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Ultrashort pulse fiber lasers have drawn considerable research interest owing to their 

capabilities in providing research solutions for numerous advanced academic and 

industrial applications. The passive mode-locking method, using real saturable absorbers 

(SAs), has the prospect of constructing a simple, compact, robust and stable ultrashort 

pulse source. Until now, various materials have been successfully demonstrated for the 

fabrication of ultrashort pulse fiber lasers. However, the properties of these materials 

strictly depend on their intrinsic properties which require fine control and a deeper 

understanding of material properties. Therefore, this work demonstrates the fabrication 

of metal-organic framework (MOF)-based SA for ultrashort pulse generation. MOFs 

have developed an important class of crystalline, porous and hybrid materials with vast 

possible combinations, synergistic effects and tunable characteristics. 

  

This work involves the fabrication of SA using nickle-1,3,5 benzene tricarboxylic acid 

(Ni-H3BTC) MOF by varying metal to ligand ratio. Five different concentration samples 

were synthesized by increasing the metal ratio from 0.5 to 4.0 with respect to the fixed 

ligand ratio of 1.0. The prepared samples were characterized for structural, optical, 

electrical, dielectric and nonlinear saturable absorption properties. The properties of the 

prepared samples varied proportionally with increasing metal-to-ligand ratio. The 

prepared samples were further explored for ultrashort pulse generation. The composite 

of prepared materials and polydimethylsiloxane polymer was prepared and spin-coated 

on tapered fiber. The tapered fiber with adiabatic (AD) and non-adiabatic (nAD) 

characteristics were fabricated by varying the up/down taper length while maintaining 

the waist diameter and length. Among different concentration samples only Sample 2, 

having metal-to-ligand ratio of 2:1, established the desired modulation depth (MD) of 

around 5%, which was then inserted in erbium-doped and thulium-doped fiber lasers. At 

first, a ring cavity erbium-doped fiber laser (EDFL) was designed, having net group 

velocity dispersion (GVD) in anomalous dispersion regime. The GVD was then shifted 

to near zero dispersion regime by increasing the erbium-doped fiber length. A 

conventional soliton mode-locked pulse with Kelly sidebands was observed with 8 m 
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length of erbium-doped fiber for both SAs, prepared through composite deposition on 

AD and nAD tapered fiber. The mode-locked fiber laser (MLFL) in the EDFL cavity 

demonstrated stable characteristics observed during power development with no 

indication of multi-pulsing or instabilities. The oscilloscope traces and radio frequency 

(RF) spectrum were observed at a fundamental frequency of 9.9 MHz for both SAs. 

Moreover, ultrashort pulses with pulse duration of 810 fs and 845 fs were obtained with 

nAD and AD SA, respectively. When the length of erbium-doped fiber increased to 10 

m, noise-like pulse was observed having autocorrelation trace of narrow spike riding on 

the broad pedestal operating at a fundamental repetition rate of 9 MHz. The pedestal 

pulse width of 13.9 ps and 26.7 ps were obtained with nAD and AD SA, respectively. 

The corresponding pulse width of spike was 164 fs and 148 fs, respectively. Likewise, 

the cavity with both conventional soliton and noise-like pulse demonstrated good 

operational stability for two hours. The AD SA performed better with high pulse energy, 

average output power, and RF characteristics, whereas the nAD SA possessed the 

smallest pulse width, higher spectral bandwidth and higher MD. 

 

A ring cavity thulium-doped fiber laser (TDFL) was constructed with 3 m length of 

thulium-doped fiber only. All the components used for the proposed TDFL cavity were 

consisted of fibers having an anomalous dispersion. Therefore, the variation in the length 

of thulium doped fiber would not change the operating regime of MLFL. The optical 

spectrum with 3-dB bandwidth of 4.47 nm centered at 1933.25 nm was obtained with 

nAD SA. Whereas for the AD SA, the 3-dB bandwidth and center wavelength of 4.21 

nm and 1935.26 nm were observed, respectively. Moreover, ultrashort pulse, having 

pulse duration of 1.19 ps and 985 fs were obtained with nAD and AD SA, respectively. 

The power development spectra demonstrated a stable performance of MLFL, operating 

at fundamental frequency of 14.7 MHz without any pulse breaking or instabilities. The 

proposed passive MLFL in TDFL cavity demonstrated ultrashort pulse with signal-to-

noise ratio greater than 50 dB and remained stable for 2 hours stability measurement.  

 

Generally, this work involves optimization of Ni-H3BTC MOF for ultrashort pulse 

generation; conventional soliton and noise-like mode-locked pulses. These findings 

suggest the viability of Ni-H3BTC-MOF as a new light-absorbing material for ultrashort 

pulse generations that might assist as a footing for exploring different types of available 

MOFs and their properties for the purpose. This work infers that MOF-based saturable 

absorbers can be an alternative material for generating ultrashort pulses.           
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NIKEL 

 

Oleh 

 

AMIR MURAD 

 

Julai 2022 

 

Pengerusi : Profesor Mohd Adzir bin Mahdi, PhD  

Fakulti  : Kejuruteraan 

 

Laser gentian denyut ultra-pendek telah menarik minat penyelidikan yang besar kerana 

keupayaan mereka dalam menyediakan penyelesaian penyelidikan untuk pelbagai 

aplikasi akademik dan perindustrian termaju. Kaedah penguncian mod pasif, 

menggunakan penyerap boleh tepu (SA) sebenar, mempunyai prospek untuk membina 

sumber denyut ultra-pendek yang mudah, padat, teguh dan stabil. Sehingga kini, pelbagai 

bahan telah berjaya ditunjukkan untuk pembuatan laser gentian denyut ultra-pendek. 

Walau bagaimanapun, sifat bahan ini bergantung sepenuhnya pada sifat intrinsiknya 

yang memerlukan kawalan halus dan pemahaman yang lebih mendalam tentang sifat 

bahan. Oleh itu, kerja ini menunjukkan pemfabrikatan SA berasaskan kerangka logam-

organik (MOF) untuk penjanaan denyut ultra-pendek. MOF telah membangunkan kelas 

penting bahan kristal, berliang dan hibrid dengan kemungkinan gabungan yang luas, 

kesan sinergistik dan ciri boleh tala. 

 

Kerja ini melibatkan pemfabrikatan SA menggunakan asid trikarboksilik nikel-1,3,5 

benzena (Ni-H3BTC) MOF dengan mengubah nisbah logam kepada ligan. Lima sampel 

berkepekatan yang berbeza telah disintesis dengan meningkatkan nisbah logam daripada 

0.5 kepada 4.0 berkenaan dengan nisbah ligan tetap 1.0. Sampel yang disediakan telah 

dicirikan untuk ciri-ciri struktur, optik, elektrik, dielektrik dan penyerapan boleh tepu tak 

linear. Sifat-sifat sampel yang telah disediakan berubah secara berkadar dengan 

peningkatan nisbah logam kepada ligan. Sampel yang disediakan telah diterokai 

selanjutnya untuk penjanaan denyut ultra-pendek. Komposit bahan dan polimer 

polidimetilsiloksana telah disediakan dan disalut secara putaran pada gentian tirus. 

Gentian tirus dengan ciri adiabatik (AD) dan tidak adiabatik (nAD) telah difabrikasi 

dengan mengubah tirus panjang atas/bawah manakala diameter dan panjang pinggang 

dikekalkan. Di antara sampel kepekatan yang berbeza, hanya Sampel 2, yang mempunyai 

nisbah logam kepada ligan 2:1, mempunyai kedalaman modulasi (MD) sekitar 5%, yang 

kemudiannya dimasukkan ke dalam laser gentian terdop erbium dan terdop tulium. Pada 

mulanya, laser gentian terdop erbium (EDFL) rongga cincin telah direka bentuk, 
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mempunyai penyebaran halaju kumpulan bersih (GVD) dalam rejim penyebaran 

beranomali. GVD kemudiannya dialihkan kepada rejim penyebaran hampir sifar dengan 

meningkatkan panjang gentian terdop erbium. Denyut terkunci mod soliton 

konvensional dengan jalur sisi Kelly telah diperhatikan dengan gentian terdop erbium 

sepanjang 8 m untuk kedua-dua SA yang telah disediakan melalui pemendapan komposit 

pada gentian tirus AD dan nAD. Laser gentian terkunci mod (MLFL) dalam rongga 

EDFL menunjukkan ciri-ciri stabil yang diperhatikan semasa pembangunan kuasa tanpa 

tanda-tanda berbilang denyut atau ketidakstabilan. Surih osiloskop dan spektrum 

frekuensi radio (RF) diperhatikan pada frekuensi asas 9.9 MHz untuk kedua-dua SA. 

Tambahan lagi, denyut ultra-pendek dengan tempoh denyutan masing-masing 810 fs dan 

845 fs diperolehi dengan nAD dan AD SA. Apabila panjang gentian terdop erbium 

meningkat kepada 10 m, denyutan seperti hingar diperhatikan mempunyai kesan 

autokorelasi pancang sempit yang menunggang pada kekaki luas yang beroperasi pada 

kadar pengulangan asas 9 MHz. Lebar denyut kekaki masing-masing 13.9 ps dan 26.7 

ps diperolehi dengan nAD dan AD SA. Lebar denyut pancang adalah masing-masing 

164 fs dan 148 fs. Begitu juga, rongga dengan kedua-dua soliton konvensional dan 

denyutan seperti hingar menunjukkan kestabilan operasi yang baik selama dua jam. AD 

SA berprestasi lebih baik dengan tenaga denyutan tinggi, purata kuasa keluaran dan ciri 

RF, manakala nAD SA mempunyai lebar denyut terkecil, lebar jalur spektrum dan MD 

yang lebih tinggi. 

 

Laser gentian terdop tulium (TDFL) rongga cincin telah dibina dengan gentian terdop 

tulium sepanjang 3 m sahaja. Semua komponen yang digunakan untuk rongga TDFL 

yang dicadangkan terdiri daripada gentian optik yang mempunyai penyebaran 

beranomali. Oleh itu, variasi dalam panjang gentian terdop tulium tidak akan mengubah 

rejim operasi MLFL. Spektrum optik dengan lebar jalur 3-dB adalah 4.47 nm berpusat 

pada 1933.25 nm diperolehi dengan nAD SA. Manakala untuk AD SA, lebar jalur 3-dB 

dan panjang gelombang tengah telah diperhatikan pada 4.21 nm dan 1935.26 nm masing-

masing. Selain itu, denyut ultra-pendek yang mempunyai tempoh denyut 1.19 ps dan 985 

fs masing-masing diperolehi dengan nAD dan AD SA. Spektrum pembangunan kuasa 

menunjukkan prestasi stabil MLFL, beroperasi pada frekuensi asas 14.7 MHz tanpa 

sebarang perpecahan denyutan atau ketidakstabilan. MLFL pasif yang dicadangkan 

dalam rongga TDFL menunjukkan denyut ultra-pendek dengan nisbah isyarat kepada 

bunyi lebih daripada 50 dB dan kekal stabil selama 2 jam pengukuran kestabilan. 

 

Secara amnya, kerja ini melibatkan pengoptimuman Ni-H3BTC MOF untuk penjanaan 

denyut ultra-pendek; soliton konvensional dan denyutan terkunci mod seperti hingar. 

Penemuan ini mencadangkan keberkesanan Ni-H3BTC-MOF sebagai bahan penyerap 

cahaya baharu untuk penjanaan denyut ultra-pendek yang mungkin membantu sebagai 

asas kepada penerokaan pelbagai jenis MOF yang sedia ada dan sifatnya untuk tujuan 

tersebut. Kerja ini menyimpulkan bahawa penyerap tepu berasaskan MOF boleh menjadi 

bahan alternatif untuk menjana denyut ultra-pendek. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Background 

 

A laser is an electronic device that works on stimulated emissions to emit a narrow beam 

of light. The characteristics of the light emitted by a laser vary significantly from those 

produced by a traditional source, such as an incandescent light bulb or a fluorescent light 

tube. The fundamental difference between laser and other light sources is that it generates 

a coherent narrow beam of high-intensity light. In 1916, Albert Einstein suggested that 

under appropriate conditions, atoms can release the excess of energy in the form of light, 

naturally or when stimulated by light [1]. This led to the foundation for evolution of 

lasers almost one decade ago. 

 

Nevertheless, stimulated emissions were first observed by German physicist Rudolf 

Walther Ladenburg in 1928, although the invention was called negative absorption and 

was considered of little practical significance by scientists at that time. Since the name 

of laser was coined by Gould in 1958, the first breakthrough was achieved at Hughes 

Research Laboratories by Theodore H. Maiman in 1960, where he invented the first laser 

from crystals of synthetic ruby [2]. He successfully produced a laser having red pulses 

of about fingertip size. After that, different types of lasers like helium-neon and 

semiconductor lasers were developed that demonstrated commercial success and became 

standard equipment in many diverse applications. 

 

After Maiman invented the laser in 1960 and the subsequent invention of optical fibers, 

a new era of optical communication began. In single-mode fiber (SMF), the low loss 

region extends from 1200-1600 nm, equivalent to more than 30 THz of bandwidth. The 

current standard for long-haul optical communications is up to 40 Gbit/s, and in the next 

few years, it will begin to move towards 400 Gbit/s by mitigating limitations of 

nonlinearity and dispersion in fiber at a high bit rate. These advancement in optical fibers 

technology has enabled it as a desired medium for many applications. Optical fibers offer 

an applicable platform for the advancement and monolithic integration of laser system; 

therefore, fiber laser has a substantial prospect in the field of laser engineering.  

   

Fiber laser is synthesized by doping optical fiber with rare earth elements such as erbium, 

praseodymium, ytterbium, terbium, and thulium. One of the main advantages of fiber 

laser over its other counterparts is that light can be amplified and delivered by the same 

flexible medium. Also, it enables amplification of light signal without converting into an 

electrical signal, ensuring all-optical architecture. The amplified optical wavelengths 

depict usable gain, which is determined by dopant properties, the structure of fiber and 

pump power. 

 

 

https://www.britannica.com/biography/Theodore-Maiman
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Monochromatic light produced by laser does not comprise a pure single frequency; 

nevertheless, the light produced has some inherent bandwidth. This bandwidth is 

determined by the type of gain medium and bandwidth. The second element in deciding 

the emission frequency of a laser is the resonant cavity. Lightwave propagating in the 

resonant cavity will interfere constructively or destructively with itself, leading to 

standing waves or modes in the cavity. In an ordinary laser, these modes oscillate 

independently without any fixed relationship to each other. The interference in these 

modes produces average output intensity. However, when a fixed relationship is 

established between modes, all modes will constructively interfere, forming an intense 

pulse of light instead of random average output intensity. Such a phenomenon is called 

mode-locking. Mode-locking in lasers can be achieved via two methods, active and 

passive mode-locking. An external electro-optic component is employed in the active 

method to realize mode-locking, whereas, in the passive method, an element is implanted 

in the laser cavity to modulate light for mode-locking. The mode-locked pulses having 

pulse width in the range of picosecond or less is referred to as ultrashort fiber laser. 

 

1.2 Overview 

 

Ultrashort fiber laser realized through passive mode-locking has attracted significant 

research interest due to its wide applications, ranging from fundamental research to 

advanced industrial processing. For instance; medical diagnosis, materials 

characterization, energy application, remote sensing, micro matching, optical 

communications, metrology and laser range determination are performed with this type 

of laser [3]–[7]. Mode-locked fiber lasers possess considerable advantages compared to 

continuous-wave (CW) lasers. It enables clear and precise cutting in laser surgeries, 

accurate measurement for remote sensing and cleanser ablation of materials, and several 

other advantages. 

 

The development of ultrashort pulse fiber lasers with pulse widths in the range of pico- 

and femto-second has been evolving, accenting on the gain medium and nonlinear 

characteristics to achieve ultrashort pulse generation. Laser emissions at the near and 

mid-infrared region (1-2 μm) are now well established by rare-earth doped fibers. 

Erbium-doped fiber (EDF) provides amplification around 1.55 μm wavelength region is 

highly desirable for telecommunication, micro-matching, industrial applications and 

materials surface modification [8]. Also, silica glass fibers have a low loss window at the 

same wavelength, emerging as a strong candidate for the fabrication of passive mode-

locked fiber laser (MLFL). Similarly, thulium-doped fiber (TDF) provides amplification 

around 1.9 μm has driven research interest owing to their broad-bandwidth around 400 

nm, which makes TDF an attractive gain medium for ultrashort pulse generation. TDF 

lasers are desired for several applications including military, medicine and spectroscopy 

[9].  

 

Ultrashort pulse laser realized through passive mode-locking is preferred owing to its 

compact and simple structure, reliable performance and nominal price range [10], [11], 

which can be realized by either real or artificial saturable absorber (SA). SA is an 

important nonlinear optical modulating component for generating ultrashort pulses 

through passive mode-locking or Q-switching. Whereas the mode-locking can be 
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achieved through phase locking the longitudinal modes propagating in the cavity and Q-

switching is succeeded by modulating the cavity losses (Q-factor) through SA. In 

general, SAs can be classified as real SA and artificial SA. The artificial SAs i.e. 

nonlinear polarization rotation (NPR) and nonlinear optical loop mirror (NOLM) are 

based on nonlinear effects in the laser cavity [12]. Besides having advantages of low cost 

and high damage threshold, the performance of artificial SAs is affected by high 

saturation intensity, difficulty in self-starting and performance degradation by 

environmental perturbation [13]. On the other hand, the real SAs are based on the 

saturation effect of the material's resonance transition. In fact, as long as the laser 

operates within the material's resonance absorption wavelength range, most light-

absorbing materials can be utilized as the SA. Besides these several other characteristics 

like operating wavelength, saturation intensity, damage threshold, and stability are also 

important determinants for any materials to be used as SA. 

  

Fabrication of real SA to realize passive MLFL in the EDF and TDF laser cavities are of 

significant research interest owing to its lasing in mid-infrared wavelength region, which 

is desired for many applications. So far, various materials have been developed for the 

fabrication of SA. Initially, semiconductor saturable absorber mirror (SESAM) was 

widely used SA, which rapidly penetrates commercial systems [14]. However, it is 

limited in bandwidth and requires complex fabrications procedures due to its 

semiconductor-based structures, which compel the researchers to search for new 

materials for simple SA fabrication. Recently, low dimensional materials, particularly 

those with 2D structures and nonlinear properties, have been widely used for the 

fabrication of SA because they can be easily integrated into various electro-optical 

components. Carbon nanotube (CNT) [15] possesses nonlinear properties that has been 

used as SA but has limitations of bandwidth and chirality control, which make it less 

competent for SA fabrication [16]. Graphene[17] was raised as a potential candidate for 

SA due to its gap less linear dispersion and Dirac electron property. Due to these 

properties, graphene and its derivatives were widely reported in the literature [18]–[23]. 

However, monolayer graphene has a relatively low absorption of 2.3%, which limits its 

modulation capacity. Transition metal di-chalcogenide (TMD) materials have relatively 

large bandwidth and possess higher resonant absorption at a particular wavelength [24]–

[28], and black phosphorus (BP) [29], [30], having layer dependent tunable bandgap 

structure has recently joined the family of 2D nanomaterials used for fabrication of SA. 

However, TMDs require firm control of material thickness [31]. The performance of BP-

SA is hampered by its performance degradation in the ambient environment [32]. Several 

other materials i.e., silver and other metal nanoparticles [33], [34], palladium ditelluride 

[35], alcohol [36], chalcogenides [37] and metal oxide were also reported for SA 

fabrication [38]. However, the bandwidth and operating wavelength of these materials is 

limited, which hamper their photonics application in wideband wavelength region. Thus, 

the identification of new novel materials having tunable, nonlinear properties, easy 

fabrication methods, stable and operating in wideband wavelength region is still a long-

standing research goal. 

 

In this regard, it is of research interest to explore new functional materials as a mode-

locker with desired characteristics [39]. Recently, metal-organics frameworks (MOFs) 

have emerged as an important class of hybrid crystalline porous materials, which is a 

functional material with many intriguing properties like ultra-high surface area, tunable 

bandgap, nano-meter sized spaces, high optical transparency, and mature fabrication 
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methods, leading to broad applications in divisional fields [40]. Besides these, MOF 

structures retain enhanced stability, crystallinity, and tunability, leading to more than 

20,000 structures, as reported by the Cambridge Structure Database (CSD) [41]. MOF 

also possesses nonlinear properties which can be optimized for efficient mode-locking 

performance by fine-tuning one or more MOF properties. These properties can be 

optimized by judicious choice of metal, ligands and synthetic conditions for the desired 

applications [42], which can be further enhanced by encapsulation in pores, calcination, 

composites formation, and doping [43]. Moreover, MOFs are ideal materials due to their 

mature fabrication methods, versatility and synergistic effects to identify desired 

characteristics for different applications. Furthermore, the wide range of characterization 

techniques applicable for MOFs enables a wide range of experiments to reveal 

underlying performance determinants and provide critical information for developing 

novel functional materials. Also, the plethora of possible combinations will level the path 

to relate the effect of materials properties on mode-locked laser characteristics. 

 

1.3 Problem statement 

 

Exploration of new MOFs for ultrashort pulse generations is still at the infancy stage. 

Even though several reported MOFs possess desired properties for SA fabrication, i.e., a 

third-order nonlinear phenomenon [44], [45], and second harmonic susceptibilities [46]–

[48], only a few MOFs and their derivative have been reported for SA fabrication [49]–

[51]. These reports open a new avenue to explore MOF for ultrashort pulse generation. 

However, the effect of different MOF structures on mode-locked laser performance is 

still obscure. Though, it has been reported that ligand plays a vital role in deciding the 

characteristics, properties and functionalities of MOFs [52]. Therefore, to further explore 

MOFs enticing characteristics, different types of ligands during materials synthesis 

compared to the previous reported MOF are investigated for ultrashort pulse generation. 

Also, the synthetic conditions are important to decide the final properties of materials for 

prospective application, which needs to be optimized. However, the lack of information 

and ways to get the requisite ordered features is a substantial barrier in the application of 

MOFs. Due to the large range of possible architectures, one of the fundamental research 

difficulties in this sector is determining the effect of various parameters on the 

characteristic properties for prospective applications. Recent research on the synthesis of 

diverse MOFs has made significant progress in characterizing and optimizing them for 

desired applications. Therefore, the effect of various MOF properties on the ultrashort 

laser performance is still vague. 

 

Moreover, for reported ultrashort fiber laser using MOF on a tapered fiber, a direct 

deposition technique was employed. This technique can be achieved either optical 

deposition or drop-casting, the objective is to transfer materials on fiber or glass 

substrate. However, these methods have certain shortcomings. The optical deposition 

requires optimization of light power for each sample individually to ensure the uniform 

distribution of materials on the fiber surface. However, the uniform distribution of 

materials with optical deposition is still debatable and requires several trial-and-error 

experiments. On the other hand, the drop-casting method is straightforward; however, 

the repeatability is of serious concern as the uniform coating and thickness of materials 

are not well controlled. In addition, the MOFs were deposited directly without any 

protective polymer support to attach them to the fiber surface, which also made it prone 
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to environmental and mechanical disturbances and requires dedicated operational 

conditions. The protective composite facilitates the attachment of materials to the tapered 

fiber and increases the lifetime of SA by protecting it from disturbances. The 

development of MOF based SA can be further optimized by spin-coating the materials 

embedded in polymer composite on tapered fiber to ensure uniform thickness of 

deposited materials and increase the shelf life of fabricated SA.  

 

Furthermore, from the viewpoint of microfiber dimension, which affects the adiabatic 

nature of tapered fiber that leads to the performance of pulse generation. In general, 

adiabatic (AD) tapered fiber is the trusted transducer due to its low loss propagation of 

light due to its strong confinement effect. However, its counterpart which is non-

adiabatic (nAD) tapered fiber offers stronger evanescent light interaction with 

surroundings but at the expense of higher transmission loss. The evanescent field 

interaction can be optimized by controlling the tapered angle to analyze its effect on 

mode-locked pulse characteristics. 

 

1.4 Objective of the study 

 

The main objective of this PhD work is to fabricate passive MLFL by incorporating 

MOF-based SA, in EDF and TDF ring cavity lasers. To accomplish this, the following 

objectives have been outlined: 

 

1. To synthesize and characterize MOF using nickel as metal cations and trimesic 

acid as ligands, through the solvothermal method. 

2. To fabricate and characterize SA utilizing as-synthesized MOF on AD and nAD 

tapered fibers. 

3. To analyze the performance of the fabricated SAs in the ring cavity erbium-

doped fiber laser (EDFL) for ultrashort pulse generation. 

4. To analyze the performance of the fabricated SAs in the ring cavity thulium-

doped fiber laser (TDFL) for ultrashort pulse generation. 

 

1.5 Scope of the Study 

 

The scope of this doctoral work is summarized in Figure 1.1. The highlighted subsets are 

the focus of this research. In this work, passively mode-locked fiber lasers were utilized 

to generate ultrashort pules in all fiber ring cavity. Two different rare-earth doped fibers 

namely erbium and thulium are selected to emit lasing wavelength at 1.56 μm and 1.9 

μm region, respectively. The passive mode-locking using real SA is a simple mode-

locking mechanism that is not affected by environmental perturbations as compared to 

artificial SAs. Next, a tapered fiber is selected as a substrate for SA fabrication due to its 

robustness to handle thermal damage. Both AD and nAD type of tapered fibers are 

chosen to investigate the ultrashort pulse generation. In this case, the light propagation 
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properties in the tapered region are different based on the adiabaticity feature. Next, the 

SA is fabricated by spin coating the composite material of MOF and 

Polydimethylsiloxane (PDMS) on the tapered fibers. In this work, we use Ni-H3BTC 

MOF and optimize its synthesis by varying metal to ligand ratio to explore its effect on 

nonlinear saturable absorption (NLSA) properties to generate ultrashort pulses. The 

PDMS composite safeguards the materials contact with tapered fiber and increases the 

shelf life of SA compared to direct deposition method. Finally, the fabricated SA is 

characterized for linear. 

 

Ultrashort Pulsed 

fiber Laser

Q- SwitchedMode-locked

Ring Cavity Linear Cavity

Active Mode-locked
Passive Mode-

locked

Gas lasers Fiber Laser Semiconductor

Erbium doped Thulium Doped Ytterbium doped
Thulium-Holmium 

doped

Artificial SA Real SA

D-Shaped Fiber Hollow core fiberTapered FiberFiber Ferrule

CNT 2D Materials Other Materials Ternary Compounds

Metal OxidesMOFMetal NanoparticlesQuantum dots

Indirect DepositionDirect Deposition

Drop casting Dip coatingOptical Polymer composite

Pulse Laser 

Performance
NLSATransmission Loss

NLP
Conventional 

Soliton Pulse

Liquid lasers
Solid state 
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Figure 1.1: Scope of the research work 
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and nonlinear transmission measurement and subsequently, pulse fiber laser 

performance is analyzed. Both conventional soliton and noise like pulse (NLP) were 

observed in ring cavity EDFL. The ultrashort pulse performance of fiber laser using the 

fabricated SA is analyzed in optical domain, time domain and frequency domain. 

 

1.6 Thesis outline 

  

The content of the thesis is organized into six chapters. Chapter 1 refers to the 

introduction of thesis. It contains background of lasers, overview of mode-locked fiber 

lasers, research gap, scope and research objective. A comprehensive literature review on 

materials, theoretical background and basic principles of passive mode-locking, related 

nonlinear effects occurring in fiber laser cavities and recent development in fabrication 

of SA, are listed in Chapter 2. Chapter 3 describes materials, synthesis and 

characterization of materials for structural, electro-optical and nonlinear properties. The 

SA fabrication and its characterization for linear and nonlinear properties are also 

presented in this chapter. Chapter 4 evaluates the performance of passive MLFL in EDFL 

ring cavity with the fabricated MOF-based SA. Whereas, Chapter 5 describes 

performance characteristics of the fabricated MOF-based SA in TDFL ring cavity. 

Chapter 6 concludes the results of research work and recommendations for further 

improvements.  
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