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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 

ZIRCONIUM OXIDE NANOPARTICLE-REINFORCED ALUMINIUM 

ALLOY (AA7075) MATRIX COMPOSITES VIA HOT EXTRUSION AND 

EQUAL CHANNEL ANGULAR PRESSING 

By 

Al RUBAIAWI HUDA MOHAMMED SABBAR 

June 2022 

Chairman :   Associate Professor Zulkiflle bin Leman, PhD 

Faculty :   Engineering  

Direct solid-state process such as hot extrusion and equal channel angular pressing 

(ECAP) are alternative and efficient solid-state processes for recycling aluminium alloy 

AA7075 scrap. These processes utilize less energy and are eco-friendly. Ceramic 

particles such as zirconium oxide (ZrO2) have favourable mechanical and electrical 

behaviours, good wear resistance and a wide bandgap. Therefore, ZrO2 is suggested as 

reinforcement in the production of aluminium alloy AA7075 matrix composites 
(AMCs). Aluminium alloy AA7075 recycling have limitations on achieving good 

mechanical and physical properties and the products of the direct recycling process are 

still struggling with parameters optimization. Moreover, the combination of hot 

extrusion and ECAP metal forming has gained acceptability, but there are extreme 

challenges through the quality issues and enhanced composite alloy with a cost-effective. 

This study investigated and optimized through the response surface methodology (RSM) 

the effect of the volume fraction (VF), preheating temperature (T), and preheating time 

(t) on the mechanical and physical properties of the AA7075-ZrO2 composite produced

by hot extrusion. Additionally, the effect of heat treatment (T6) on the optimal sample

was investigated. In addition, examine the elemental components the ECAP process.

Moreover, developed a machine learning model based on extra trees (ET) to predict the

properties and optimise the parameters. Each parameter was evaluated at varying
magnitudes, i.e., 450, 500, and 550 °C for T; 1, 2, and 3 h for t, and 1, 3, and 5 % for

VF. The effects of the process variables on the responses were examined using the

factorial design with centre point analysis. A total of 28 experimental runs were

performed through the hot extrusion process. The optimum sample was heat treated to

investigate the effect on ultimate tensile strength (UTS), compressive test,

microhardness, and density before and after the heat treatment condition as well as after

ECAP. The recorded datasets were used for training and testing of Artificial Intelligence

(AI) models were executed using machine learning methods. The AI models applied in

this study was Extra Trees (ET). T and VF were crucial for attaining the maximum tensile

strength 490 MPa, was attained at 550 °C, 1.58 h, and 1 vol% ZrO2 with a microhardness
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95.2 HV, compressive strength 545 MPa and density of 2.89 g/cm3. Also, the hot 

extrusion and ECAP followed by heat treatment strengthened the microhardness by 64%, 

compressive strength by 17% and density by 3%. The results exhibited that the 

preheating temperature and volume fraction are the most important factor that was 

needed to be controlled to obtain the optimum UTS and microhardness. Preheating time 
has a big effect on density. The accuracy of mechanical and physical properties (ultimate 

tensile strength (UTS), microhardness and density) prediction of AI models along with 

RSM model. The obtained results revealed that the extra trees (ET) model showed 

outstanding performance amongst the model for training, testing, and overall datasets 

with coefficient of correlation (R2), mean absolute error (MAE) and mean squared error 

(MSE) value of 97.6, 10.8 and 2.32, respectively. The impact of hot extrusion parameters 

and ECAP followed by heat treatment on the average grain sizes and microstructural 

analysis of the recycled samples were equally investigated and discussed in detail. Thus, 

it concluded that the ZrO2, ECAP and heat treatment have a significant effect on recycled 

AA7075 chips. Ideationally, the ET machine learning model can minimize the 

experimental complexities, time, and expense in the manufacture 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

ZARAH NANO ZIRKONIUM OKSIDA DIPERKUKUH DENGAN ALOI 

ALUMINIUM (AA7075) KOMPOSIT MATRIKS MELALUI 

PENYEMPERITAN PANAS DAN SALURAN SAMA PENEKANAN 

SUDUT 

Oleh 

Al RUBAIAWI HUDA MOHAMMED SABBAR 

Jun 2022 

Pengerusi :   Profesor Madya Zulkiflle bin Leman, PhD 

Fakulti :   Kejuruteraan  

Proses keadaan pepejal langsung seperti penyemperitan panas dan penekan sudut saluran 

sama (ECAP) ialah proses dimana keadaan pepejal alternatif dan cekap untuk mengitar 

semula skrap aloi aluminium AA7075. Proses ini menggunakan tenaga yang kurang dan 

mesra alam. Zarah seramik seperti zirkonium oksida (ZrO2) mempunyai kelakuan 

mekanikal dan elektrik yang menggalakkan, rintangan haus yang baik dan jurang jalur 

yang luas. Oleh itu, ZrO2 dicadangkan sebagai pengukuhan dalam pengeluaran aloi 
aluminium komposit matriks AA7075 (AMC). Kitar semula aloi aluminium AA7075 

mempunyai had untuk mencapai sifat mekanikal dan fizikal yang baik dan produk proses 

kitar semula langsung masih bergelut dengan pengoptimuman parameter. Selain itu, 

gabungan penyemperitan panas dan pembentukan logam ECAP telah mendapat 

penerimaan, tetapi terdapat cabaran yang melampau melalui isu kualiti dan aloi komposit 

yang dipertingkatkan dengan kos yang efektif. Kajian ini menyiasat dan 

mengoptimumkan melalui metodologi permukaan tindak balas (RSM) kesan pecahan 

isipadu (VF), suhu prapanas (T), dan masa prapemanasan (t) ke atas sifat mekanikal dan 

fizikal komposit AA7075-ZrO2 yang dihasilkan oleh penyemperitan panas. Selain itu, 

kesan rawatan haba (T6) ke atas sampel optimum telah disiasat. Di samping itu, periksa 

komponen unsur proses ECAP. Selain itu, membangunkan model pembelajaran mesin 

berdasarkan pepohon tambahan (ET) untuk meramalkan sifat dan mengoptimumkan 
parameter. Setiap parameter dinilai pada magnitud yang berbeza-beza, iaitu, 450, 500, 

dan 550 °C untuk T; 1, 2, dan 3 jam untuk t, dan 1, 3, dan 5 % untuk VF. Kesan 

pembolehubah proses ke atas tindak balas telah diperiksa menggunakan reka bentuk 

faktorial dengan menganalisis titik pusat. Sebanyak 28 eksperimen telah dilakukan 

melalui proses penyemperitan panas. Sampel optimum telah dirawat haba untuk 

menyiasat kesan ke atas kekuatan tegangan (UTS), ujian mampatan, kekerasan mikro, 

dan ketumpatan sebelum dan selepas keadaan rawatan haba serta selepas ECAP. Data 

yang direkodkan digunakan untuk latihan dan ujian model ‘’Artificial Intelligence’’ (AI) 

telah dilaksanakan menggunakan kaedah pembelajaran mesin. Model AI yang 

digunakan dalam kajian ini ialah Pokok Tambahan (ET). T dan VF adalah penting untuk 
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mencapai kekuatan tegangan maksimum 490 MPa, dicapai pada 550 °C, 1.58 jam, dan 

1 vol% ZrO2 dengan kekerasan mikro 95.2 HV, kekuatan mampatan 545 MPa dan 

ketumpatan 2.89 g/cm3. Selain itu, penyemperitan panas dan ECAP diikuti dengan 

rawatan haba menguatkan kekerasan mikro sebanyak 64%, kekuatan mampatan 

sebanyak 17% dan ketumpatan sebanyak 3%. Keputusan menunjukkan bahawa suhu 
prapemanasan dan pecahan isipadu adalah faktor terpenting yang perlu dikawal untuk 

mendapatkan UTS dan kekerasan mikro yang optimum. Masa prapemanasan 

mempunyai kesan yang besar pada ketumpatan. Ketepatan ramalan sifat mekanikal dan 

fizikal (kekuatan tegangan muktamad (UTS), kekerasan mikro dan ketumpatan) model 

AI bersama-sama model RSM. Keputusan yang diperolehi mendedahkan bahawa model 

pokok tambahan (ET) menunjukkan prestasi cemerlang di kalangan model untuk latihan, 

ujian, dan set data keseluruhan dengan nilai pekali korelasi (R2), ralat mutlak min (MAE) 

dan nilai ralat kuasa dua (MSE) sebanyak 97.6 , 10.8 dan 2.32, masing-masing. Kesan 

parameter penyemperitan panas dan ECAP diikuti oleh rawatan haba ke atas saiz butiran 

purata dan analisis mikrostruktur bagi sampel kitar semula telah disiasat dan 

dibincangkan secara terperinci. Oleh itu, ia membuat kesimpulan bahawa ZrO2, ECAP 

dan rawatan haba mempunyai kesan yang ketara ke atas cip AA7075 kitar semula. Secara 
idealnya, model pembelajaran mesin ET boleh meminimumkan kerumitan eksperimen, 

masa dan perbelanjaan dalam pembuatan. 
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CHAPTER 1 

1 INTRODUCTION 

 Research Background 

Recently, the potentials of using composite materials have gained wider acceptability 

due to enhanced mechanical properties. The improved properties are obtained by 

combining different materials, such as metallic alloys and ceramics. The ease of making 

composites even with oxides, borides, nitrides and carbon nanotubes is equally an 

advantage [1]. The composite materials are heterogeneous at microscale but 

homogeneous at macro-scale. Some composite materials exist in nature while others are 
fabricated. Take the instances of wood, teeth, bones etc. as natural forms of composite. 

On the fabricated composites, there are 3 types of composites material available when 

classified based on matrix material. These are; Polymer Matrix Composites (PMC), 

Metal Matrix Composites (MMC) and Ceramic Matrix Composites (CMC) [2]. 

Parameters affecting the properties of composite include the manufacturing techniques, 

this entails the processing and finishing process. The other factors are the types of 

reinforcements which provide various distinctive profiles even with the adoption of the 

same composition and amounts of the components are used [3]. Like other types of 

MMCs, properties of Aluminium Matrix Composites (AMCs) are associated with the 

processing technique and its corresponding parameters. Depending on the type of 

reinforcement used, different processing techniques can also be used. Aluminium Alloy 
AA7075 is considered a high strength alloy because its yield strength is above 500 MPa 

in the optimal aging conditions [4]. 

With excellent mechanical properties it is justifiable that alloy for structural is used 

applications and also for the development of Metal Matrix Composites (MMCs). The 

AA7075 is the most common in the 7xxx series. It has one of the highest strength, good 

corrosion resistance, good electrical and thermal conductivity among the aluminium 

alloy family [5]. The fabrication of composites from the aluminium is through the direct 

recycling by means of hot extrusion. In contrast to the conventional recycling process 

where melting of scraps is mandatory. This method has been applied in the industry, 

owing to the potential of saving energy, hot extrusion is an innovative process where 

low energy and less labour is required. This method delivered improved mechanical 

properties but ECAP is at present, the most developed severe plastic deformation 

technique producing bulk, porosity-free ultrafine grained materials [6]. 

 Problem Statement 

Pure AA7075 aluminium recycling metals and alloys have limitations on achieving good 

mechanical and physical properties such as strength, corrosion resistance, wear 
resistance, toughness’s, and high-temperature performance. Nowadays, researchers from 

all over the world are focusing on the improvement of light metal alloys from monolithic 
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to reinforced composite material. Recent efforts were targeted at converting as much 

waste to useful materials. The current work shows significant support in healthy 

environment for humans because it reduces the emission of carbon dioxide, which is 

increasing globally. However, once the manufacturing industries minimized the effect 

of global warming, then the direct recycling of aluminium alloys would be in the right 
way [7]. The general idea behind the introducing the recycling aluminium was to reduce 

the greenhouse gases. In addition, recycling aluminium scrap support in a great extent to 

the reduction of energy consumption and reduce CO2 emissions during manufacturing 

as against the aluminium mining route [6]. The results of the analysis indicate that hot 

extrusion process obviously gives the significant environmental benefits compared to 

conventional re-melting technique where the Global Warming Potential (GWP) is 

reduced up to 69.2%. In order to produce a recycled product for engineering applications 

with a good mechanical property, Zirconium oxide (ZrO2) nanoparticles are used as 

reinforcement in AA7075 based chips. ZrO2 is considered as one of the promising 

reinforcing materials in recycling metal matrix composites [6].  

A hot extrusion preceding the ECAP method was used to reduce specimens size [8]. This 

made the investigation on consolidation of reinforced composite particles that directly 
affect the metal physical and mechanical properties worthwhile [9]. The combination of 

hot extrusion and ECAP metal forming has gained acceptability, but there are extreme 

challenges to produce the composites. There are insufficient studies of optimum 

parameters to obtain the best mechanical properties in these composites [10]. The design 

of experimented (DOE) technique applied to optimise the parameters by a few authors 

which shows a lack of a systematic approach to process parameters. Moreover, the 

machine learning is more robust and accurate than DOE [11]. Products of the direct 

recycling process are still struggling with quality issues. Energy conservation is at the 

fore front of environmentalists, a study of this nature supports the low energy 

consumption and reduces financial burden for practical applications in industry as well 

as in transport industry. The conventional direct recycling is also faced with the 
challenge of optimum use of raw metal. The appropriate management of solid waste are 

equally gaining the attention of city managers as landfills are on increase. The relevance 

of this study in offering suggestions to all aforementioned challenges can never be over 

emphasized. 

 Aim and Objectives 

The aim of this study was to convert the waste aluminium alloy AA7075 into useful 

products, by incorporating ZrO2 nanoparticles as promising reinforcement in the 

AA7075 composite produced by solid-state recycling with enhanced mechanical and 

physical properties. The specific objectives were: 

 

1. To determine tensile strength, compressive strength, microhardness and density 

of the AA7075-ZrO2 nanocomposite after producing it by using a combination 

of severe plastic deformation process cold press and hot extrusion. 
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2. To optimize the parameters that affect on the physical and mechanical 

properties of the AA7075-ZrO2 nanocomposites by full factorial method 

followed by response surface methodology (RSM). 

3. To assess the maximum mechanical and physical behaviour of the developed 

chip based nanocomposite after the heat treatment (T6) condition as well as 

after ECAP.  

4. To examine the components of the recycled AA7075-ZrO2 consolidated via hot 

extrusion and ECAP principle using SEM, FESEM, XRD, and AFM. 

5. To develop a machine learning model based on extra trees (ET) to predict the 

properties of AA7075-ZrO2. 

 

 

 Scope of Research 

The scopes of this research cover the following limitation: 

 

1. Recycling aluminium alloy AA7075 chips were produced by a computer 

numerical control (CNC) machining process.  

2. The experiments were carried out by a cold press machine compacted the billet 

with a maximum of 50-ton capacity followed by a hot extrusion. 

3. The main investigated parameters were preheating time (1 h, 2 h and 3h) 

preheating temperature (450°C, 500°C and 550°C) and the reinforced particles 

of (ZrO2) contents.  

4. Conducting experimental investigations and evaluate the following responses 

by hot extrusion process.  

5. Tensile strength and compressive strength test using a universal testing machine 

(The limitation of ECAPed samples size restricts the experiment to the 

determination of compressive strength only). 

6. Microhardness using the Vickers hardness tests and density test. 

7. Optical Characterization and fracture surface using scanning electron 

microscope (SEM) and field emission scanning electron microscopy (FE-

SEM), atomic force microscope analysis (AFM) and X-Ray diffraction (XRD). 

8. Modelling and optimization of the extrusion quality characteristics using (3 

factors x 3 levels) face centre, CCD Response Surface of RSM optimization 

method. 

9. Predicting and optimization of the extrusion quality characteristics using 

machine learning model based on extra trees (ET). 

 

 

 Significance of Study 

The research intends to propose a new approach to improve the performance of 

aluminium composites made of chips with the addition of ZrO2 nanoparticles. The 

addition of reinforced particulates is expected to improve the chip-based composite's 
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mechanical and physical properties compared to composite with 100% pure AA7075 

chips. This research is also aimed at further investigations on aluminium chips reinforced 

by ZrO2 processed through the solid-state recycling technique performed without the 

melting phase. Therefore, hot extrusion is introduced as the solid-state recycling method 

in this research. The significance of this research is to perform a comprehensive 
evaluation of the hot extrusion potential indirect aluminium chips recycling by 

incorporating the RSM method for process optimization.  

In addition, this research investigates the quality of preparing scraps in machining the 

depth of cut, cleaning, drying, mixing composites, and hot extrusion influences such as 

preheating temperature and preheating time. However, installing the heating supply to 

the die avoids materials fatigue and broken tools. Furthermore, the study aims to access 

the maximum behaviour of the developed chip-based nanocomposite before and after 

the heat treatment condition as well as after ECAP to be used in the existing automotive 

components. The study also includes a novel simulation by developed a machine 

learning model based on extra trees (ET) to predict the mechanical properties of 

AA7075-ZrO2 and optimize this model performance. 

 Thesis Organization  

The thesis has been structured into five chapters: 

 

Chapter 1 covers the basic research background and problems that necessitate the aim 
and objectives. In addition, this chapter also covers the objectives, scope and significance 

of the study.  

Chapter 2 deals with a review of the major topics related to this thesis in a logical 

manner. This includes the previous work on modifications in properties and formation 

of aluminium metal matrix composite (AMMCs) characterizations and recycling 

techniques. Further work on the literature review includes previous studies on principles 

of severe plastic deformation (SPD), fundamentals of hot extrusion practice equal 

channel angular pressing (ECAP), post heat treatment and the effects of zirconium oxide 

(ZrO2) reinforced aluminium matrix composite. 

Chapter 3 thesis covers the materials, process and methodology used in the thesis. 

Chapter 4 explained the results and discusses the findings. 

Chapter 5 presents the conclusions of this study and the overall summary of the findings 

and recommendations for future works. 
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