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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 

the requirement for the degree of Doctor of Philosophy 
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PREFABRICATED MODULAR STEEL BUILDINGS 

 

By 

 

NADEEM GOHAR 

 

May 2022 

 

Chairman : Nor Azizi binti Safiee, PhD  

Faculty  : Engineering 

 

The modular building uses factory-built 3D or room-sized volumetric modules. They 

assemble on site as the building's key structural elements. Compared to conventional 

construction, modular constructions are different in detailing requirements, construction 

method, structural performance, and load-transfer mechanism. In conventional steel 

structures, the structural members have a high degree of connectivity, whereas in 

modular construction, the modules are connected at their corners only by inter-modular 

connections (IMC), and these connections are the most vulnerable points of failure. In 

the connecting region, numerous small beams and columns meet together, which poses 

new challenges to structural design. Currently, the inter-modular connections are pinned 

connections, which are provided in the form of a connection plate and a high-strength 

bolt. An access hole in the column is provided for the erection of the bolt, which causes 

cross-sectional loss of the column and is unfavorable for the “strong column-weak beam” 

seismic design concept, leading to unfavorable failure mechanisms which can threaten 

the entire structure. This study proposed a self-locking connection to address these issues 

of IMCs. The proposed connection uses a simple mechanism of spring to be fixed, does 

not require extra workspace between modules, and is suitable for interior, exterior, and 

corner joints. Proposed connection comprises of upper and lower adapters, flat spring, 

spring pin, center plate and middle plate the center plate and adapter are welded together; 

the flat spring is free at the one end to move, while it is fixed through welding at other 

end. The adjacent module in internal as well as exterior joint are connected by middle 

plate. The middle plate is positioned on top of the upper adaptor, the upper adaptors are 

inserted through square spaces providing on middle plates. Dowel pins are provided at 

each corner of the center plate to allow for the alignment of the modules that are joined 

to the middle plate during assembly. The distance between floors beam as well as the 

ceiling beam is similar as total thickness of middle plates and the center plate. This 

interconnection will transfer the primary failure locations away from important structural 

parts like columns and provide adequate seismic load stress mitigation. The connection 

components can be fabricated off-site and assembled on-site. Finally, this would result 

in a multistory modular building structure entirely manufactured off-site and assembled 

as a full-frame capable of withstanding gravity and lateral loading. Experimental tests 
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were performed to verify and analyze the strength and the predicted ductile failure pattern 

of the newly proposed inter-modular connections. The details of the test specimens were 

selected based on a six-story modular residential building design; a height of 3m and 

width of 3.6m of the module was considered. T- shaped specimens were fabricated to 

simulate the corner joint of MSB; half of the original height and width of a module was 

adopted presuming that beam and column inflection points coincide at the center length 

of the member. Under monotonic and cyclic load, three full-scaled specimens were tested 

to compare the joints' mechanical behaviour.  Extensive numerical studies were carried 

out utilizing established methodologies for finite element modeling to investigate and 

compare the proposed connections in terms of seismic response and slip mechanisms 

with those of a standard inter-modular connection currently used in steel modular 

buildings. Finite element models were discretized by employing the appropriate mesh 

elements. Due to the higher accuracy, all parts were modelled with brick elements 

(hexahedral) For steel modelling a nonlinear steel behavior signified by bi-linear stress-

strain relationship was considered. Furthermore, the surface-Surface technique was 

employed to define property between bolt shank, bolt hole and surfaces of the plates. 

Parametric sensitivity analyses were conducted to determine the parameters and the 

components that influence the performance and failure mechanisms of the proposed 

connection. The experimental and finite element analyses show that the proposed 

intermodular connections have better seismic behavior across a range of response 

characteristics, including moment-carrying capacity, energy dissipation capacity, and 

ductility. The ductile failure patterns were observed among beams, with no severe plastic 

deformations in critical structural components like columns or joints. The findings 

provide ideas for the design and analysis of intermodular connections that meet the 

requirements of entirely modular buildings. This research will lead to considerable 

improvements in the dynamic response and life safety of modular structures subjected to 

lateral loads in general and seismic loads in particular. 
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memenuhi keperluan untuk Ijazah Doktor Falsafah 

 

SAMBUNGAN ANTARA MODULAR TERKUNCI- SENDIRI YANG 

FLEKSIBEL UNTUK BANGUNAN PRA-FABRIKASI MODULAR KELULI 

 

Oleh 

 

GOHAR NADEEM 

 

Mei 2022 

 

Pengerusi : Nor Azizi binti Safiee, PhD 

Fakulti  : Kejuruteraan 

 

Bangunan modular menggunakan 3D atau modul volumetrik bersaiz bilik binaan kilang. 

Ia dipasang di lapangan sebagai elemen struktur utama bangunan. Berbanding dengan 

pembinaan konvensional, pembinaan modular adalah berbeza dalam memperincikan 

keperluan, kaedah pembinaan, prestasi struktur, dan mekanisme pemindahan beban. 

Dalam struktur keluli konvensional, anggota struktur mempunyai tahap ketersambungan 

yang tinggi, manakala dalam pembinaan modular, modul disambungkan pada sudutnya 

hanya dengan sambungan antara modular (IMC), dan sambungan ini adalah titik 

kegagalan yang paling terdedah. Di kawasan penghubung, banyak rasuk dan tiang kecil 

bertemu, yang menimbulkan cabaran baharu kepada reka bentuk struktur. Pada masa ini, 

sambungan antara modular adalah sambungan pin, yang disediakan dalam bentuk plat 

sambungan dan bolt berkekuatan tinggi. Ruang akses dalam tiang disediakan untuk 

pemasangan bolt, yang menyebabkan kehilangan keratan rentas tiang dan tidak sesuai 

untuk konsep reka bentuk seismik "rasuk lemah-tiang kuat", yang membawa kepada 

mekanisme kegagalan yang tidak menguntungkan yang boleh mengancam keseluruhan 

struktur. Kajian ini mencadangkan sambungan kunci kendiri untuk menangani isu-isu 

IMC ini. Sambungan yang dicadangkan menggunakan mekanisme pegas yang mudah 

untuk diperbaiki, tidak memerlukan ruang kerja tambahan antara modul, dan sesuai 

untuk sambungan dalaman, luaran dan sudut. Sambungan yang dicadangkan terdiri 

daripada penyesuai atas dan bawah, pegas rata, pegas pin , plat tengah dan plat tengah 

plat tengah dan penyesuai dikimpal bersama; pegas rata adalah bebas pada satu hujung 

untuk bergerak, manakala ia tetap melalui kimpalan di hujung yang lain. Modul 

bersebelahan dalam sambungan dalaman dan luaran disambungkan oleh plat tengah. Plat 

tengah diletakkan di atas penyesuai atas, penyesuai atas dimasukkan melalui ruang 

persegi yang disediakan pada plat tengah. Pin dowel disediakan di setiap sudut plat 

tengah untuk membolehkan penjajaran modul yang disambungkan ke plat tengah semasa 

pemasangan. Jarak antara rasuk lantai dan rasuk siling adalah serupa dengan jumlah 

ketebalan plat tengah dan plat tengah. Penyambungan ini akan memindahkan lokasi 

kegagalan utama dari bahagian struktur penting seperti tiang dan menyediakan 

pengurangan tegasan beban seismik yang mencukupi. Komponen sambungan boleh 

dibuat di luar tapak dan dipasang di tapak. Akhir sekali, ia akan menghasilkan struktur 
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bangunan modular berbilang tingkat yang dikeluarkan sepenuhnya di luar tapak dan 

dipasang sebagai kerangka penuh yang mampu menahan graviti dan beban sisi. Ujian 

eksperimen telah dilakukan untuk mengesahkan dan menganalisis kekuatan dan corak 

kegagalan mulur yang diramalkan bagi sambungan antara modular yang baru 

dicadangkan. Spesimen ujian telah dipilih berdasarkan reka bentuk bangunan kediaman 

modular enam tingkat; modul ketinggian 3m dan lebar 3.6m telah dipertimbangkan. 

Spesimen berbentuk T telah direka untuk mensimulasikan sambungan sudut MSB; 

separuh daripada ketinggian dan lebar asal modul telah digunakan dengan mengandaikan 

bahawa rasukdan titik infleksi tiang berlaka pada titik tengah anggota. Di bawah beban 

monotonik dan kitaran, tiga spesimen berskala penuh telah diuji untuk membandingkan 

kelakuan mekanikal. Sambungan kajian berangka yang meluas telah dijalankan dengan 

menggunakan metodologi yang telah ditetapkan untuk pemodelan unsur terhingga untuk 

menyiasat dan membandingkan sambungan yang dicadangkan dari segi tindak balas 

seismik dan mekanisme gelinciran dengan sambungan antara modular sedia ada yang 

kini digunakan dalam bangunan modular keluli. Model unsur terhingga telah 

dibangunkan dengan menggunakan elemen jaringan yang sesuai. Disebabkan ketepatan 

yang lebih tinggi, semua bahagian telah dimodelkan dengan elemen bata (hexahedral), 

Untuk pemodelan keluli, kelakuan keluli tak linear yang didefinasikan oleh hubungan 

tegasan-tegangan dwi-linear telah dipertimbangkan. Tambahan pula, teknik permukaan-

permukaan digunakan untuk mendefinasikan sifat antara batang bolt, lubang bolt dan 

permukaan plat. Analisis sensitiviti parametrik telah dijalankan untuk menentukan 

parameter dan komponen yang mempengaruhi prestasi dan mekanisme kegagalan 

sambungan yang dicadangkan. Analisis eksperimen dan elemen unsur terhingga 

menunjukkan bahawa sambungan intermodular yang dicadangkan mempunyai kelakuan 

seismik yang lebih baik merentasi julat ciri tindak balas, termasuk kapasiti pembawa 

momen, kapasiti pelesapan tenaga dan kemuluran. Corak kegagalan mulur diperhatikan 

di antara rasuk, tanpa ubah bentuk plastik yang teruk dalam komponen struktur kritikal 

seperti tiang atau sambungan. Penemuan memberikan idea untuk reka bentuk dan 

analisis sambungan antara modular yang memenuhi keperluan bangunan modular 

sepenuhnya. Penyelidikan ini akan membawa kepada peningkatan yang ketara dalam 

tindak balas dinamik dan keselamatan hayat struktur modular yang tertakluk kepada 

beban sisi secara am dan beban seismik khususnya. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Background 

 

Modular construction (MC) is a growing concept in the construction industry that can 

produce built environment buildings at considerably higher standards than traditional 

construction methods (Kim, 2019). Three-dimensional or room-sized volumetric units 

usually are fitted out at a factory and transported to the site as the primary structural parts 

of the building in modular construction. (Lawson, & Ogden, 2014).  

 

Modular construction is ideal in facilities with repeating units, such as residences, 

schools, offices, dorms, hotels, and hospitals. Because of the repeating modules, the 

benefits of modular construction will be enhanced for high-rise applications. (Lawson, 

Ogden, & Bergin, 2012). There has been an increasing trend in modular building when 

the cost of labor and unaffordable housing is a significant concern for post-disaster 

emergency lodging and hospitals. In a recent example, a post-disaster hospital in Wuhan, 

China, was successfully built in ten days using modular steel construction, assisting in 

the fight against the virus COVID-19 (Deng et al., 2020). The Little Hero apartment 

complex in Melbourne, Australia as shown in Figure 1.1(a), Croydon Tower in the 

United Kingdom, the Clement Canopy in Singapore, and B2 Tower Hudson Yards in 

Brooklyn, New York, are among the world's major modular buildings. However, 

modular construction has also been extensively applied for low-rise buildings over the 

last three decades(Gunawardena, 2016; Jellen & Memari, 2013; Thai et al., 2020). 

 

  

(a) (b) 
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(c) 

Figure 1.1: Modular Buildings:(a) Little Hero apartment building. (b) Modular 

hospital building (portakabin) (c) Housing building (portakabin) 

 

A joint is defined as the zone in which two or more members are connected. For structural 

design, the joint includes each of the components needed to model the structural 

behaviour given the applied actions. For example, in a traditional steel structure the 

beam-column joint (BCJ) includes the column web panel and the adjacent connections. 

In modular steel structures, the joints between modules are known as the inter-module 

joints (IMJs). There are three different types of IMJ which can occur in a modular 

structure depending on the location: corner, end, and internal. The IMJs are made up of 

the Inter Modular Connections (IMC) and the adjacent portions of the columns. The BCJ 

includes the beam-to-column connection and the adjacent portion of the column. The 

length of the IMJ depends on the vertical distance between the floor and ceiling 

beam centrelines. Vertical space between the beams provides easy access to the IMCs 

and allows services, e.g., air conditioning ducts, to run between the beams. The size of 

the IMJ varies among different modular structures. Some structures have a small gap 

between the beams, while other structures have a very small gap or no gap. Even with 

zero gap between the beams, however, the distinction between the IMJ and the IMC 

remains valid, and it can be likened to the BCJ which includes the beam-to-column 

connection plus a portion of the steel members (Lacey et al., 2022a). Compared to 

conventional construction, modular constructions are different in detailing requirements, 

construction method, structural performance, and load-transfer mechanism (Chen et al., 

2017; Deng et al., 2018). The design and construction guidelines for modular structures 

are not well-established yet to address the unique structural systems. Hence, available 

building construction guidelines are adopted to design modular construction which lacks 

to provide different designs for these two different structural systems. Consequently, 

inter-modular connections are now built to withstand gravity loads, and it is predicted 

that they will provide an effective load path for horizontal shear and diaphragm forces 

(Sendanayake, 2020). Despite their widespread use, Modular Steel Constructions (MSC) 
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are mostly used in non-seismic locations. This is partly due to a lack of research on the 

seismic performance of MSC connections, which is critical to structural stability and 

desired lateral resistance (Deng et al., 2018). As a result, modular buildings cannot be 

designed, erected, or studied in the same way traditional buildings can. An investigation 

into the research sector focuses on the significance of their dynamic performance. 

Therefore, designers and construction engineers are hesitant to allow a module assembly 

to stand alone. On the other hand, most modular structures are made up of lateral load 

resisting systems such as in-situ reinforced concrete / monolithic steel cores podiums 

bracing systems (Park & Ock, 2016; Lawson, 2010). 

 

In conventional steel structures, the structural members have a high degree of 

connectivity. In modular construction, the modules are connected at their corners only 

by inter-modular connections; these connections are the most vulnerable points of 

failure. In traditional steel frame structures, a continuous single column section continues 

from the base of the first story to the rooftop. These columns are vertically connected 

using several methods in traditional practices, such as splices, base and cap plates, and 

welding; by contrast, in Modular Steel Buildings, the entire structure has many sub-

structures, and each structural unit has its frame system. In the connecting region, 

numerous small beams and columns meet together Figure 1.2(a), and this arrangement 

poses new challenges to structural design (Chen et al., 2017). In Figure 1.2a, the corner 

joint has two columns and four beams, the exterior joints have four columns and eight 

beams, and the interior joint has eight columns and 16 beams. Each modular unit member 

must be properly connected to ensure the transfer of lateral loads, axial forces, and 

bending moments generated from external loads. A connecting plate and a high-strength 

bolt make the intermodular connections between modules. The provision of an access 

hole for the erection of the bolt results in cross-sectional loss of the column, as shown in 

Figure 1.2(b). which is undesirable for the "strong column-weak beam" seismic design 

concept.  Presently, bolted or welded end plate connections that are in practice as 

intermodular connections are pinned connections that do not meet the structural 

requirements of modular steel structures subjected to seismic effect. In recent years, 

research to avoid access holes in columns has been done. Modules connected to one 

another simply by beams and connections; this method resulted in sections of 

disconnected columns, which proved to be undesirable (a gap between higher and lower 

columns) when dynamic lateral stresses were applied.(Chen, Liu, Yu, et al., 2017; Dai et 

al., 2019). It was mention in these studies that the separation between column caused 

pinching effect which resulted in loss of stiffnes of the joints.  A further disadvantage of 

these inter-modular connections is that they offer the structure with insufficient and 

restricted energy-dissipating capacity. The incapability to deform in a ductile way results 

in adverse failure mechanisms, which might compromise the integrity of the entire 

structure. ( Deng et al., 2018; Sendanayake, 2020). 
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(a) 

 

 

(b) 

Figure 1.2: Connections in modular steel buildings (a) Position of Inter Modular 

Connection (b) Details of connection for current IMC  

(Quale, 2017) 

 

In a steel frame, beam-column joints are vital to ultimate bearing capacity, normal 

service capacity, and structural collapse. In traditional steel frame structures, some or all 

beam-column joints are manually welded on-site, deviating from the design. In the 1994 

Northridge Earthquake in the U.S., beam-column joints joined by welding indicated 

damage or brittle fracture, and some structures collapsed as a result. It wastes resources 

and generates economic losses, affecting building restoration and urban functions. 

Through reasonable building structure design, fully assembled steel beam-column joints 

can reduce or eliminate on-site welding (Li & Huang, 2022). 

 

These probabilities demand research into novel types of connections that are more 

suitable for modular steel buildings than conventional connections. Consequently, this 

research is intended to propose connection for steel modular buildings that do not need 

access holes in columns, which can fix efficiently between modules and can 

provide adequate seismic performance by mitigating the damaging consequences of 
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column failure and shifting the key points of failure from the columns to the connecting 

beams (strong column-weak beam joint).  

 

1.2 Problem Statement 

 

In earthquake-prone areas, modular steel structures are extremely vulnerable. They are 

questionable in terms of habitability. Their weakness is heightened by weak intermodular 

connections that cannot support low-to-high-rise structures without in-situ external 

lateral load resisting systems, deprecating the benefits of modular construction. Off-site 

manufactured with cladding interior and exterior finishes, the three-dimensional 

volumetric modules are inherently robust and rigid as required for handling, transport 

and erection without any damage caused during that process. The dynamic lateral load 

(such as from earthquakes and wind) resisting performance of the assembled modular 

building relies on the inter-modular connecting system. The inter-modular connections, 

which usually consist of plates, welds, and bolts, are currently in use. These connections 

are not specifically designed for modular frames and are unable to undergo ductile 

deformations and energy dissipation. The modules are bolted through a cross-shaped 

connection plate. However, these types of joints are difficult to be used for interior joints, 

Figure. 1.2(a) because of no operation spaces for middle columns in between modules. 

An access hole is provided for the erection of the bolts, which causes cross-sectional loss 

of the column and is unfavorable for the “strong column-weak beam” seismic design 

concept. 

 

Due to a lack of information about their dynamic response, the connections are not 

designed to resist wind and earthquake loads. Dynamic (time-dependent) earthquake 

stresses affect a structure based on earthquake-induced ground vibrations and its natural 

frequency, stiffness, and mass (Beards, 1996). Inter-modular connections are a modular 

frame's weakest point. Unlike conventional monolithic steel structures, modular 

components are only connected at their corners horizontally and vertically and are 

discontinuous everywhere  (Annan et al., 2009; Ogden et al., 2012; Lawson et al., 2008). 

While individual modules have more rigidity and strength in their box-like frames for 

transport and assembly, the somewhat weaker inter-modular connections determine the 

system's integrity and robustness (Yu, 2016). Due to module discontinuity, the 

connections allow units to spin and deform independently, causing significant pressures 

on vertical and horizontal connections and creating inter-storey drifts. During 

earthquakes, resonance effects amplify this. In a modular system without shear walls or 

cores, failure of these connections will cause partial or entire module collapse. A fully 

modular system (without shear walls or cores) must have robust module connections to 

sustain structural stability during an earthquake with substantial time-varying loads 

(Sendanayake, 2020). 

 

Current building codes Eurocode3 (BS EN 1993-1-8, 2003), American National 

Standard (ANSI/AISC 341-10, 2011a) and Australian Standard (AS 1170.4—2007) do 

not provide criteria for an assessment of the design and seismic capacity of inter-modular 

connections. In recent years research has been conducted to avoid access holes in 

columns, modules connected through beams and connections only; this approach made 

unconnected columns regions, which proved as problematic (separation between upper 
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and lower columns) under the application of dynamic lateral loads. Therefore, the 

behavior and reliability of intermodular connections must be investigated and predicted, 

and a specialized connection must be developed that has the strength and performance 

needed to generate ductile failure mechanisms and mitigate seismic loads in modular 

steel structures. 

 

These considerations necessitate research into new types of connections that are better 

suited to modular structural systems than traditional connections. As a result, the focus 

of this research is to propose a new self-locking connection that can be installed between 

modules without requiring an access hole or additional space between modules, as well 

as to improve the seismic performance of steel modular buildings by reducing adverse 

effects of column failure and shifting the main failure locations (if any) away from the 

columns to the beams. The performance requirements of inter-modular connections 

within a lateral load resisting system that is not braced by shear walls will be investigated 

in this study. 

 

1.3 Aims and objectives 

 

The aim of this research is to propose a new self-locking connection that can be installed 

between modules without requiring an access hole or requirement additional space 

between modules, as well as with improved seismic performance for the construction of 

steel modular buildings in seismic-prone areas. In this regard, the following objectives 

are set out. 

 

1. To develop, design and fabrication of a new self-locking inter-modular 

connection that can be jointed between modules with limited access restrictions. 

2. To conduct experiments on new self-locking inter modular connection and 

characterization of connection in terms of strength, stiffness, ductility and 

energy dissipation capacity under monotonic and cyclic loading.   

3. To develop a detailed 3-D finite element analysis of new self-locking 

connection and to conduct validations, parametric studies and characterization 

of finite element models under monotonic and cyclic loading in terms of 

strength, stiffness, ductility and energy dissipation capacity. 

 

1.4 Scope of the study 

 

This study proposes a new self-locking inter-modular connection to be used in 

prefabricated modular steel structures. The contributions of the present study include 

experimental and numerical studies by which the proposed connection is optimized, and 

its performance and failure mechanisms are investigated. In line with the 

recommendations of ATC-24 (Applied Technology Council, 1992) and cost 

consideration of this project, this study is conducted by experimental testing of 3 

specimens. The specimen ES1 (without stiffeners) was subjected to monotonic loading. 
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The value of yield force 𝑄𝑦  was measured to conduct a cyclic loading on identical model 

using FEA. While due to the seismic point of view, the specimen ES2 (with stiffeners) 

was tested under monotonic load to know the yield force 𝑄𝑦 . In third specimen ES3 the 

cyclic loading was applied to the ES3 utilizing the yield force 𝑄𝑦   determined from ES2 

specimen. Furthermore, the validation of FEA with experimental specimens revealed the 

satisfactory results which made a confidence to conduct extensive parametric study by 

FEA, while 3D finite element simulation techniques were used in investigating the effect 

of influencing parameters on the connection performances through a parametric study. 

The experimental tests are conducted on a symmetrical portion of the external joint, 

which may also reflect internal and external connections behavior. The results and 

conclusions presented in the research will only cover corner-supported type modules 

utilizing hollow sections as columns and beams. 

 

The performance indicator data obtained from the parametric sensitivity analysis can be 

used as a potential guideline for designers as applicable to the inter-modular connection 

and other heights and forms of modular frames of the same inter-modular connection can 

be evaluated using the finite element modeling techniques used in this study. 

 

1.5 Significance of the study 

 

There is a substantial knowledge gap in the understanding of Modular Steel Building's 

structural behavior, and many of the buildings are therefore essentially over-designed to 

ensure their safety and structural stability. This knowledge gap becomes more significant 

in medium to high-rise buildings. When subject to lateral forces, the connections that 

transfer these lateral loads are critical to the safety and stability of the system. The 

understanding of behavior against both wind and earthquake forces is essential in this 

respect. This study explores the way of reducing the adverse effects of critical response 

parameters of dynamically loaded modular buildings by strengthening the inter-modular 

connections to exhibit an expected strength and ductile response and ensuring that failure 

mechanisms move away from the column or joint panel to the ceiling beam and avoid 

excessive damaging of inter-modular structure. Furthermore, the concept of the self-

locking mechanism of the proposed connection eliminates the access requirement in 

between modules which will result in the use of hollow sections as columns without 

reducing their area.  

  

The outcomes of this research will also include the development and implementation of 

novel inter-modular connections that will be able to provide modular building systems 

with the required ductile energy dissipation mechanisms. An enhancement to the limited 

literature on advanced modular connection systems would be new insights from the 

experimental research evaluating the real behavior of the proposed connectors. 

 

1.6 Hypothesis of the study 
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Based on the literature review, prior examination, and preliminary analysis the 

hypothesis of this study was developed that presently intermodular connection are 

provided with an access hole in the column which causes significantly reduction in cross 

sectional area of column, and that separation between columns produces which affects 

the performance of modular joint. A self-locking mechanism by utilizing mechanical 

spring in intermodular joint can be used to address the issues associated with 

unconnected region in column-beam joint. This new type of mechanism will provide a 

better seismic performance.  

 

1.7 Thesis Outline 

 

This thesis is divided into five chapters, each of which is summarized as follows: 

 

Chapter 1: This chapter covers the background of the study, the research problem 

statement, the research aims as well as its objectives, the scope and limits of research, 

and the significance of the research. 

 

Chapter 2: This chapter includes the literature review of existing intermodular 

connections. Similarly, this chapter highlights the geometric designs of existing modular 

connection and their capabilities, structural performances, and current design practices 

for modular steel construction.  

 

Chapter 3: This chapter explains the research methodology adopted in this research. The 

research methodology consists of preliminary finite element analysis, an experimental 

program, and the parametric study through numerical analysis. 

 

Chapter 4: This chapter discusses the results of experimental and numerical studies that 

were used to assess the proposed connection's performance in terms of response 

characteristics, including ultimate moment and rotation capabilities, ductility, stiffness 

degradation, and energy dissipation.  

 

Chapter 5: This chapter presents a summary of the research's major findings, 

contributions, and conclusions. Future work recommendations are also presented. 
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