demers, A. J., Spreitzer, M. J., & Hauser,
C. H. (1995b). Managing update conflicts in Bayou, a weakly connected
replicated storage system. ACM SIGOPS Operating Systems Review, 29(5), 172–
182.

Tewari, R., Dahlin, M., Vin, H. M., & Kay, J. S. (1999). Design considerations for
distributed caching on the Internet. Distributed Computing Systems, 1999.
Proceedings. 19th IEEE International Conference On, 273–284.

The BaasBox Server. (2019). https://github.com/baasbox/baasbox

Tolia, N., Harkes, J., Kozuch, M., & Satyanarayanan, M. (2004). Integrating Portable
and Distributed Storage. FAST, 4, 227–238.

Tolia, N., Satyanarayanan, M., & Wolbach, A. (2007). Improving mobile database
access over wide-area networks without degrading consistency. Proceedings of
the 5th International Conference on Mobile Systems, Applications and Services,
71–84.

TouchDB. (2018).

Unhelkar, B., & Murugesan, S. (2010). The enterprise mobile applications development
framework. IT Professional, 12(3), 33–39.

van Renesse, R., Dumitriu, D., Gough, V., & Thomas, C. (2008). Efficient reconciliation
and flow control for anti-entropy protocols. Proceedings of the 2nd Workshop on
Large-Scale Distributed Systems and Middleware - LADIS ’08, 1.
https://doi.org/10.1145/1529974.1529983

Vogels, W. (2009). Eventually consistent. Communications of the ACM, 52(1), 40–44.

Wada, H., Fekete, A., Zhao, L., Lee, K., & Liu, A. (2011). Data Consistency Properties
and the Trade-offs in Commercial Cloud Storage: The Consumers’ Perspective.
CIDR, 11, 134–143.

Wang, D., Joshi, G., & Wornell, G. W. (2019). Efficient straggler replication in large-
scale parallel computing. ACM Transactions on Modeling and Performance
Evaluation of Computing Systems, 4(2). https://doi.org/10.1145/3310336

Wu, H., Hamdi, L., & Mahe, N. (2010a). TANGO: A flexible mobility-enabled
architecture for online and offline mobile enterprise applications. Proceedings -
IEEE International Conference on Mobile Data Management, 230–238.
https://doi.org/10.1109/MDM.2010.58

© C
OPYRIG

HT U
PM

165

Wu, H., Hamdi, L., & Mahe, N. (2010b). TANGO: A flexible mobility-enabled
architecture for online and offline mobile enterprise applications. Proceedings -
IEEE International Conference on Mobile Data Management, 230–238.
https://doi.org/10.1109/MDM.2010.58

Wu, Z., Butkiewicz, M., Perkins, D., Katz-Bassett, E., & Madhyastha, H. V. (2013).
Spanstore: Cost-effective geo-replicated storage spanning multiple cloud
services. Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, 292–308.

Wuu, G. T. J., & Bernstein, A. J. (1984). Efficient solutions to the replicated log and
dictionary problems. Proceedings of the Third Annual ACM Symposium on
Principles of Distributed Computing, 233–242.

Xiao, H. (2017). Practical web-based delta synchronization for cloud storage services.
HotStorage.

Xue, Y. (2008). The research on data synchronization of distributed real-time mobile
network. Computer Science and Software Engineering, 2008 International
Conference On, 3, 1104–1107.

Yu, H., & Vahdat, A. (2002). Design and evaluation of a conit-based continuous
consistency model for replicated services. ACM Transactions on Computer
Systems (TOCS), 20(3), 239–282.

Zhang, I., Szekeres, A., Van Aken, D., Ackerman, I., Gribble, S. D., Krishnamurthy, A.,
& Levy, H. M. (2014). Customizable and extensible deployment for mobile/cloud
applications. 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), 97–112.

Zhang, Y., Power, R., Zhou, S., Sovran, Y., Aguilera, M. K., & Li, J. (2013). Transaction
chains: Achieving serializability with low latency in geo-distributed storage
systems. Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, 276–291.

Zhang, Y., Tan, C., & Qun, L. (2013). CacheKeeper: A system-wide web caching service
for smartphones. Proceedings of the 2013 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, 265–274.

