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Supporting large file upload and retrieval is crucial for the mobile cloud storage services, 
as file sizes are trending larger and mobile users’ access or share files in large size. These 
files range from large PDFs to media files in various formats such as MPEG videos. 
These files need to be used offline, sometimes updated and shared among users. The 
mobile environment with frequent disconnections and limited bandwidth, impact the 
data and transaction management as well as the data consistency guarantees. Most of the 
mobile frameworks use a data-sync paradigm in order to handle disconnected operations, 
in which data is stored locally on the device and replicated to the cloud asynchronously. 
 
 
Many applications are storing large amounts of structured and unstructured data. 
However, it is challenging for mobile synchronization frameworks to manage data 
consistency in such environment. This is due to the fact that handling large data and 
maintaining consistency are very challenging in cases of local storage and updates. 
 
 
This research proposes an enhanced cloud-based mobile synchronization framework to 
address the two main problems that is data management for large objects and end-to-end 
support for data consistency for large objects. This research work proposes techniques 
to improve large file object access and synchronization in mobile cloud environment 
based on segmentation and object chunking. This framework mainly focuses on large 
file handling and providing support for both table and objects data models that can be 
tuned for three consistency semantics: resembling strong, causal and eventual 
consistency. Experimental results conducted using representative workloads showed that 
the proposed enhanced Mobile Synchronization framework can handle large files with 
the size ranging from 100MiB up to 1GiB and is able to reduce synchronization time 
with object chunking (2, 4, 8 and 16 MiB) in the experiment settings by 65.4% for upload 
and 93.7% for download on average when compared to other frameworks. 
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Sokongan muat naik dan mendapatkan fail yang besar adalah penting untuk 
perkhidmatan storan awan mudah alih kerana saiz fail semakin berkembang dan akses 
pengguna mudah alih atau berkongsi fail dalam saiz yang besar. Fail-fail ini terdiri 
daripada PDF besar kepada fail media dalam pelbagai format seperti video MPEG. Fail-
fail ini perlu digunakan di luar talian, kadangkala dikemas kini dan dikongsi di kalangan 
pengguna. Persekitaran mudah alih dengan sambungan yang kerap terputus dan lebar 
jalur terhad, memberi kesan kepada pengurusan data dan transaksi serta jaminan 
ketekalan data. Kebanyakan rangka kerja mudah alih menggunakan paradigma 
penyegerakan data untuk mengendalikan operasi yang terputus sambungan, di mana data 
disimpan secara setempat pada peranti dan direplikasi ke awan secara tak segerak. 
 
 
Banyak aplikasi menyimpan sejumlah besar data berstruktur dan tidak berstruktur. 
Walau bagaimanapun, mengurus konsistensi data dalam persekitaran sedemikian adalah 
mencabar bagi rangka kerja penyegerakan mudah alih. Ini disebabkan oleh pengendalian 
data yang besar dan mengekalkan konsistensi adalah sangat mencabar dalam kes storan 
dan kemas kini tempatan. 
 
 
Penyelidikan ini mencadangkan rangka kerja penyegerakan mudah aih berasaskan awan 
yang dipertingkatkan untuk menangani dua masalah utama iaitu pengurusan data untuk 
objek besar dan sokongan hujung ke hujung untuk konsistensi data bagi objek besar. 
Kerja penyelidikan ini mencadangkan teknik untuk menambah baik capaian dan 
penyegerakan objek fail besar dalam persekitaran awan mudah alih berdasarkan 
segmentasi dan pemotongan objek. Rangka kerja ini tertumpu terutamanya pada 
pengendalian fail besar dan menyediakan sokongan untuk kedua-dua model data jadual 
dan objek yang boleh ditala untuk tiga semantik konsisten: menyerupai konsistensi yang 
kuat, sebab dan akhirnya. Keputusan eksperimen yang dijalankan menggunakan beban 
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kerja yang mewakili menunjukkan bahawa rangka kerja penyegerakan mudah alih yang 
dipertingkatkan boleh mengendalikan fail besar dengan saiz antara 100MiB hingga 
1GiB dan mampu mengurangkan masa penyegerakan dengan pemotongan objek (2, 4, 8 
dan 16 MiB) dalam eksperimen tetapan sebanyak 65.4% untuk muat naik dan 93.7% 
untuk muat turun secara purata jika dibandingkan dengan rangka kerja lain. 
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CHAPTER 1 

1 INTRODUCTION 

 Background Concepts 

The model of mobile cloud computing utilizes the services of cloud computing. The 
mobile cloud environment comprises portable computing devices, mobile Web and 
location-based services, supported by wireless communication infrastructure, to provide 
mobile devices online access to large storage space and unlimited computing power. A 
wireless network with mobile clients (Figure 1.1) is fundamentally a distributed system 
but suffers from the primary challenges such as limited computational power and storage 
of the mobile devices, intermittent loss of connectivity and battery power restrictions. 
The transmission bandwidth of the mobile device is likely to be lesser than the 
transmission bandwidth of the mobile support stations (MSSs) and this leads to the 
phenomenon of communication asymmetry. The effective management of data in 
systems with mobile client is affected with these limitations. The environment of 
frequent disconnections and limited bandwidth impact the data and transaction 
management as well as the data consistency guarantees. 

 

Figure 1.1 : A global architecture of mobile environment 
 
 
To provide the illusion of uninterrupted data access, the data management must hide the 
constraints of mobile wireless computing. The technique of replicating data locally on 
the mobile device enables the user to carry offline data without the need to always be 
connected to the data server. The ability to disconnect with the network, do local 
changes, and then reintegrate (synchronize) these changes back into the system makes 
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the mobile gadget an essential extension to modern distributed databases and 
collaborative tools. 

Data synchronization  (Perkins et al., 2015) (Satyanarayanan, 1996) (Pitoura & Samaras, 
2012) is an empowering process that eliminates the critical requirement of having steady 
connectivity and permits users to run data-centric mobile applications while being 
offline. 

Generally, the mobile applications (which are referred to as “Apps') are developed 
according to the different application programming interfaces (API) abstractions 
supported by the underlying mobile middleware. The middleware may provide a simple 
file-based API (possibly extended with replication- specific methods). It may also 
support complex abstraction such as objects, tuples, relational entities or an object which 
may contain pointers to other interdependent objects. Middleware with database 
replication primarily provides query-oriented CRUD APIs (Create, Read, Update and 
Delete) to application developers for typical operations on data with declaratively 
defined by SQL queries for update, creation/insertion, and deletion of records. 

Supporting large file upload and retrieval is crucial for the mobile cloud storage services, 
as file sizes are trending larger and mobile users’ access or share files of large size (Z. 
Li et al., 2016)  (Shanon Montelongo, 2019). Practical large object services are, however, 
only available for PC clients and not for mobile apps. The key observation from the 
study of both the commercial and open-source cloud storage services for mobile reveal 
that out of 19 only 9 frameworks (47.36% and most of them are commercial and closed 
source) support large objects and few also have limitations (in terms of maximum file 
upload size, option of chunking support and the techniques of handling large objects for 
better performance). Even though the commercial cloud frameworks provide support for 
large objects, many frameworks do not handle large files. 

Amazon DynamoDB currently limits the size of each item that app store in a table. The 
maximum item size in DynamoDB is 400 KiB, which includes both attribute name 
binary length and attribute value lengths. Simba's (Perkins et al., 2015) sync protocol 
does not support streaming APIs to handle big size objects (e.g. Media file like Videos). 
SwiftCloud (Preguiça et al., 2014) is a middleware system that implements a Key-CRDT 
on top of Riak (Klophaus, 2010). The Riak designers do not recommend storing objects 
over 50 MiB for performance reasons. Izzy (Hao et al., 2013b) is an initial version of 
Simba and do not support large object. The Parse Server (Parse, 2018) only supports 
files up to 10 MiB. 
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 Motivation 

A general architecture for mobile cloud computing environment (Figure 1.1) has two 
unique sets of entities: Fixed hosts (FHs) and Mobile hosts (MHs). FHs are machines 
(Works stations and Servers) with efficient computation power and reliable storage of 
data and run large databases (Barbará, 1999) (Jing et al., 1999) (Barbará, 1999) (Singh 
& Hasan, 2019). FHs that are connected through a fixed network. MHs with limited 
processing and storage power (cellular phone, palmtops, laptops, notebooks) are not 
continually communicating with the fixed network. They may be disconnected for 
various reasons. Additional dedicated fixed hosts called mobile support stations (MSSs) 
acts as the channel between the FH and MH through wireless LAN (local area network) 
connections, cells or connections to the network with standard modems. 

When the network connectivity becomes unavailable or unacceptable, the MH enters the 
disconnected state. Disconnected operation (See Figure 1.2) is a three-stage changeover 
between the following states (Kistler & Satyanarayanan, 1992) (Pitoura & Samaras, 
2012) as follows: 

 
 
Figure 1.2 : Disconnected Operations 
 
 

1. Data hoarding: This is the process of preloading or pre-fetching the data in 
anticipation of a foreseeable disconnection. Before going to offline mode 
(disconnection), the data structures necessary for operation during 
disconnection are either replicated (cached) or moved (partitioned) at the MH. 

 
 
 
 
 
 
 
 

Synchronization

Disconnected
operation

Data Hoarding

Reintegration
or



© C
OPYRIG

HT U
PM

 
4 

Table 1.1 : Issues in Disconnected Operation 
 

State Problem Resolution 
 
 
 
 

Hoarding 

Unit of caching/hoarding System dependent (e.g., a file or a 
database fragment) 

Which items to cache (hoard)? - Application dependent, based on 
purpose of the system 

- Defined distinctly by the user 
- Generate from the knowledge of past 

operations 
When to execute hoarding? - Based on regular intervals 

- Before disconnection 
Call for locally unavailable data - Add requests to queue for future 

service 
- Raise an exception/error 

 
 
 

Disconnection 

What to log? - Timestamps 
- Data Values  
- Operations 

When to optimize the log? - Before synchronization 
- Incrementally 

How to optimize the log? - System dependent  
How to synchronize? - Re-execute an operational log  

Reintegrationor 
Synchronization 

How to resolve conflicts? - Automatic resolution 
- Use application-semantics Provide 

utility to aid the user 
 
 

2. Disconnected operation: When the MH is offline (disconnected from the 
network), data might be changed, added or even removed at either the MH or 
the FH. 

3. Synchronization or Reintegration: When the connection is reestablished, 
each operation executed at the MH should be synchronized (reintegrated) 
with appropriate updates executed at other sites in order to attain seamless 
consistency. 

 
 

For a given distributed system, the complexity of operations in each of the above three 
states is determined by the interdependence of data operated on. The issues pertaining to 
three states (Pitoura & Samaras, 2012) are summarized in Table 1.1. 

The execution of distributed applications in local-area networks is significantly different 
from wireless, mobile systems. Wireless applications must use different communication 
pattern in order to address the high latency, low bandwidth, intermittent connections and 
communication charges based on time and content. An application operating on a LAN 
can manage good user interactions in case queries to a non-local database, but the same 
application operating on a wireless network may become unresponsive due to the delay 
in response. Hence wireless applications chose data replication, explicit or implicit 
(caching or data hoarding), as the primary technique to address the Disconnected 
operation. 
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The introduction of multi-user and collaborative features for wireless application 
increase the complexity, as multiple users have to share data objects and thus 
communicate and collaborate with each other (Munson & Dewan, 1997) (Pitoura & 
Samaras, 2012). In such cases there must be a sophisticated coordination mechanism 
other than the conventional mechanism of locks. Thus, addressing the wireless mobile 
systems constraints in the application development becomes challenging for mobile 
developers, since they have to retain favourable user interaction and performance along 
with tackling the data coordination issues. 

Mobile services can be developed and deployed in various cloud computing scenarios. 
The main service models of cloud computing are (Mell & Grance, 2011) Infrastructure 
as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). With 
the advent of new service model, Backend as a Service (BaaS), sometimes also referred 
as Mobile Backend as a Service (MBaaS), the native mobile applications can be easily 
integrated with the cloud. Throughout this dissertation the term “Mobile Backend as a 
Service (MBaaS)” always refers to a “sync framework” and sometimes used as 
interchangeable terms. 

Synchronization frameworks should (Perkins et al., 2015) (Gheith et al., 2016): 
 

 Facilitate non-blocking, responsive (ensure high availability) and reliable 
mobile applications during disconnection. 

 Support Cloud-connected multi-user, shared-data mobile apps that need to 
manage the inter-dependent data not only locally but also across multiple 
devices with cloud storage. 

 Provide a synchronization model with tunable consistency guarantees so that 
developers have the flexibility to configure how data is synchronized and data 
conflict are handled. 

 Provide a synchronization-aware high-level APIs that support applications 
for on demand and background synchronization tasks. 

 Enable support for large files (i.e., a couple of megabytes or gigabytes) 
synchronization. 

 Needs to be frugal in power consumption and bandwidth usage for mobile 
clients and hold efficient repeated sync operations. 

 
 

The model of Sync framework offers a cloud server infrastructure, to store application 
data and facility of easy configuration. Developer needs to do significant work for the 
application to remain responsive during interruptions in communication due to poor or 
no network. The Sync framework offers a solution for the unreliable connection problem 
with customized synchronization and replication processes and hence helps in 
synchronizing with multiple clients. An intelligent Sync framework allows enterprise 
data to take offline and facilitate sync operation by syncing data across multiple mobile 
devices with the backend systems, detect and resolve the conflicts with configurable, 
standards-based rules, setting precedence based on policies (Satyanarayanan, 1996) 



© C
OPYRIG

HT U
PM

 
6 

(Gheith et al., 2016). Ideally Sync framework should provide consistent state at all times 
(strong consistency). But the CAP theorem for the distributed systems enforces the Sync 
framework to guarantee immediate availability and tolerate network partitions in order 
to provide weak form of consistency, commonly known as eventual consistency 
(Agrawal, Aranya, & Ungureanu, 2013). 

Each Sync framework offers a distinctive set of functionalities through APIs (REST or 
wrapper libraries of the APIs) and allows programs to be written specially to execute in 
the cloud. Amazon Mobile SDKs provide the means to interact with cloud services 
through REST APIs. Multi-platform SDKs (iOS, Android, Fire OS, and Unity) are 
offered to interact with the AWS services, including S3 (storage), DynamoDB 
(database), Simple Notification Service (SNS) and Mobile Analytics (Mobile, 2016). 
Apple provide iCloud service (CloudKit SDK) to store and access data in iCloud (Shraer 
et al., 2018). Mobile applications are broadly classified into two types such as offline 
applications and online applications (H. Wu et al., 2010a). Unlike online apps, in offline 
(native) application, the mobile device and back-end system are not connected always. 
In order to support continuous mobile services, offline applications will process the 
presentation and business logic with the available local data on the device itself. 
Periodically data is updated by synchronizing with back-end systems. 

Majority of the sync frameworks support either table, or file-only data model. But the 
Data centric apps need to address the use cases that interact with both inter-dependent 
structured and unstructured data. While some of the frameworks provide sync protocol 
that does not support streaming APIs to handle big size objects (e.g., Media file like 
Videos), the other need to be improved in the area of cross-app synchronization, 
optimization strategies and caching (Perkins et al., 2015) (Preguiça et al., 2014) (Chun 
et al., 2012). Sync performance measurement of some cloud services showed that sync 
protocol implemented in these fails to utilize bandwidth when synchronizing multiple 
small files or in high real-time traffic (RTT) environment (Drago, Bocchi, Mellia, 
Slatman, & Pras, 2013) (Bai & Zhang, 2017). 

Handling the task of uploading and retrieving large files from and to a mobile app is a 
cumbersome process for developers due to issues of latency, speed, timeouts and 
interruptions (Drago et al., 2013) (Perkins et al., 2015) (Bai & Zhang, 2017) . With the 
growing prevalence of sharing file of larger sizes among mobile users, providing reliable 
and efficient synchronization service for large files has become an important feature. 

The term "consistency" refers to the notion that the state of data such as the latest status 
or the collection of changes that give rise to that state is decided by various clients 
accessing a storage system somehow. For two reasons it is difficult to make sure 
consistency: first, storage systems need to maintain several replicas of fault tolerance 
and performance data. Second, multiple data items or objects can involve storage 
operations. 
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Recently numerous measurement research efforts have been conducted on enterprise 
cloud storage services and personal cloud storage services. The investigations from (Z. 
Li et al., 2016) attempted to find out mobile user access behavior in a large-scale mobile 
cloud storage with a dataset of 350 million HTTP request logs. The study observed the 
trend of using the cloud storage for large file sharing, with the average volume as large 
as about 70 MiB, in multiple sessions for retrieving one file. 

 

Figure 1.3 : Increase in files uploaded by File size
 
 
Another study from a cloud storage service provider (Shanon Montelongo, 2019)   
analyzed a dataset of 100,000 applications. They provided the services of handling file 
uploads, transformations, storage, and delivery. Their observation targeted the statistics 
of uploaded trend of files ranging from different sizes and formats from the year 2015 
to 2016 as shown in Figure 1.3. Their analysis concluded that all file increased 50% year 
over year, but files sized 100 MiB and above increased over 170% year over year. Based 
on these studies it is evident that the file sizes are trending larger and mobile users’ 
access or share large size of files (above 100 MiB). Some of the mobile operating 
systems limit the size of the file over which over- the-air (OTA) or app-store downloads 
are not allowed (Ketola, 2014). For example, Apple’s iOS platform (“iOS app OTA limit 
in cellular network - Apple Community,” 2016) limit, the Cellular Data downloads to a 
file size of 100 MiB. Android OS limit to the size of downloads via cellular data to 
150MiB (“Reduce your app size,” 2016). Based on above studies and mobile operating 
system guidelines, it can be concluded that a file with size greater 100 MiB is considered 
as a large file. 

 Problem Statement 

Even though many mobile sync frameworks support the data replication and 
management systems for mobile clients, they lack the support for large objects (more 
than 100 MiB to Giga bytes) (Perkins et al., 2015) (Hao et al., 2013b) (Preguiça et al., 
2014) (Balegas et al., 2015) (Parse, 2018) (“The BaasBox Server,” 2019). The key 
observation from the literature study revealed that out of 19 only 9 frameworks (47.36% 
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and most of them are commercial and closed source) support large objects and this 
include the commercial frameworks, additionally few also has limitations (in terms of 
maximum file upload size, option of chunking support, configuration and the techniques 
of handling large objects for better performance). Handling large data and maintaining 
consistency become challenging in cases of local storage and updates, on the cloud, and 
on other client mobile devices. Reliable (transparent failure handling), Consistent 
(concurrent updates, sync atomicity) and Efficient (minimize traffic/battery usage) Sync 
as a service framework are needed for building data centric apps that can handle large 
objects (Go, Agrawal, Aranya, & Ungureanu, 2015) (Hao, Agrawal, Aranya, & 
Ungureanu, 2013a). 

Also, most mobile frameworks use a data-sync paradigm in order to handle disconnected 
operations, in which data is stored locally on the device and replicated to the cloud 
asynchronously. However, it is challenging for frameworks to manage data consistency 
in such environment due to 1) the limited network bandwidth and intermittent 
connectivity, which are common to mobile devices, and 2) many apps storing inter-
dependent structured and unstructured data (Agrawal et al., 2013). Most sync 
frameworks support either a table, or a data template that is file-only (Perkins et al., 
2015). But the data-centric apps have scenarios to communicate with structured and 
unstructured data that are interdependent, and the sync framework must ensure that no 
dangling pointers from structured to unstructured exist. Because mobile apps frequently 
crash or stall for a variety of reasons sources (Agarwal et al., 2010) (Ravindranath et al., 
2014), if an app is in the middle of a data operation (a local write or sync) when a failure 
occurs, the sync framework must detect and recover to a consistent state.  

Cloud storage providers use various techniques such as Chunking, Bundling, 
Segmentation, Compression, Deduplication, and Delta encoding to maximize storage 
space and speed up transmission of data (Drago et al., 2013). Notwithstanding the 
efforts, the sync performance of common mobile cloud storage services is still far from 
being satisfactory, and the sync time is much longer than anticipated under some 
circumstances. There are several challenges to improve the performance of syncs in the 
mobile / wireless environment. 

De-duplication techniques to reduce redundant data transfers do not always result in sync 
efficiency (Drago et al., 2013). The distributed nature of storage facilities makes realistic 
implementation of the delta encoding algorithm difficult, and failure in incremental sync 
results in high overhead traffic. When synchronizing a collection of files across a slow 
network, the iterative sync scheme suffers from low throughput (Cui et al., 2017).  

While some existing frameworks aim to boost sync efficiency by integrating multiple 
capabilities, it is still unclear if such capabilities are useful or necessary in mobile / 
wireless environments for good storage efficiency (Perkins et al., 2015). 
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As commercial storage services with sync frameworks are largely closed source with 
encrypted data, the researchers remain unclear regarding their designs and operating 
processes. It is difficult to investigate the sync protocol specifically and determine the 
root cause of sync difficulty (Cui et al., 2017a). 

Eventually, as a mobile cloud storage and sync framework requires storage and network 
technologies, storage techniques need to be flexible and operate effectively in a mobile 
environment where mobility and changing channel conditions make communications 
vulnerable to high delay or interruption (Hao et al., 2013a). 

Although several mobile sync frameworks support mobile customer data replication and 
management systems, they lack support for large objects (more than 100 MiB to Giga 
bytes) (Perkins et al., 2015) (Hao et al., 2013b) (Preguiça et al., 2014) (Balegas et al., 
2015) (Parse, 2018) (The BaasBox Server, 2019). 

Since many of the Mobile sync frameworks does not support large objects and have 
some limitations (in terms of maximum file upload size, option of chunking support, 
configuration and the techniques of handling large objects for better performance and 
latency), this research work proposes an enhanced cloud- based Mobile Sync framework 
to address the following two main problems: 
 

1) Data management for large objects 

2) End-to-end data consistency for large data objects 
 
 

 Research Objectives 

This research aims to improve data management for large objects and improve the end-
to-end data consistency for Mobile Sync framework. In order to achieve the aim 
following are the research objectives: 
 

1. To propose a mobile data management method based on object segmentation 
and object chunking in order to improve large file object access and 
synchronization in a mobile cloud environment. (Measured using Latency (in 
seconds) during Upload (for varying chunk sizes (2, 4, 8 and 16 MiB)), 
Download and Delete operations and also using cumulative sync protocol % 
overhead with varied payload sizes.) 

2. To propose an enhanced Mobile Sync framework to improve end-to-end data 
consistency for large file object in mobile cloud environment. (Measured 
using end-to-end latency (in seconds) for a specific size object for three 
consistency schemes of Strong, Causal and Eventual, in a defined 
environment). 
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 Research Scope 

The scope of this research work is defined in the following points: 
 

 This research focus on addressing only a part of data service with the 
Synchronization and off-line services for mobile devices. Specifically, this 
research is focused on large file object support providing end-to-end data 
consistency in MBaaS framework. So other services that are generally 
integrated into MBaaS framework like Identity services, social network 
integration and analytics are out of the scope of this research. 

 The implementation of data Storage of proposed MBaaS sync framework, use 
Cassandra to store tabular data and Open Stack Swift object storage, for 
object data. Internally, the architecture of the Backend as a Service (BaaS) 
provider determines how data is stored, replicated, and partitioned. This 
metrics influence the systems scalability, availability, consistency, and 
flexibility. 

 The case studies chosen in this research are based on the mainly three criteria. 
First the frameworks should be open source for detailed investigations. 
Second the selected frameworks utilize different technologies to support data 
management and consistency features. Thirdly support for different types of 
data models like (1) File-only, (2) Table-only and combination of (3) Table 
and Object. 

 This research considers the investigation of open-source Mobile 
synchronization frameworks in detail. Hence this work compares the 
consistency performance of the enhanced framework with the parent open-
source framework Simba (Perkins et al., 2015). Also, the performance 
comparison of enhanced framework for upload and download performance is 
covered for open-source frameworks like ParseServer (Parse, 2018) and 
BaasBox (“The BaasBox Server,” 2019) only. This work did not compare the 
consistency performance with other frameworks like ParseServer 
andBaasBox since it was difficult to make the setup for consistency 
measurement. It was due to the fact that two frameworks ParseServer and 
BaasBox does not made available required sample source code for the setup 
code for Reader (Tr), Writer (Tw) and CausalTester (Tc) for the underlying 
data storage provider. Also, it was difficult to provide the same evaluation 
environment for all these frameworks. 

 
 

 Research Contributions 

This research work proposes an enhanced cloud-based Mobile Sync framework to 
address two main issues concerning data management and support End-to-end data 
consistency for large data objects. This research work contributes to the body of 
knowledge in following aspects:  
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1. Efficient method for large data management for mobile devices using 
object segmentation and chunking: This study proposed the techniques of 
Object segmentation and Chunking that manage large objects by producing a 
low number of objects with large chunk size and hence, a low object-to- node 
ratio resulting in faster read-writes, in a mobile cloud environment. The 
approach also utilizes efficient data reduction (compression) and bandwidth 
reduction techniques during the large data transfer. 

2. An enhanced cloud-based sync framework to support End-to-end data 
consistency and large data object access: This work design and 
implemented an enhanced cloud based Mobile Sync framework to support 
End-to-end data consistency support for large data object management using 
Open stack swift object storage APIs and Cassandra to support both tabular 
and large object data. The proposed enhanced cloud based Mobile Sync 
framework (NetMob) support API Interface that allows the large objects to 
be written to or read from the cloud storage and also support local reading or 
writing only a part of the large object. Efficient network transfer is supported 
through the chunking methods and objects are stored and synced as a 
collection of fixed-size chunks. The framework also supported three types of 
consistency guarantees Strong, Causal and Eventual consistency.  

 
 

 Organization of the Thesis 

This research entitled, "Mobile Synchronization Framework to Enhance Large Object 
Management in Mobile Cloud Storage Service" comprises of an extensive study. Hence, 
this research work is divided into chapters for reader understand ability. 

CHAPTER 1 gives brief introduction on general architecture for mobile cloud 
computing environment. The challenges in Disconnected operation are discussed in 
detail along with the need for synchronization frameworks or Mobile Backend as a 
Service (MBaaS) frameworks for mobile apps to easily manage data. Research 
objectives, scope and contribution of this research are explained in this chapter. 

CHAPTER 2 introduce the background concepts of Mobile Backend as a Service or 
synchronization frameworks, different Replication strategies to support fault resilience 
and Consistency models. This chapter also provide an overview of different data stores 
in distributed environments. Moreover, this chapter presents a review of data consistency 
and synchronization frameworks in Mobile Cloud Computing for Mobile Apps. Latest 
studies done from 2010 to 2018 are considered and classified into different types. Three 
reference implementations in the literature are considered in detail to investigate the 
approaches to handle consistency support, sync services, conflict handling and offline 
operations. The pros and cons of three reference implementations in the literature have 
been presented. This chapter also presents the 3D Design Framework considered for 
Consistency benchmarking of application frameworks. The report of evaluation 
parameters of the three reference implementations in the literature have been presented. 
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Furthermore, this chapter investigate and analyse the support for large files upload and 
retrieval in mobile data synchronization frameworks with cloud storage services. 

CHAPTER 3 presents the first part of methodology applied in this research. It specifies 
the research design and categorize the process into four main phases as per the objectives 
of the research. The first phase of this research reviews data consistency and 
synchronization frameworks in Mobile Cloud Computing (MCC) for Mobile Apps. Next 
phase investigates and analyze the support for large files upload and retrieval in mobile 
data synchronization frameworks with cloud storage services. The third phase proposes 
a cloud- based framework to support End-to-end data consistency support for large data 
object access and is finally evaluated in the last phase of this research work. 

CHAPTER 4 describes proposed enhanced cloud-based sync framework (called as 
NetMob), to support End-to-end data consistency support for large data object access. 
The architecture and design are described in detail along with techniques and methods 
that are followed in the design of proposed enhanced cloud-based sync framework. 
Different Client and Server-side modules are presented in detail with synchronization 
protocol. This chapter further provide details of proposed enhanced cloud-based sync 
framework data model and supported APIs. Large Object Support with Segmentation 
and Object Chunking both at the client and server side is described with implementation 
details. Finally, in this chapter the NetMob architecture is compared with two other 
open-source mobile sync frameworks. 

CHAPTER 5 reports on the evaluation methodology for the proposed enhanced cloud-
based sync framework. The experimental setup is described with included set of virtual 
machines and mobile device client. The data collection methodology for conducting tests 
the ability of proposed enhanced cloud-based sync framework to handle read and write 
requests is described. Methods to evaluate the performance of object chunking in 
proposed enhanced cloud-based sync framework is presented along with the mechanism 
to test the consistency parameters. Finally, this chapter also presents the results of 
experimental evaluation of the proposed sync framework to prove its significance and 
efficiency. The experimental evaluation is based on latency i.e., time taken to upload or 
download the files of different size under different setups. Moreover, the proposed sync 
framework is analysed on varying values of system parameters, such as different sizes 
of chunks (2 MiB, 4 MiB, 8 MiB and 16 MiB) and under different consistency 
configurations (single replica for strong consistency and three replicas for eventual 
consistency). Furthermore, the system model of proposed sync framework is validated 
with experimental data. 

Finally, CHAPTER 6 concludes this research work by re-visiting the research 
objectives. The chapter also provide future research directions of this research. 
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