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Gaseous pollutants such as hydrogen gas (H2) are present in daily human activities and 

have been studied extensively due to their high explosive and widespread use in many 

fields. A common H2 gas detector is electrically based. Although these electrical or 

conductometric sensors attain high sensitivity, they suffer from drawbacks, including 

poor selectivity, high operating temperature, and susceptibility to electromagnetic 

interference, which the optical-based sensor can improve. Optical fiber sensors offer 

advantages over electrical sensors in certain aspects, such as their compact size, the 

ability to work in harsh environments, and the ability for remote and distributed sensing. 

However, H2 detection with optical fibers has not been fully explored. 

 

Nanotechnology-enabled chemical sensors have been increasingly used to enhance the 

sensing performance compared to the conventional sensors toward target analytes owing 

to their high surface area. The sensing layer based on nanostructures has been identified 

to work at low temperatures with high sensitivity. Therefore, this research project aims 

to design and comprehensively analyze optical fiber-based H2 gas sensors by 

incorporating different nanocomposite coatings as sensing layers. This study uses 

tapered multimode silica fiber (MMF) sensors as a transducing platform. The tapering 

process is essential to improve the sensitivity to the environment through the interaction 

of the evanescent field over the area of the tapered surface area. The tapered area is 

coated with a sensor layer which is also an essential factor affecting the sensor's 

performance. The influence of nanostructures’ morphology and roughness on the sensing 

performance were also studied in this Ph.D. research. 

 

The nanostructured materials investigated are graphene oxide (GO), polyaniline (PANI), 

and molybdenum trioxide (MoO3). These nanomaterials were combined as a 

nanocomposite sensing layer to enhance the H2 detection. A noble metal, palladium (Pd), 

was selected as a catalyst to split hydrogen ions. The novel nanocomposites of Pd/GO, 

Pd/PANI/GO, and Pd/MoO3/PANI were dropped cast on the tapered optical fiber for 
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sensing analysis. Combining these materials as nanocomposite adds up the functionality 

to enhance the high surface area to volume ratio to effectively miniaturize and improve 

the sensing properties of the developed sensors. In this context, nanocomposite materials 

promote effective H2 gas sensing peculiarity and allow the developed sensors to be 

operational at low temperatures. Micro-nano characterization techniques such as 

FESEM, EDX, AFM, and XRD were utilized to obtain detailed structural properties of 

these nanostructures and fundamentally understand their functions concerning optical 

sensor performance. 

 

The response of the sensors towards H2 gas was measured at concentrations of      0.125% 

- 2.00% using optical absorbance change within the wavelength range of 550-850 nm at 

different temperatures. The sensor performance was evaluated regarding response time, 

recovery time, sensitivity, repeatability, and stability at different temperatures. 

 

The developed H2 sensors using tapered optical fiber coated with Pd/GO, Pd/PANI/GO, 

and Pd/MoO3/PANI nanocomposite operated at different temperatures are the first of its 

kind according to the author’s knowledge. The Pd/GO nanocomposite-based sensor 

demonstrated higher sensitivity of about 33.22/vol% compared to Pd/PANI/GO and 

Pd/MoO3/PANI nanocomposite, where the sensitivity is about 10.43/vol% and 

16.81/vol%, respectively. The response and recovery time of the developed sensors 

based on Pd/GO, Pd/PANI/GO, and Pd/MoO3/PANI nanocomposite recorded were 48 s, 

60 s, and 90 s, and their recovery times were 420 s, 190 s, and 230 s, respectively. 

Overall, the developed sensor based on Pd/GO nanocomposite showed excellent 

sensitivity, higher response time, selectivity, and long-term stability compared to 

Pd/PANI/GO and Pd/MoO3/PANI nanocomposite-based sensors.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

NANOKOMPOSIT YANG DISALUT PALLADIUM PADA OPTIK GENTIAN 

TIRUS UNTUK APLIKASI PENDERIA HIDROGEN 

 

Oleh 

 

AL-KHABET MOHAMMED MAJEED MOHAMMED 

 

Jun 2022 

 

Pengerusi : Profesor Madya Mohd Hanif bin Yaacob, PhD 

Fakulti  : Kejuruteraan 

 

Bahan pencemar gas seperti  gas hidrogen (H2) terdapat dalam aktiviti harian manusia 

dan telah dikaji secara meluas kerana keupayaannya yang mudah meletup dan 

penggunaan secara meluas dalam banyak bidang. Pengesan gas H2 biasanya berasaskan 

elektrik. Walaupun penderia elektrik atau konduktometri ini mempunyai kepekaan yang 

tinggi, mereka mempunyai kelemahan, termasuklah kepilihan yang lemah, suhu operasi 

yang tinggi dan mudah terdedah kepada gangguan elektromagnetik, yang dapat 

diperbaiki oleh penderia berasaskan optik. Penderia gentian optik menawarkan kelebihan 

berbanding penderia elektrik dalam aspek tertentu, seperti saiz yang padat, keupayaan 

untuk bekerja di persekitaran yang keras dan penderiaan jarak jauh. Walau 

bagaimanapun, pengesanan H2 dengan gentian optik masih belum diterokai sepenuhnya. 

 

Penderia kimia berteknologi-nano semakin bertambah penggunaannya bagi 

mempertingkatkan prestasi pengesan berbanding penderia konvensional terhadap analit 

sasaran kerana luas permukaannya yang tinggi. Lapisan penderia berasaskan 

nanostruktur telah dikenal pasti berfungsi pada suhu rendah dengan kepekaan tinggi. 

Oleh itu, projek penyelidikan ini bertujuan untuk mereka bentuk dan menganalisis secara 

komprehensif penderia gas H2 berasaskan gentian optik dengan menggabungkan salutan 

nanokomposit yang berbeza sebagai lapisan penderia. Kajian ini menggunakan penderia 

tirus gentian silika pelbagai mod (MMF) sebagai pelantar transduksi. Proses menirus 

adalah penting untuk meningkatkan kepekaan terhadap persekitaran melalui interaksi 

medan evanesen ke atas kawasan permukaan tirus. Kawasan tirus disaluti dengan lapisan 

penderia yang juga merupakan faktor penting yang mempengaruhi prestasi penderia. 

Pengaruh morfologi dan kekasaran nanostruktur terhadap prestasi penderia juga dikaji 

dalam penyelidikan PhD ini. 

 

Bahan berstruktur nano yang disiasat adalah grafin oksida (GO), polianilin (PANI) dan 

molybdenum trioksida (MoO3). Bahan nano ini telah digabungkan sebagai lapisan 

penginderaan nanokomposit untuk meningkatkan pengesanan H2. Logam adi, paladium, 
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telah dipilih sebagai pemangkin untuk memisahkan ion hidrogen. Nanokomposit novel 

Pd/GO, Pd/PANI/GO dan Pd/MoO3/PANI telah dicicirkan pada gentian optik tirus untuk 

analisis penderiaan. Kombinasi bahan-bahan ini sebagai nanokomposit menambahkan 

lagi fungsi serta meningkatkan nisbah luas permukaan kepada isipadu agar menambah 

baik sifat-sifat penderia yang telah dibangunkan. Dalam konteks ini, bahan 

nanokomposit mendorong pengesanan gas H2 yang berkesan dan membolehkan penderia 

yang telah dibangunkan untuk beroperasi pada suhu rendah. Teknik pencirian mikro-

nano seperti FESEM, EDX, AFM, dan XRD juga digunakan untuk mendapatkan struktur 

nano yang terperinci bagi memahami fungsinya secara asas berkaitan dengan prestasi 

penderia optik. 

 

Tindak balas penderia terhadap gas H2 telah diukur pada kepekatan 0.125 % - 2.00 % 

menggunakan perubahan serapan optik dalam julat panjang gelombang 550-850 nm pada 

suhu yang berbeza. Prestasi penderia telah dinilai dari segi masa tindak balas, masa 

pemulihan, kepekaan, kebolehulangan dan kestabilan jangka panjang pada suhu yang 

berbeza. 

 

Penderia H2 yang telah dibangunkan menggunakan gentian optik tirus yang disalut 

nanokomposit Pd/GO, Pd/PANI/GO dan Pd/MoO3/PANI telah beroperasi pada suhu 

yang berbeza adalah yang pertama seumpamanya mengikut pengetahuan penulis. 

Penderia berasaskan nanokomposit Pd/GO menunjukkan kepekaan yang lebih tinggi 

sekitar 33.22/ vol% berbanding dengan nanokomposit Pd/PANI/GO dan Pd/MoO3/PANI 

di mana kepekaan masing-masing adalah sekitar 10.43 /vol% dan 16.81 /vol%. Masa 

tindak balas dan pemulihan penderia yang telah dibangunkan berasaskan nanokomposit 

Pd/GO, Pd/PANI/GO dan Pd/MoO3/PANI yang telah direkodkan adalah masing-masing 

48 s, 60 s dan 90 s, dan masa pemulihannya adalah masing-masing 420 s, 190 s dan 230s. 

Secara keseluruhan, penderia yang dibangunkan berasaskan nanokomposit Pd/GO 

menunjukkan kepekaan yang sangat baik, masa tindak balas yang lebih tinggi dengan 

kepilihan yang lebih tinggi dan kestabilan jangka panjang berbanding dengan penderia 

berasaskan nanokomposit Pd/PANI/GO dan Pd/MoO3/PANI.  
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CHAPTER 1 

 

1 INTRODUCTION 

 

This chapter provides an overview of the Ph.D. research. Section 1.1 provides a research 

background and motivation on hydrogen gas and its sensing technologies. Section 1.2 

presents the recent advances in optical fiber sensors integrated with nanostructured 

materials. Section 1.3 discusses the problem statement related to hydrogen sensing using 

optical fiber. Section 1.4 outlines the research objectives and questions related to the 

Ph.D. project. Finally, sections 1.5 and 1.6 present the research's scope and the thesis's 

organization. 

 

1.1 Research Background and Motivations 

 

Hydrogen (H2), owing to its high efficiency as a fuel, abundance, non-polluting 

character, and sustainability, is one of the possible solutions to the impending energy 

crisis [1], [2]. It is also a dependable gas for faulty power transformers diagnostics [3], 

[4]. H2 has also been used in other sectors such as aerospace engineering, metallurgical 

refineries, petroleum explorations, chemical processing, cryogenic cooling, and many 

more [5]–[10]. However, its high diffusion coefficient (0.16 cm2/s in the air), low ignition 

energy (0.018 mJ), wide explosion concentration range (4% -75%), and high heat of 

combustion (285.8 kJ/mol) make it a highly explosive gas and potentially dangerous for 

us, transport and storage [11]–[13]. 

 

Currently, many different technologies are being used or under development for the 

detection of hydrogen, including semiconductor sensors, electrochemical, thermal 

sensors, and mass spectroscopy [14] [15]. Unfortunately, these sensing methods have 

several disadvantages, such as large size, high cost, dependence on the presence of 

oxygen, and the potential to create electrical sparks that would be dangerous in explosive 

environments. There are four main hydrogen sensor types: chemical resistance, surface 

acoustic waves, optical fiber sensor, and microelectronic sensor [16]. However, these 

sensors are limited by several drawbacks, such as low selectivity, high power 

consumption, and electromagnetic interference (EMI), which limit their use in practical 

applications. Furthermore, all of the above sensors require a high operating temperature 

(> 300 °C) and many moving mechanical elements, which leads to implementation 

problems for remote sensing applications [17]. Thus, to overcome these drawbacks, 

optical fiber has been examined as an alternative to conventional chemical sensors due 

to their many advantages. Optical fiber sensors are easily integrated into optical networks 

and communication systems with additional distributed remote sensing functions [18]. 

The introduction of chemical-based optical fiber sensors has received much attention 

recently due to their small size, immunity to electromagnetic interference, and ability to 

work in harsh environments [19]. Since then, optical fiber-based chemical sensors have 

been adopted in various applications, and enormous efforts have been made to improve 

their performance. 
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1.2 Nanostructure Coated Optical Fiber Sensor  

 

Optical fiber sensors have gained huge popularity and acceptance in the market in recent 

years due to the number of advantages that their electrical counterparts have. These 

advantages include miniaturization, flexibility, and immunity to electromagnetic 

interference, as well as its ability to operate in harsh environments, such as high 

temperatures or a chemically reactive environment [20]. Optical fibers are also inert, 

passive, and electrically non-conductive. Therefore, optical fibers are safe to use near 

flammable or explosive environments, as in the case of the oil and gas industry [21]. 

 

Recent advances in sensing technology include the development of optical fiber sensors 

integrated with nanomaterials. Nanostructures are materials with at least one dimension 

in the nanoscale range, less than 100 nm [22]. These materials are particularly suitable 

for chemical and biological detection applications because many reactions occur at the 

nanoscale. When materials are reduced to nanoscale dimensions, they reveal new and 

unique properties, such as a high surface-to-volume ratio, high heat capacity, mechanical 

strength, and changes in magnetic behavior. The rapid development of nanoparticle 

synthesis and nanofabrication methods leads to the development of many new 

nanomaterials with unique physical and chemical properties [23]. Among those 

interesting properties are the material's optical characteristics, including reflectivity, 

absorbance, and fluorescence [24]. 

 

Optical fiber sensors with nanomaterials enhancements provide an exciting new way for 

chemical sensing applications. Incorporation of nanomaterials thin film with optical fiber 

significantly improves the chemical sensing performance [25]. Optical techniques 

commonly used to measure response in chemical detection are reflectance, absorbance, 

fluorescence, and surface plasmon resonance which result from the interaction between 

the nanomaterials coated optical sensor with various chemical molecules [26]. 

 

1.3 Problem Statement 

 

Most chemical sensors are electrical-based systems such as conductometric, quartz 

crystal microbalance, and Schottky diode, to name a few. The main reasons for the 

extensive use of electrical sensors are their high sensitivity and low cost. However, these 

sensors suffer from poor selectivity and limited application in a volatile environment, 

particularly where a high risk of explosion or exposure to electromagnetic ignition is 

expected. Hazardous chemicals, such as H2 gas, are flammable and explosive. The 

limitations of electrical-based sensors in detecting these chemicals can be addressed 

using optical transducers, such as optical fiber.  

 

The development of optical fiber sensors is relatively less established than electrical 

sensors. Nevertheless, the reduced cost of optical components, driven by the large 

commercial telecommunication and optoelectronic markets, creates an opportunity to 

implement the technology for H2 sensing applications. The optical signal properties have 

many advantages compared to the electrical signal and thus offer the vast opportunity to 
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the researchers to explore its potential in the H2 sensing applications. Some of the unique 

properties of optical signals, such as immunity to EMI and resistance to corrosive, 

reactive, and flammable environments, make optical fiber sensors a promising candidate 

for H2 sensing applications. 

Last decades, most of the sensing layers deployed in chemical detection are based on 

thick films (approximately more than 10 μm). Nevertheless, the advancement of 

nanotechnology provides an opportunity to integrate sensing materials at the nanoscale 

with transducing platforms. Nanostructured materials have numerous advantages, 

including a large surface-to-volume ratio, high specific surface area, and several surface 

active sites [27][28]. Recent studies have identified that using nanostructured material as 

an active sensing layer can improve the chemical sensing performance concerning 

sensitivity, selectivity, and response time compared with thick film sensing layers. 

Most of the reported optical fiber sensors for H2 sensing are based on special optical 

fibers such as plastic optical fiber (POF), photonic crystal fiber (PCF), and fiber Bragg 

grating (FBG). These sensings involve expensive and complicated fabrication 

techniques. As a result, the author believes that by employing optical fiber sensors in 

simpler and cost-effective fabrication in volatile environments, the safety risks 

associated with the leakage of H2 can be significantly reduced.  

1.4 Research Objectives and Questions 

This thesis focuses on developing tapered optical fiber sensors coated with nanomaterials 

for H2 sensing applications. In order to achieve this, the following objectives are outlined: 

1. To design and fabricate H2 gas sensors based on nanomaterials coated on tapered

optical fiber via drop-casting technique.

2. To synthesize and characterize the nanomaterials suitable for the H2 sensing

layer.

3. To investigate and evaluate the optical sensing performance of the

nanomaterials toward H2 gas.

4. To propose and explain the chemical sensing mechanism of the developed

optical fiber sensors.

To achieve these goals, the following research questions were identified: 

1. What sensitive nanomaterials change their optical properties when interacting

with H2 gas?

2. How can these materials be synthesized and coated onto the tapered optical

fiber?
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3. How is the sensing performance of tapered optical fiber sensors coated with 

different nanostructured sensor layers? 

4. How to understand the nature of the interaction between the target chemical and 

the sensor layer? 

 

1.5 Research Scope and Limitation 

 

This research project covers the development of tapered optical fiber for H2 sensing 

based on nanomaterials that lead to optical devices. The dimension profile is fixed to 

waist diameter to 20 μm with a fixed length of 10 mm and an up / down taper of 5 mm. 

This profile is well-established and adequate to provide high sensitivity suitable for H2 

gas sensing and easy to handle. The optimum operating temperature for H2 sensing was 

tested, and the largest response can be obtained. Various parameters such as sensitivity, 

repeatability, and stability of the fabricated sensors were determined, and selectivity 

toward other gases was also measured. Optimization of the developed optical fiber 

sensors could not be improved in terms of humidity effect due to the limited time frame 

for this work. Such analysis will provide these sensors' overall performance for harsh 

environments. The project scope can best be explained using the tree diagram in Figure 

1.1. The solid lines represent the direction in this thesis to achieve the goal and objectives 

of the work, while the dotted lines indicate other research areas outside the scope of this 

work. The highlighted squares represent the elements deployed to achieve the research 

objectives proposed for developing an optical fiber for H2 sensing. 
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Figure 1.1: Research Scope 
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1.6 Thesis Organization 

 

The thesis consists of six chapters. Chapter 1 offers an overview of the research area 

focusing on the problems that motivated this work. In addition, this chapter clarifies the 

problem's facts and the investigation's goals and objectives. Chapter 2 comprehensively 

reviews the types, characteristics, and principles of optical fiber measurement. This 

chapter also critically reviews optic fiber sensors used in H2 applications. The 

nanostructured materials used in this doctoral work are included, and their properties and 

applications are discussed. Chapter 3 provides a complete description of the tapered 

optical fiber sensor design and fabrication. The synthesis and deposition of nanomaterials 

are presented and discussed, followed by a gas testing setup for the developed optical 

fiber sensors. Chapter 4 presents the micro characterization results of the H2-sensitive 

nanostructures. Chapter 5 discusses gas sensing results from the tapered optical fiber 

sensor performance combined with the nanomaterials. The investigated optical sensing 

results include sensitivity, selectivity, response, and recovery times. The optical H2 

sensing mechanisms of the developed sensors are also explained in this chapter. Finally, 

chapter 6 concludes the thesis and provides a list of the contributions of this work. 

Potential ideas are also suggested to be pursued as future research work. 

  



© C
OPYRIG

HT U
PM

94 

REFERENCES 

 

[1] T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - A 

review,” Sensors and Actuators, B: Chemical, vol. 157, no. 2, pp. 329–352, 2011, 

doi: 10.1016/j.snb.2011.04.070. 

[2] J. O. Abe, A. P. I. Popoola, E. Ajenifuja, and O. M. Popoola, “Hydrogen energy, 

economy and storage: Review and recommendation,” International Journal of 

Hydrogen Energy, vol. 44, no. 29, pp. 15072–15086, 2019, doi: 

10.1016/j.ijhydene.2019.04.068. 

[3] A. L. Bychkov, S. M. Korobeynikov, and A. Y. Ryzhkina, “Determination of the 

hydrogen diffusion coefficient in transformer oil,” Technical Physics, vol. 56, no. 

3, pp. 421–422, 2011. 

[4] M. M. Islam, G. Lee, and S. N. Hettiwatte, “A review of condition monitoring 

techniques and diagnostic tests for lifetime estimation of power transformers,” 

Electrical Engineering, vol. 100, no. 2, pp. 581–605, 2018, doi: 10.1007/s00202-

017-0532-4. 

[5] X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen 

leak detection using an optical fibre sensor for aerospace applications,” Sensors 

and Actuators B: Chemical, vol. 67, no. 1–2, pp. 57–67, 2000. 

[6] P. Caumon, M. L.-B. Zulueta, J. Louyrette, S. Albou, C. Bourasseau, and C. 

Mansilla, “Flexible hydrogen production implementation in the French power 

system: Expected impacts at the French and European levels,” Energy, vol. 81, 

pp. 556–562, 2015. 

[7] I. Staffell et al., “The role of hydrogen and fuel cells in the global energy system,” 

Energy and Environmental Science, vol. 12, no. 2, pp. 463–491, 2019, doi: 

10.1039/c8ee01157e. 

[8] J. Chi and H. Yu, “Water electrolysis based on renewable energy for hydrogen 

production,” Cuihua Xuebao/Chinese Journal of Catalysis, vol. 39, no. 3, pp. 

390–394, 2018, doi: 10.1016/S1872-2067(17)62949-8. 

[9] I. Vinoth Kanna and P. Paturu, “A study of hydrogen as an alternative fuel,” 

International Journal of Ambient Energy, vol. 41, no. 12, pp. 1433–1436, 2020, 

doi: 10.1080/01430750.2018.1484803. 

[10] T. Hisatomi and K. Domen, “Reaction systems for solar hydrogen production via 

water splitting with particulate semiconductor photocatalysts,” Nature Catalysis, 

vol. 2, no. 5, pp. 387–399, 2019, doi: 10.1038/s41929-019-0242-6. 

[11] P. Dimitriou, M. Kumar, T. Tsujimura, and Y. Suzuki, “Combustion and emission 

characteristics of a hydrogen-diesel dual-fuel engine,” International Journal of 

Hydrogen Energy, vol. 43, no. 29, pp. 13605–13617, 2018, doi: 

10.1016/j.ijhydene.2018.05.062. 



© C
OPYRIG

HT U
PM

95 

[12] S. M. V. Sagar and A. K. Agarwal, “Knocking behavior and emission 

characteristics of a port fuel injected hydrogen enriched compressed natural gas 

fueled spark ignition engine,” Applied Thermal Engineering, vol. 141, no. 

February, pp. 42–50, 2018, doi: 10.1016/j.applthermaleng.2018.05.102. 

[13] A. P. Singh, D. Kumar, and A. K. Agarwal, “Particulate characteristics of laser 

ignited hydrogen enriched compressed natural gas engine,” International Journal 

of Hydrogen Energy, vol. 45, no. 35, pp. 18021–18031, 2020, doi: 

10.1016/j.ijhydene.2020.05.005. 

[14] T. Hübert, L. Boon-Brett, V. Palmisano, and M. A. Bader, “Developments in gas 

sensor technology for hydrogen safety,” International Journal of Hydrogen 

Energy, vol. 39, no. 35, pp. 20474–20483, 2014, doi: 

10.1016/j.ijhydene.2014.05.042. 

[15] N. Sazali, “Emerging technologies by hydrogen: A review,” International 

Journal of Hydrogen Energy, vol. 45, no. 38, pp. 18753–18771, 2020, doi: 

10.1016/j.ijhydene.2020.05.021. 

[16] Y. nan Zhang, H. Peng, X. Qian, Y. Zhang, G. An, and Y. Zhao, “Recent 

advancements in optical fiber hydrogen sensors,” Sensors and Actuators, B: 

Chemical, vol. 244, pp. 393–416, 2017, doi: 10.1016/j.snb.2017.01.004. 

[17] H. Gu, Z. Wang, and Y. Hu, “Hydrogen gas sensors based on semiconductor 

oxide nanostructures,” Sensors, vol. 12, no. 5, pp. 5517–5550, 2012, doi: 

10.3390/s120505517. 

[18] M. Yang and J. Dai, “Fiber optic hydrogen sensors: a review,” Photonic Sensors, 

vol. 4, no. 4, pp. 300–324, 2014, doi: 10.1007/s13320-014-0215-y. 

[19] J. Dai et al., “Optical fiber grating hydrogen sensors: A review,” Sensors 

(Switzerland), vol. 17, no. 3, p. 577, 2017, doi: 10.3390/s17030577. 

[20] J. BelBruno, “Nanomaterials in Sensors,” Nanomaterials, vol. 3, no. 4, pp. 572–

573, 2013, doi: 10.3390/nano3040572. 

[21] M. Irshad et al., “Molecularly Imprinted Nanomaterials for Sensor Applications,” 

Nanomaterials, vol. 3, no. 4, pp. 615–637, 2013, doi: 10.3390/nano3040615. 

[22] S. Chaturvedi, P. N. Dave, and N. K. Shah, “Applications of nano-catalyst in new 

era,” Journal of Saudi Chemical Society, vol. 16, no. 3, pp. 307–325, 2012, doi: 

10.1016/j.jscs.2011.01.015. 

[23] S. Korposh, S. W. James, S. W. Lee, and R. P. Tatam, “Tapered Optical Fibre 

Sensors: Current Trends and Future Perspectives,” Sensors (Basel), vol. 19, no. 

10, p. 2294, 2019, doi: 10.3390/s19102294. 

[24] A. Erdem, “Nanomaterials based sensor development towards electrochemical 

sensing of biointeractions: Electrochemical sensors based on nanomaterials for 



© C
OPYRIG

HT U
PM

96 

biointeractions,” in NATO Science for Peace and Security Series A: Chemistry 

and Biology, Springer, 2012, pp. 165–169. doi: 10.1007/978-94-007-2488-4_15. 

[25] G. Maduraiveeran and W. Jin, “Nanomaterials based electrochemical sensor and 

biosensor platforms for environmental applications,” Trends in Environmental 

Analytical Chemistry, vol. 13, pp. 10–23, 2017, doi: 10.1016/j.teac.2017.02.001. 

[26] C. J. Huang, C. C. Liao, M. P. Houng, F. K. Liu, and Y. C. Chen, “Nanomaterials 

for nanooptoelectronics device applications,” Journal of Nanomaterials, vol. 

2014. Hindawi, 2014. doi: 10.1155/2014/178686. 

[27] H. Jiang et al., “Low concentration response hydrogen sensors based on 

wheatstone bridge,” Sensors (Switzerland), vol. 19, no. 5, pp. 1–8, 2019, doi: 

10.3390/s19051096. 

[28] J. Shao, W. Xie, X. Song, and Y. Zhang, “A new hydrogen sensor based on SNS 

fiber interferometer with Pd/WO3 coating,” Sensors (Switzerland), vol. 17, no. 9, 

2017, doi: 10.3390/s17092144. 

[29] D. P, CRC Handbook of Chemistry and Physics, vol. 268, no. 1–3. CRC press, 

1992. doi: 10.1016/0022-2860(92)85083-s. 

[30] M. Althubaiti, M. Bernard, and P. Musilek, “Fuzzy logic controller for hybrid 

renewable energy system with multiple types of storage,” Canadian Conference 

on Electrical and Computer Engineering, 2017, doi: 

10.1109/CCECE.2017.7946738. 

[31] G. Peixoto, J. L. R. Pantoja-Filho, J. A. B. Agnelli, M. Barboza, and M. Zaiat, 

“Hydrogen and methane production, energy recovery, and organic matter removal 

from effluents in a two-stage fermentative process,” Applied Biochemistry and 

Biotechnology, vol. 168, no. 3, pp. 651–671, 2012, doi: 10.1007/s12010-012-

9807-4. 

[32] S. Dutta, “A review on production, storage of hydrogen and its utilization as an 

energy resource,” Journal of Industrial and Engineering Chemistry, vol. 20, no. 

4, pp. 1148–1156, 2014, doi: 10.1016/j.jiec.2013.07.037. 

[33] S. E. Hosseini and M. A. Wahid, “Hydrogen production from renewable and 

sustainable energy resources: promising green energy carrier for clean 

development,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 850–866, 

2016. 

[34] C. E. Bunker and M. J. Smith, “Nanoparticles for hydrogen generation,” Journal 

of Materials Chemistry, vol. 21, no. 33, pp. 12173–12180, 2011, doi: 

10.1039/c1jm10856e. 

[35] T. Singh, J. Swevers, and G. Pipeleers, “Concurrent H2/H∞feedback control 

design with optimal sensor and actuator selection,” Proceedings - 2018 IEEE 15th 

International Workshop on Advanced Motion Control, AMC 2018, pp. 223–228, 

2018, doi: 10.1109/AMC.2019.8371092. 



© C
OPYRIG

HT U
PM

97 

[36] W. Buttner et al., “Hydrogen monitoring requirements in the global technical 

regulation on hydrogen and fuel cell vehicles,” International Journal of Hydrogen 

Energy, vol. 42, no. 11, pp. 7664–7671, 2017, doi: 

10.1016/j.ijhydene.2016.06.053. 

[37] A. Mirzaei et al., “An overview on how Pd on resistive-based nanomaterial gas 

sensors can enhance response toward hydrogen gas,” International Journal of 

Hydrogen Energy, vol. 44, no. 36, pp. 20552–20571, 2019, doi: 

10.1016/j.ijhydene.2019.05.180. 

[38] S. Li et al., “Hydrogen Gas in Cancer Treatment,” Frontiers in Oncology, vol. 9, 

no. August, pp. 1–9, 2019, doi: 10.3389/fonc.2019.00696. 

[39] B. H. Lee et al., “Interferometric fiber optic sensors,” sensors, vol. 12, no. 3, pp. 

2467–2486, 2012. 

[40] P. C. Chou et al., “Hydrogen sensing performance of a nickel oxide (NiO) thin 

film-based device,” International Journal of Hydrogen Energy, vol. 40, no. 1, pp. 

729–734, 2015, doi: 10.1016/j.ijhydene.2014.10.142. 

[41] M. Tonezzer, T. T. Le Dang, Q. H. Tran, and S. Iannotta, “Dual-selective 

hydrogen and ethanol sensor for steam reforming systems,” Sensors and 

Actuators, B: Chemical, vol. 236, pp. 1011–1019, 2016, doi: 

10.1016/j.snb.2016.04.150. 

[42] X. Xia, W. Wu, Z. Wang, Y. Bao, Z. Huang, and Y. Gao, “A hydrogen sensor 

based on orientation aligned TiO2 thin films with low concentration detecting 

limit and short response time,” Sensors and Actuators, B: Chemical, vol. 234, pp. 

192–200, 2016, doi: 10.1016/j.snb.2016.04.110. 

[43] K. Arora and N. K. Puri, “Chemiresistive sensing platform based on PdO-

PANI/ITO heterostructure for room temperature hydrogen detection,” Materials 

Chemistry and Physics, p. 122850, 2020. 

[44] S. Jung, K. H. Baik, F. Ren, S. J. Pearton, and S. Jang, “Pt-AlGaN/GaN Hydrogen 

Sensor with Water-Blocking PMMA Layer,” IEEE Electron Device Letters, vol. 

38, no. 5, pp. 657–660, 2017, doi: 10.1109/LED.2017.2681114. 

[45] G. Korotcenkov, S. Do Han, and J. R. Stetter, “Review of electrochemical 

hydrogen sensors,” Chem Rev, vol. 109, no. 3, pp. 1402–1433, 2009. 

[46] G. Wang, L. Zhang, and J. Zhang, “A review of electrode materials for 

electrochemical supercapacitors,” Chemical Society Reviews, vol. 41, no. 2, pp. 

797–828, 2012. 

[47] F.-C. Huang, Y.-Y. Chen, and T.-T. Wu, “A room temperature surface acoustic 

wave hydrogen sensor with Pt coated ZnO nanorods,” Nanotechnology, vol. 20, 

no. 6, p. 65501, 2009. 



© C
OPYRIG

HT U
PM

98 

[48] L. Perez-Cortes, C. Hernandez-Rodriguez, T. Mazingue, and M. Lomello-Tafin, 

“Functionality of Surface Acoustic Wave (SAW) transducer for palladium–

platinum-based hydrogen sensor,” Sensors and Actuators A: Physical, vol. 251, 

pp. 35–41, 2016. 

[49] N. H. Ha, N. H. Nam, D. D. Dung, N. H. Phuong, P. D. Thach, and H. S. Hong, 

“Hydrogen Gas Sensing Using Palladium-Graphene Nanocomposite Material 

Based on Surface Acoustic Wave,” Journal of Nanomaterials, vol. 2017, 2017, 

doi: 10.1155/2017/9057250. 

[50] X. Gu, H. Wang, Z. D. Schultz, and J. P. Camden, “Sensing glucose in urine and 

serum and hydrogen peroxide in living cells by use of a novel boronate nanoprobe 

based on surface-enhanced Raman spectroscopy,” Anal Chem, vol. 88, no. 14, pp. 

7191–7197, 2016. 

[51] W. Wu et al., “Wafer-scale synthesis of graphene by chemical vapor deposition 

and its application in hydrogen sensing,” Sensors and Actuators B: Chemical, vol. 

150, no. 1, pp. 296–300, 2010. 

[52] E. Agrell et al., “Roadmap of optical communications,” Journal of Optics (United 

Kingdom), vol. 18, no. 6, p. 63002, 2016, doi: 10.1088/2040-8978/18/6/063002. 

[53] H. H. Diamandi, Y. London, G. Bashan, and A. Zadok, “Distributed opto-

mechanical analysis of liquids outside standard fibers coated with polyimide,” 

arXiv, vol. 4, no. 1, p. 16105, 2019. 

[54] S. F. Memon, M. M. Ali, J. T. Pembroke, B. S. Chowdhry, and E. Lewis, 

“Measurement of Ultralow Level Bioethanol Concentration for Production Using 

Evanescent Wave Based Optical Fiber Sensor,” IEEE Transactions on 

Instrumentation and Measurement, vol. 67, no. 4, pp. 780–788, 2018, doi: 

10.1109/TIM.2017.2761618. 

[55] T. yun Wang, F. fei Pang, S. juan Huang, J. xiang Wen, H. huan Liu, and L. bo 

Yuan, “Recent developments in novel silica-based optical fibers,” Frontiers of 

Information Technology and Electronic Engineering, vol. 20, no. 4, pp. 481–489, 

2019, doi: 10.1631/FITEE.1900017. 

[56] L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on 

plastic fibers,” Sensors (Switzerland), vol. 12, no. 9, pp. 12184–12207, 2012, doi: 

10.3390/s120912184. 

[57] P. Pura, M. Szymański, M. Dudek, L. R. Jaroszewicz, P. Marć, and M. 

Kujawińska, “Polymer microtips at different types of optical fibers as functional 

elements for sensing applications,” Journal of Lightwave Technology, vol. 33, no. 

12, pp. 2398–2404, 2015, doi: 10.1109/JLT.2014.2385961. 

[58] H. Murata, Handbook of Optical Fibers and Cables, vol. 1. CRC Press, 2020. doi: 

10.1201/9781315214078. 



© C
OPYRIG

HT U
PM

99 

[59] E. Castro-camus et al., “Roadmap on optical sensors,” HHS Public Access, vol. 

19, no. 8, pp. 1–71, 2018, doi: 10.1088/2040-8986/aa7419.Roadmap. 

[60] A. Leal-Junior, L. Avellar, A. Frizera, and C. Marques, “Smart textiles for 

multimodal wearable sensing using highly stretchable multiplexed optical fiber 

system,” Scientific Reports, vol. 10, no. 1, pp. 1–12, 2020, doi: 10.1038/s41598-

020-70880-8. 

[61] Z. H. P. Eng et al., “Distributed fiber sensor and machine learning data analytics 

for pipeline protection against extrinsic intrusions and intrinsic corrosions,” 

Optics Express, vol. 28, no. 19, pp. 27277–27292, 2020. 

[62] I. Darmadi, F. A. A. Nugroho, S. Kadkhodazadeh, J. B. Wagner, and C. 

Langhammer, “Rationally Designed PdAuCu Ternary Alloy Nanoparticles for 

Intrinsically Deactivation-Resistant Ultrafast Plasmonic Hydrogen Sensing,” 

ACS Sensors, vol. 4, no. 5, pp. 1424–1432, 2019, doi: 

10.1021/acssensors.9b00610. 

[63] J. Zhu, M. Vasilopoulou, D. Davazoglou, S. Kennou, A. Chroneos, and U. 

Schwingenschlögl, “Intrinsic Defects and H Doping in WO3,” Scientific Reports, 

vol. 7, no. December 2016, pp. 1–9, 2017, doi: 10.1038/srep40882. 

[64] K. Xu et al., “Nanomaterial-based gas sensors: A review,” Instrumentation 

Science and Technology, vol. 46, no. 2, pp. 115–145, 2018, doi: 

10.1080/10739149.2017.1340896. 

[65] S. S. Chong, A. R. Abdul Aziz, and S. W. Harun, “Fibre optic sensors for selected 

wastewater characteristics,” Sensors (Switzerland), vol. 13, no. 7, pp. 8640–8668, 

2013, doi: 10.3390/s130708640. 

[66] C. Du, S. Dutta, P. Kurup, T. Yu, and X. Wang, “A review of railway 

infrastructure monitoring using fiber optic sensors,” Sensors and Actuators, A: 

Physical, vol. 303, p. 111728, 2020, doi: 10.1016/j.sna.2019.111728. 

[67] J. Li, H. Yan, H. Dang, and F. Meng, “Structure design and application of hollow 

core microstructured optical fiber gas sensor: A review,” Optics and Laser 

Technology, vol. 135, p. 106658, 2021, doi: 10.1016/j.optlastec.2020.106658. 

[68] F. S. Ligler and C. R. Taitt, “Optical Biosensors: Today and Tomorrow Elsevier,” 

The Netherlands, 2008. 

[69] P. H. Paul and G. Kychakoff, “Fiber-optic evanescent field absorption sensor,” in 

Applied Physics Letters, 1987, vol. 51, no. 1, pp. 12–14. doi: 10.1063/1.98888. 

[70] C. S. Huertas, O. Calvo-Lozano, A. Mitchell, and L. M. Lechuga, “Advanced 

evanescent-wave optical biosensors for the detection of nucleic acids: An analytic 

perspective,” Front Chem, vol. 7, p. 724, 2019. 

[71] A. L. Khalaf, A. A. A. Shabaneh, and M. H. Yaacob, “Carbon nanotubes and 

graphene oxide applications in optochemical sensors,” Synthesis, Technology and 



© C
OPYRIG

HT U
PM

100 

Applications of Carbon Nanomaterials, pp. 223–246, 2018, doi: 10.1016/B978-

0-12-815757-2.00010-3. 

[72] M. Shafa et al., “Improved H2 detection performance of GaN sensor with 

Pt/Sulfide treatment of porous active layer prepared by metal electroless etching,” 

International Journal of Hydrogen Energy, vol. 46, no. 5, pp. 4614–4625, 2021. 

[73] E. Rodríguez-Schwendtner, N. Díaz-Herrera, M. C. Navarrete, A. González-

Cano, and Esteban, “Plasmonic sensor based on tapered optical fibers and 

magnetic fluids for measuring magnetic fields,” Sensors and Actuators, A: 

Physical, vol. 264, pp. 58–62, 2017, doi: 10.1016/j.sna.2017.07.040. 

[74] M. P. Singh and S. K. Chaurasia, “Effect of Teflon buffer on PdY alloy deposited 

Side Polished Fiber Hydrogen Sensor,” in 2020 IEEE International Conference 

on Electrical Engineering and Photonics (EExPolytech), 2020, pp. 230–233. 

[75] P. J. Rivero, J. Goicoechea, and F. J. Arregui, “Optical fiber sensors based on 

polymeric sensitive coatings,” Polymers (Basel), vol. 10, no. 3, pp. 1–26, 2018, 

doi: 10.3390/polym10030280. 

[76] A. K. Sharma, J. Gupta, and I. Sharma, “Fiber optic evanescent wave absorption-

based sensors: A detailed review of advancements in the last decade (2007–18),” 

Optik (Stuttg), vol. 183, no. December 2018, pp. 1008–1025, 2019, doi: 

10.1016/j.ijleo.2019.02.104. 

[77] C. Consani, C. Ranacher, A. Tortschanoff, T. Grille, P. Irsigler, and B. Jakoby, 

“Mid-infrared photonic gas sensing using a silicon waveguide and an integrated 

emitter,” Sensors and Actuators, B: Chemical, vol. 274, pp. 60–65, 2018, doi: 

10.1016/j.snb.2018.07.096. 

[78] M. A. Riza, Y. I. Go, and R. R. J. Maier, “Dynamics rate of fiber chemical 

etching: New partial removal of cladding technique for humidity sensing 

application,” Laser Physics, vol. 30, no. 12, p. 126205, 2020, doi: 10.1088/1555-

6611/abbe83. 

[79] M. Özcan, A. Allahbeickaraghi, and M. Dündar, “Possible hazardous effects of 

hydrofluoric acid and recommendations for treatment approach: A review,” 

Clinical Oral Investigations, vol. 16, no. 1, pp. 15–23, 2012, doi: 

10.1007/s00784-011-0636-6. 

[80] Z. Cui, “Wet Etching Optical Fibers To Sub-Micron Diameters Wet Etching 

Optical Fibers To Sub-Micron Diameters,” UNIVERSITY OF DAYTON, 2014. 

[81] X. Chong, K.-J. Kim, P. R. Ohodnicki, E. Li, C.-H. Chang, and A. X. Wang, 

“Ultrashort near-infrared fiber-optic sensors for carbon dioxide detection,” IEEE 

Sensors Journal, vol. 15, no. 9, pp. 5327–5332, 2015. 

[82] Y. T. Luo, H. Bin Wang, G. M. Ma, H. T. Song, C. Li, and J. Jiang, “Research on 

high sensitive D-shaped FBG hydrogen sensors in power transformer oil,” 

Sensors (Switzerland), vol. 16, no. 10, p. 1641, 2016, doi: 10.3390/s16101641. 



© C
OPYRIG

HT U
PM

101 

[83] “In-Fiber Devices D-Shaped Optical Fiber,” Ira A. Fulton College of Engineering 

Electrical and Computer Engineering, 2021. 

http://www.photonics.byu.edu/in_fiber.phtml 

[84] G. Brambilla, “Optical fibre nanowires and microwires: A review,” Journal of 

Optics A: Pure and Applied Optics, vol. 12, no. 4, p. 43001, 2010, doi: 

10.1088/2040-8978/12/4/043001. 

[85] B. Bozeat, J. Stump, A. : Professor, and Y. Liu, “Microfurnace Design for 

Fabrication of Tapered Optical Fiber Conveyor Belts A Major Qualifying Project 

Report.” WORCESTER POLYTECHNIC INSTITUTE, 2017. 

[86] P. Wang, H. Zhao, X. Wang, G. Farrell, and G. Brambilla, “A review of 

multimode interference in tapered optical fibers and related applications,” Sensors 

(Switzerland), vol. 18, no. 3, p. 858, 2018, doi: 10.3390/s18030858. 

[87] D. Liu et al., “High sensitivity refractive index sensor based on a tapered small 

core single-mode fiber structure,” Optics Letters, vol. 40, no. 17, p. 4166, 2015, 

doi: 10.1364/ol.40.004166. 

[88] N. A. M. Yahya et al., “H2 sensor based on tapered optical fiber coated with 

MnO2 nanostructures,” Sensors and Actuators, B: Chemical, vol. 246, pp. 421–

427, 2017, doi: 10.1016/j.snb.2017.02.084. 

[89] C. Rios et al., “Controlled switching of phase-change materials by evanescent-

field coupling in integrated photonics [Invited],” Optical Materials Express, vol. 

8, no. 9, p. 2455, 2018, doi: 10.1364/ome.8.002455. 

[90] F. Mumtaz, M. A. Ashraf, Y. Dai, and W. Hu, “Numerical solution of strongly 

guided modes propagating in sapphire crystal fibers (α-Al2O3) for UV, VIS/IR 

wave-guiding,” Results in Physics, vol. 18, p. 103311, 2020. 

[91] W. Jin, L. F. Qi, H. L. Ho, and Y. C. Cao, “Gas detection with micro and nano-

engineered optical fibers,” Optics InfoBase Conference Papers, vol. 19, no. 6, pp. 

741–759, 2012, doi: 10.1364/sensors.2012.stu4f.3. 

[92] G. Woyessa et al., “Single mode step-index polymer optical fiber for humidity 

insensitive high temperature fiber Bragg grating sensors,” Optics Express, vol. 

24, no. 2, p. 1253, 2016, doi: 10.1364/oe.24.001253. 

[93] A. Kerr, H. Rafuse, G. Sparkes, J. Hinchey, and H. Sandeman, “Visible/Infrared 

Spectroscopy (Virs) As a Research Tool in Economic Geology: Background and 

Pilot Studies from Newfoundland and Labrador,” Current Research, no. April 

2016, pp. 145–166, 2011. 

[94] Z. Cai, B. Liu, X. Zou, and H. M. Cheng, “Chemical Vapor Deposition Growth 

and Applications of Two-Dimensional Materials and Their Heterostructures,” 

Chemical Reviews, vol. 118, no. 13, pp. 6091–6133, 2018, doi: 

10.1021/acs.chemrev.7b00536. 



© C
OPYRIG

HT U
PM

102 

[95] X. Tang and X. Yan, “Dip-coating for fibrous materials: mechanism, methods and 

applications,” Journal of Sol-Gel Science and Technology, vol. 81, no. 2, pp. 378–

404, 2017, doi: 10.1007/s10971-016-4197-7. 

[96] W. S. Chong, S. X. Gan, H. M. Al-Tuwirit, W. Y. Chong, C. S. Lim, and H. 

Ahmad, “Nanolitre solution drop-casting for selective area graphene oxide 

coating on planar surfaces,” Materials Chemistry and Physics, vol. 249, p. 

122970, 2020, doi: 10.1016/j.matchemphys.2020.122970. 

[97] V. S. Bhati, S. Ranwa, M. Fanetti, M. Valant, and M. Kumar, “Efficient hydrogen 

sensor based on Ni-doped ZnO nanostructures by RF sputtering,” Sensors and 

Actuators, B: Chemical, vol. 255, pp. 588–597, 2018, doi: 

10.1016/j.snb.2017.08.106. 

[98] I. Sta et al., “Surface functionalization of sol-gel grown NiO thin films with 

palladium nanoparticles for hydrogen sensing,” International Journal of 

Hydrogen Energy, vol. 41, no. 4, pp. 3291–3298, 2016, doi: 

10.1016/j.ijhydene.2015.12.109. 

[99] A. Kaliyaraj Selva Kumar, Y. Zhang, D. Li, and R. G. Compton, “A mini-review: 

How reliable is the drop casting technique?,” Electrochemistry Communications, 

vol. 121, p. 106867, 2020, doi: 10.1016/j.elecom.2020.106867. 

[100] J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, 

“Review on nanoparticles and nanostructured materials: History, sources, toxicity 

and regulations,” Beilstein Journal of Nanotechnology, vol. 9, no. 1, pp. 1050–

1074, 2018, doi: 10.3762/bjnano.9.98. 

[101] Zh. I. Bespalova and A. V. Khramenkova, “The use of transient electrolysis in the 

technology of oxide composite nanostructured materials: review,” Nanosystems: 

Physics, Chemistry, Mathematics, vol. 7, no. 3, pp. 433–450, 2016, doi: 

10.17586/2220-8054-2016-7-3-433-450. 

[102] N. Wen et al., “Emerging flexible sensors based on nanomaterials: recent status 

and applications,” Journal of Materials Chemistry A, vol. 8, no. 48, pp. 25499–

25527, 2020, doi: 10.1039/d0ta09556g. 

[103] D. Pawar and S. N. Kale, “A review on nanomaterial-modified optical fiber 

sensors for gases, vapors and ions,” Microchimica Acta, vol. 186, no. 4, pp. 1–34, 

2019, doi: 10.1007/s00604-019-3351-7. 

[104] Y. Liu, Y. Deng, H. Dong, K. Liu, and N. He, “Progress on sensors based on 

nanomaterials for rapid detection of heavy metal ions,” Science China Chemistry, 

vol. 60, no. 3, pp. 329–337, 2017, doi: 10.1007/s11426-016-0253-2. 

[105] A. Urrutia, J. Goicoechea, P. J. Rivero, A. Pildain, and F. J. Arregui, “Optical 

fiber sensors based on gold nanorods embedded in polymeric thin films,” Sensors 

and Actuators, B: Chemical, vol. 255, pp. 2105–2112, 2018, doi: 

10.1016/j.snb.2017.09.006. 



© C
OPYRIG

HT U
PM

103 

[106] Y. Jee et al., “Plasmonic Conducting Metal Oxide-Based Optical Fiber Sensors 

for Chemical and Intermediate Temperature-Sensing Applications,” ACS Applied 

Materials and Interfaces, vol. 10, no. 49, pp. 42552–42563, 2018, doi: 

10.1021/acsami.8b11956. 

[107] X. Feng, X. Z. Yang, G. J. Huang, D. S. Deng, X. Qin, and W. L. Feng, “Hydrogen 

Sulfide Gas Sensor Based on Cu ion-deposited Graphene-coated Tapered 

Photonic Crystal Fiber,” Guangzi Xuebao/Acta Photonica Sinica, vol. 46, no. 9, 

pp. 540–545, 2017, doi: 10.3788/gzxb20174609.0923002. 

[108] J. Li et al., “An optical fiber sensor based on carboxymethyl cellulose/carbon 

nanotubes composite film for simultaneous measurement of relative humidity and 

temperature,” Optics Communications, vol. 467, p. 125740, 2020, doi: 

10.1016/j.optcom.2020.125740. 

[109] S. Minakuchi and N. Takeda, “Recent advancement in optical fiber sensing for 

aerospace composite structures,” Photonic Sensors, vol. 3, no. 4, pp. 345–354, 

2013, doi: 10.1007/s13320-013-0133-4. 

[110] N. A. M. Yahya et al., “H2 sensor based on tapered optical fiber coated with 

MnO2 nanostructures,” Sensors and Actuators, B: Chemical, vol. 246, pp. 421–

427, 2017, doi: 10.1016/j.snb.2017.02.084. 

[111] Y. N. Zhang, Q. Wu, H. Peng, and Y. Zhao, “Photonic crystal fiber modal 

interferometer with Pd/WO3 coating for real-time monitoring of dissolved 

hydrogen concentration in transformer oil,” Review of Scientific Instruments, vol. 

87, no. 12, p. 125002, 2016, doi: 10.1063/1.4971321. 

[112] J. Dai, M. Yang, X. Yu, and H. Lu, “Optical hydrogen sensor based on etched 

fiber Bragg grating sputtered with Pd/Ag composite film,” Optical Fiber 

Technology, vol. 19, no. 1, pp. 26–30, 2013, doi: 10.1016/j.yofte.2012.09.006. 

[113] N. A. M. Yahya, M. R. Y. Hamid, B. H. Ong, N. A. Rahman, M. A. Mahdi, and 

M. H. Yaacob, “H2 Gas Sensor Based on Pd/ZnO Nanostructures Deposited on 

Tapered Optical Fiber,” IEEE Sensors Journal, vol. 20, no. 6, pp. 2982–2990, 

2020, doi: 10.1109/JSEN.2019.2957838. 

[114] Z. Yu, L. Jin, L. Sun, J. Li, Y. Ran, and B.-O. Guan, “Highly sensitive fiber taper 

interferometric hydrogen sensors,” IEEE Photonics Journal, vol. 8, no. 1, pp. 1–

9, 2015. 

[115] J. Villatoro, D. Luna-Moreno, and D. Monzón-Hernández, “Optical fiber 

hydrogen sensor for concentrations below the lower explosive limit,” Sensors and 

Actuators B: Chemical, vol. 110, no. 1, pp. 23–27, 2005. 

[116] J. Wang et al., “Dielectrophoresis of graphene oxide nanostructures for hydrogen 

gas sensor at room temperature,” Sensors and Actuators, B: Chemical, vol. 194, 

pp. 296–302, 2014, doi: 10.1016/j.snb.2013.12.009. 



© C
OPYRIG

HT U
PM

104 

[117] F. Rasch et al., “Highly selective and ultra-low power consumption metal oxide 

based hydrogen gas sensor employing graphene oxide as molecular sieve,” 

Sensors and Actuators, B: Chemical, vol. 320, p. 128363, 2020, doi: 

10.1016/j.snb.2020.128363. 

[118] M. H. Yaacob, J. Yu, K. Latham, K. Kalantar-Zadeh, and W. Wlodarski, “Optical 

hydrogen sensing properties of nanostructured Pd/MoO3 films,” Sensor Letters, 

vol. 9, no. 1, pp. 16–20, 2011, doi: 10.1166/sl.2011.1410. 

[119] Y. Zou et al., “Doping composite of polyaniline and reduced graphene oxide with 

palladium nanoparticles for room-temperature hydrogen-gas sensing,” 

International Journal of Hydrogen Energy, vol. 41, no. 11, pp. 5396–5404, 2016, 

doi: 10.1016/j.ijhydene.2016.02.023. 

[120] V. Cretu, V. Postica, D. Stoianov, V. Trofim, V. Sontea, and O. Lupan, 

“Hydrogen gas sensor based on nanograined Pd/α-MoO3 belts,” IFMBE 

Proceedings, vol. 55, pp. 361–364, 2016, doi: 10.1007/978-981-287-736-9_87. 

[121] P. Rocha-Rodrigues et al., “Hydrogen Optical Metamaterial Sensor Based on Pd 

Dendritic Nanostructures,” ChemistrySelect, vol. 1, no. 13, pp. 3854–3860, 2016, 

doi: 10.1002/slct.201600833. 

[122] H. Dannetun, I. Lundström, and L. G. Petersson, “Hydrocarbon dissociation on 

palladium studied with a hydrogen sensitive Pd-metal-oxide-semiconductor 

structure,” Journal of Applied Physics, vol. 63, no. 1, pp. 207–215, 1988, doi: 

10.1063/1.340492. 

[123] L. Yi, Y. P. Chen, S. Han, and Z. Gang, “Hydrogen gas sensor based on palladium 

and yttrium alloy ultrathin film,” Review of Scientific Instruments, vol. 83, no. 12, 

p. 125003, 2012, doi: 10.1063/1.4770329. 

[124] Y. Imai, Y. Kimura, and M. Niwano, “Organic hydrogen gas sensor with 

palladium-coated β-phase poly(vinylidene fluoride) thin films,” Applied Physics 

Letters, vol. 101, no. 18, p. 181907, 2012, doi: 10.1063/1.4764064. 

[125] N. E. González-Sierra et al., “Tapered optical fiber functionalized with palladium 

nanoparticles by drop casting and laser radiation for H2 and volatile organic 

compounds sensing purposes,” Sensors (Switzerland), vol. 17, no. 9, 2017, doi: 

10.3390/s17092039. 

[126] N. Bavili et al., “Highly sensitive optical sensor for hydrogen gas based on a 

polymer microcylinder ring resonaator,” Sensors and Actuators, B: Chemical, 

vol. 310, p. 127806, 2020, doi: 10.1016/j.snb.2020.127806. 

[127] Y. Zhao, Q. L. Wu, and Y. N. Zhang, “High-Sensitive Hydrogen Sensor Based 

on Photonic Crystal Fiber Model Interferometer,” IEEE Transactions on 

Instrumentation and Measurement, vol. 66, no. 8, pp. 2198–2203, 2017, doi: 

10.1109/TIM.2017.2676141. 



© C
OPYRIG

HT U
PM

105 

[128] W. T. Koo et al., “Chemiresistive hydrogen sensors: Fundamentals, recent 

advances, and challenges,” ACS Nano, vol. 14, no. 11, pp. 14284–14322, 2020, 

doi: 10.1021/acsnano.0c05307. 

[129] H. Song et al., “Optical fiber hydrogen sensor based on an annealing-stimulated 

Pd–Y thin film,” Sensors and Actuators B: Chemical, vol. 216, pp. 11–16, 2015. 

[130] Z. Li et al., “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” 

Sensors and Actuators, B: Chemical, vol. 206, no. January, pp. 564–569, 2015, 

doi: 10.1016/j.snb.2014.09.093. 

[131] Y. Liu, Y. P. Chen, H. Song, and G. Zhang, “Characteristics of an optical fiber 

hydrogen gas sensor based on a palladium and yttrium alloy thin film,” IEEE 

Sensors Journal, vol. 13, no. 7, pp. 2699–2704, 2013, doi: 

10.1109/JSEN.2013.2258904. 

[132] K. T. Kim et al., “Hydrogen sensor based on palladium coated side-polished 

single-mode fiber,” IEEE Sensors Journal, vol. 7, no. 12, pp. 1767–1771, 2007. 

[133] H. Ahmad, M. Fan, and D. Hui, “Graphene oxide incorporated functional 

materials: A review,” Composites Part B: Engineering, vol. 145, pp. 270–280, 

2018, doi: 10.1016/j.compositesb.2018.02.006. 

[134] B. Yuan et al., “Pd nanoparticles supported on 1,10-phenanthroline-5,6-dione 

modified graphene oxide as superior bifunctional electrocatalyst for highly 

sensitive sensing,” Journal of Electroanalytical Chemistry, vol. 861, p. 113945, 

2020, doi: 10.1016/j.jelechem.2020.113945. 

[135] J. Lyu, X. Wen, U. Kumar, Y. You, V. Chen, and R. K. Joshi, “Separation and 

purification using GO and r-GO membranes,” RSC Advances, vol. 8, no. 41, pp. 

23130–23151, 2018, doi: 10.1039/C8RA03156H. 

[136] X. Cai, L. Lai, Z. Shen, and J. Lin, “Graphene and graphene-based composites as 

Li-ion battery electrode materials and their application in full cells,” Journal of 

Materials Chemistry A, vol. 5, no. 30, pp. 15423–15446, 2017, doi: 

10.1039/c7ta04354f. 

[137] V. B. Mohan, K. tak Lau, D. Hui, and D. Bhattacharyya, “Graphene-based 

materials and their composites: A review on production, applications and product 

limitations,” Composites Part B: Engineering, vol. 142, pp. 200–220, 2018, doi: 

10.1016/j.compositesb.2018.01.013. 

[138] S. Priyadarsini, S. Mohanty, S. Mukherjee, S. Basu, and M. Mishra, “Graphene 

and graphene oxide as nanomaterials for medicine and biology application,” 

Journal of Nanostructure in Chemistry, vol. 8, no. 2, pp. 123–137, 2018, doi: 

10.1007/s40097-018-0265-6. 

[139] K. Toda, R. Furue, and S. Hayami, “Recent progress in applications of graphene 

oxide for gas sensing: A review,” Analytica Chimica Acta, vol. 878, pp. 43–53, 

2015, doi: 10.1016/j.aca.2015.02.002. 



© C
OPYRIG

HT U
PM

106 

[140] J. Ma, D. Ping, and X. Dong, “Recent developments of graphene oxide-based 

membranes: A review,” Membranes (Basel), vol. 7, no. 3, p. 52, 2017, doi: 

10.3390/membranes7030052. 

[141] N. Ucar, I. O. Yuksek, M. Olmez, E. Can, and A. Onen, “The effect of oxidation 

process on graphene oxide fiber properties,” Materials Science- Poland, vol. 37, 

no. 1, pp. 83–89, 2019, doi: 10.2478/msp-2019-0015. 

[142] H. Ahmad, S. Soltani, K. Thambiratnam, and M. Yasin, “Highly stable mode-

locked fiber laser with graphene oxide-coated side-polished D-shaped fiber 

saturable absorber,” Optical Engineering, vol. 57, no. 05, p. 1, 2018, doi: 

10.1117/1.oe.57.5.056110. 

[143] B. Manna, H. Raha, I. Chakrabarti, and P. K. Guha, “Selective reduction of 

oxygen functional groups to improve the response characteristics of graphene 

oxide-based formaldehyde sensor device: A first principle study,” IEEE 

Transactions on Electron Devices, vol. 65, no. 11, pp. 5045–5052, 2018, doi: 

10.1109/TED.2018.2872179. 

[144] A. K. Hussain, I. Sudin, U. M. Basheer, and M. Z. M. Yusop, “A review on 

graphene-based polymer composite coatings for the corrosion protection of 

metals,” Corrosion Reviews, vol. 37, no. 4, pp. 343–363, 2019, doi: 

10.1515/corrrev-2018-0097. 

[145] H. Wang, J. Lin, and Z. X. Shen, “Polyaniline (PANi) based electrode materials 

for energy storage and conversion,” Journal of Science: Advanced Materials and 

Devices, vol. 1, no. 3, pp. 225–255, 2016, doi: 10.1016/j.jsamd.2016.08.001. 

[146] I. Fratoddi, I. Venditti, C. Cametti, and M. V. Russo, “Chemiresistive polyaniline-

based gas sensors: A mini review,” Sensors and Actuators B: Chemical, vol. 220, 

pp. 534–548, 2015. 

[147] S. I. Abd Razak, I. F. Wahab, F. Fadil, F. N. Dahli, A. Z. Md Khudzari, and H. 

Adeli, “A review of electrospun conductive polyaniline based nanofiber 

composites and blends: Processing features, applications, and future directions,” 

Advances in Materials Science and Engineering, vol. 2015, 2015, doi: 

10.1155/2015/356286. 

[148] H. Yoon, “Current Trends in Sensors Based on Conducting Polymer 

Nanomaterials,” Nanomaterials, vol. 3, no. 3, pp. 524–549, 2013, doi: 

10.3390/nano3030524. 

[149] A. T. Mane, S. T. Navale, S. Sen, D. K. Aswal, S. K. Gupta, and V. B. Patil, 

“Nitrogen dioxide (NO2) sensing performance of p-polypyrrole/n-tungsten oxide 

hybrid nanocomposites at room temperature,” Organic Electronics, vol. 16, pp. 

195–204, 2015, doi: 10.1016/j.orgel.2014.10.045. 

[150] M. H. Suhail, O. G. Abdullah, and G. A. Kadhim, “Hydrogen sulfide sensors 

based on PANI/f-SWCNT polymer nanocomposite thin films prepared by 



© C
OPYRIG

HT U
PM

107 

electrochemical polymerization,” Journal of Science: Advanced Materials and 

Devices, vol. 4, no. 1, pp. 143–149, 2019, doi: 10.1016/j.jsamd.2018.11.006. 

[151] V. Chaudhary and A. Kaur, “Solitary surfactant assisted morphology dependent 

chemiresistive polyaniline sensors for room temperature monitoring of low parts 

per million sulfur dioxide,” Polymer International, vol. 64, no. 10, pp. 1475–

1481, 2015, doi: 10.1002/pi.4944. 

[152] S. Cai et al., “Facile fabrication of PANI/Zn-tpps4 flexible NH3 sensor based on 

the ‘bridge’ of Zn-tpps4,” Sensors and Actuators, B: Chemical, vol. 321, p. 

128476, 2020, doi: 10.1016/j.snb.2020.128476. 

[153] M. L. Rozemarie, B. Andrei, H. Liliana, R. Cramariuc, and O. Cramariuc, 

“Electrospun Based Polyaniline Sensors - A Review,” IOP Conference Series: 

Materials Science and Engineering, vol. 209, no. 1, p. 12063, 2017, doi: 

10.1088/1757-899X/209/1/012063. 

[154] B. S. Dakshayini et al., “Role of conducting polymer and metal oxide-based 

hybrids for applications in ampereometric sensors and biosensors,” 

Microchemical Journal, vol. 147, pp. 7–24, 2019, doi: 

10.1016/j.microc.2019.02.061. 

[155] J. Ma, J. Dai, Y. Duan, J. Zhang, L. Qiang, and J. Xue, “Fabrication of PANI-

TiO2/rGO hybrid composites for enhanced photocatalysis of pollutant removal 

and hydrogen production,” Renewable Energy, vol. 156, pp. 1008–1018, 2020, 

doi: 10.1016/j.renene.2020.04.104. 

[156] P. Paulraj et al., “Solid-state synthesis of Ag-doped PANI nanocomposites for 

their end-use as an electrochemical sensor for hydrogen peroxide and dopamine,” 

Electrochimica Acta, vol. 363, p. 137158, 2020, doi: 

10.1016/j.electacta.2020.137158. 

[157] X. Zhou, Z. Li, X. Zou, J. Shi, X. Huang, and X. Hu, “Gas sensor based on porous 

film of polyaniline/sulfonated nickel phthalocyanine composites for the detection 

of ammonia,” Gaodeng Xuexiao Huaxue Xuebao/Chemical Journal of Chinese 

Universities, vol. 37, no. 3, pp. 460–467, 2016, doi: 10.7503/cjcu20150669. 

[158] M. Faisal, F. A. Harraz, A. A. Ismail, M. A. Alsaiari, S. A. Al-Sayari, and M. S. 

Al-Assiri, “Novel synthesis of Polyaniline/SrSnO3 nanocomposites with 

enhanced photocatalytic activity,” Ceramics International, vol. 45, no. 16, pp. 

20484–20492, 2019, doi: 10.1016/j.ceramint.2019.07.027. 

[159] N. J. M. Reka Devi, A. Saranya, J. Pandiarajan, J. Dharmaraja, N. 

Prithivikumaran, “Synthesis, Electro Chemical and Optical Performance of 

Organic Acids Doped Polyaniline (PANI),” Journal of Applied Science and 

Engineering Methodologies (JASEM), vol. 2, no. 3, pp. 317–321, 2016. 

[160] M. Zhao et al., “Photothermal effect-enhanced photoelectrochemical water 

splitting of a BiVO4photoanode modified with dual-functional polyaniline,” 



© C
OPYRIG

HT U
PM

108 

Journal of Materials Chemistry A, vol. 8, no. 31, pp. 15976–15983, 2020, doi: 

10.1039/d0ta03698f. 

[161] A. G. Willis and S. Haron, “Synthesis and characterization of composite 

polyaniline as hydrogen gas detector,” Malaysian Journal of Fundamental and 

Applied Sciences, vol. 13, no. 4, pp. 559–562, 2017, doi: 

10.11113/mjfas.v0n0.562. 

[162] J. Wang, Q. Zhou, S. Peng, L. Xu, and W. Zeng, “Volatile Organic Compounds 

Gas Sensors Based on Molybdenum Oxides: A Mini Review,” Frontiers in 

Chemistry, vol. 8, p. 339, 2020, doi: 10.3389/fchem.2020.00339. 

[163] K. Xu, N. Liao, W. Xue, and H. Zhou, “Predicting gases sensing performance of 

α-MoO3 from nano-structural and electronic properties,” Applied Surface 

Science, vol. 509, p. 144913, 2020, doi: 10.1016/j.apsusc.2019.144913. 

[164] S. Muthamizh, C. Sengottaiyan, R. Jayavel, and V. Narayanan, “ Facile Synthesis 

of Phase Tunable MoO 3 Nanostructures and Their Electrochemical Sensing 

Properties ,” Journal of Nanoscience and Nanotechnology, vol. 20, no. 5, pp. 

2823–2831, 2019, doi: 10.1166/jnn.2020.17456. 

[165] J. Yang et al., “Creating oxygen-vacancies in MoO 3-x nanobelts toward high 

volumetric energy-density asymmetric supercapacitors with long lifespan,” Nano 

Energy, vol. 58, pp. 455–465, 2019, doi: 10.1016/j.nanoen.2019.01.071. 

[166] P. Thangasamy, V. Shanmugapriya, and M. Sathish, “One-dimensional growth of 

hexagonal rods of metastable h-MoO3 using one-pot, rapid and environmentally 

benign supercritical fluid processing,” Physica E: Low-Dimensional Systems and 

Nanostructures, vol. 99, pp. 189–193, 2018, doi: 10.1016/j.physe.2018.02.001. 

[167] I. A. de Castro et al., “Molybdenum Oxides – From Fundamentals to 

Functionality,” Advanced Materials, vol. 29, no. 40, pp. 1–31, 2017, doi: 

10.1002/adma.201701619. 

[168] S. Yang, J. Dai, Y. Qin, F. Xiang, G. Wang, and M. Yang, “Improved 

performance of fiber optic hydrogen sensor based on MoO3 by ion intercalation,” 

Sensors and Actuators, B: Chemical, vol. 270, no. December 2017, pp. 333–340, 

2018, doi: 10.1016/j.snb.2018.05.060. 

[169] A. R. Shafieyan, M. Ranjbar, and P. Kameli, “Localized surface plasmon 

resonance H2 detection by MoO3 colloidal nanoparticles fabricated by the flame 

synthesis method,” International Journal of Hydrogen Energy, vol. 44, no. 33, 

pp. 18628–18638, 2019, doi: 10.1016/j.ijhydene.2019.05.171. 

[170] L. Wang et al., “A sulfur-tethering synthesis strategy toward high-loading 

atomically dispersed noble metal catalysts,” Science Advances, vol. 5, no. 10, p. 

eaax6322, 2019, doi: 10.1126/sciadv.aax6322. 



© C
OPYRIG

HT U
PM

109 

[171] L. Fu and A. Yu, “Electroanalysis of dopamine using reduced graphene oxide-

palladium nanocomposites,” Nanoscience and Nanotechnology Letters, vol. 7, 

no. 2, pp. 147–151, 2015, doi: 10.1166/nnl.2015.1910. 

[172] N. Sharma, V. Sharma, S. K. Sharma, and K. Sachdev, “Gas sensing behaviour 

of green synthesized reduced graphene oxide (rGO) for H2 and NO,” Materials 

Letters, vol. 236, pp. 444–447, 2019, doi: 10.1016/j.matlet.2018.10.145. 

[173] H. G. Shiraz, “Efficient room temperature hydrogen gas sensing based on 

graphene oxide and decorated porous silicon,” International Journal of Hydrogen 

Energy, vol. 42, no. 24, pp. 15966–15972, 2017, doi: 

10.1016/j.ijhydene.2017.05.045. 

[174] B. Sharma and J. Myung, “Pd-based ternary alloys used for gas sensing 

applications: A review,” International Journal of Hydrogen Energy, vol. 44, no. 

57, pp. 30499–30510, 2019, doi: 10.1016/j.ijhydene.2019.09.170. 

[175] L. Zhang et al., “Pd@C core-shell nanoparticles on carbon nanotubes as highly 

stable and selective catalysts for hydrogenation of acetylene to ethylene,” 

Nanoscale, vol. 9, no. 38, pp. 14317–14321, 2017, doi: 10.1039/c7nr04992g. 

[176] D. T. Phan and G. S. Chung, “Characteristics of resistivity-type hydrogen sensing 

based on palladium-graphene nanocomposites,” International Journal of 

Hydrogen Energy, vol. 39, no. 1, pp. 620–629, 2014, doi: 

10.1016/j.ijhydene.2013.08.107. 

[177] R. D. Martínez-Orozco, R. Antaño-López, and V. Rodríguez-González, 

“Hydrogen-gas sensors based on graphene functionalized palladium 

nanoparticles: Impedance response as a valuable sensor,” New Journal of 

Chemistry, vol. 39, no. 10, pp. 8044–8054, 2015, doi: 10.1039/c5nj01673h. 

[178] T. Pal, S. Banerjee, P. K. Manna, and K. K. Kar, “Characteristics of conducting 

polymers,” Springer Series in Materials Science, vol. 300, pp. 247–268, 2020, 

doi: 10.1007/978-3-030-43009-2_8. 

[179] P. Wan et al., “Flexible transparent films based on nanocomposite networks of 

polyaniline and carbon nanotubes for high‐performance gas sensing,” Small, vol. 

11, no. 40, pp. 5409–5415, 2015. 

[180] C. Yin, L. Gao, F. Zhou, and G. Duan, “Facile synthesis of polyaniline nanotubes 

using self-assembly method based on the hydrogen bonding: Mechanism and 

application in gas sensing,” Polymers (Basel), vol. 9, no. 10, p. 544, 2017, doi: 

10.3390/polym9100544. 

[181] G. Gaikwad, P. Patil, D. Patil, and J. Naik, “Synthesis and evaluation of gas 

sensing properties of PANI based graphene oxide nanocomposites,” Materials 

Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 

218, pp. 14–22, 2017, doi: 10.1016/j.mseb.2017.01.008. 



© C
OPYRIG

HT U
PM

110 

[182] Z. Guo, N. Liao, M. Zhang, and A. Feng, “Enhanced gas sensing performance of 

polyaniline incorporated with graphene: A first-principles study,” Physics 

Letters, Section A: General, Atomic and Solid State Physics, vol. 383, no. 23, pp. 

2751–2754, 2019, doi: 10.1016/j.physleta.2019.03.045. 

[183] S. Kumar, C. Terashima, A. Fujishima, V. Krishnan, and S. Pitchaimuthu, 

“Photocatalytic degradation of organic pollutants in water using graphene oxide 

composite,” in A New Generation Material Graphene: Applications in Water 

Technology, Springer, 2018, pp. 413–438. doi: 10.1007/978-3-319-75484-0_17. 

[184] X. X. Wang, G. F. Yu, J. Zhang, M. Yu, S. Ramakrishna, and Y. Z. Long, 

“Conductive polymer ultrafine fibers via electrospinning: Preparation, physical 

properties and applications,” Progress in Materials Science, vol. 115, p. 100704, 

2021, doi: 10.1016/j.pmatsci.2020.100704. 

[185] N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O. N. Oliveira, and L. Lin, “A review on 

chemiresistive room temperature gas sensors based on metal oxide 

nanostructures, graphene and 2D transition metal dichalcogenides,” 

Microchimica Acta, vol. 185, no. 4, 2018, doi: 10.1007/s00604-018-2750-5. 

[186] M. El Rhazi, S. Majid, M. Elbasri, F. E. Salih, L. Oularbi, and K. Lafdi, “Recent 

progress in nanocomposites based on conducting polymer: application as 

electrochemical sensors,” International Nano Letters, vol. 8, no. 2, pp. 79–99, 

2018, doi: 10.1007/s40089-018-0238-2. 

[187] T. O. Magu, A. U. Agobi, L. HITLER, and P. M. Dass, “A Review on Conducting 

Polymers-Based Composites for Energy Storage Application %J Journal of 

Chemical Reviews,” vol. 1, no. Issue 1, pp. 1-77., pp. 19–34, 2019. 

[188] A. Bag and N. E. Lee, “Gas sensing with heterostructures based on two-

dimensional nanostructured materials: A review,” Journal of Materials Chemistry 

C, vol. 7, no. 43, pp. 13367–13383, 2019, doi: 10.1039/c9tc04132j. 

[189] X. Zhou et al., “Ordered porous metal oxide semiconductors for gas sensing,” 

Chinese Chemical Letters, vol. 29, no. 3, pp. 405–416, 2018, doi: 

10.1016/j.cclet.2017.06.021. 

[190] J. M. Walker, S. A. Akbar, and P. A. Morris, “Synergistic effects in gas sensing 

semiconducting oxide nano-heterostructures: A review,” Sensors and Actuators, 

B: Chemical, vol. 286, pp. 624–640, 2019, doi: 10.1016/j.snb.2019.01.049. 

[191] V. P. Ananikov, “Organic-inorganic hybrid nanomaterials,” Nanomaterials, vol. 

9, no. 9, 2019, doi: 10.3390/nano9091197. 

[192] Q. Zhang et al., “Polyaniline decorated MoO3 nanorods: Synthesis, 

characterization and promoting effect to Pt electrocatalyst,” International Journal 

of Hydrogen Energy, vol. 43, no. 11, pp. 5603–5609, 2018, doi: 

10.1016/j.ijhydene.2018.01.152. 



© C
OPYRIG

HT U
PM

111 

[193] S. Bai et al., “Preparation of conducting films based on α-MoO3/PANI hybrids 

and their sensing properties to triethylamine at room temperature,” Sensors and 

Actuators, B: Chemical, vol. 239, pp. 131–138, 2017, doi: 

10.1016/j.snb.2016.07.174. 

[194] F. Jiang et al., “MoO3/PANI coaxial heterostructure nanobelts by in situ 

polymerization for high performance supercapacitors,” Nano Energy, vol. 7, pp. 

72–79, 2014, doi: 10.1016/j.nanoen.2014.04.007. 

[195] S. Yang et al., “Defect-original room-temperature hydrogen sensing of MoO3 

nanoribbon: Experimental and theoretical studies,” Sensors and Actuators, B: 

Chemical, vol. 260, pp. 21–32, 2018, doi: 10.1016/j.snb.2017.12.166. 

[196] S. Yang et al., “Enhancement of the room-temperature hydrogen sensing 

performance of MoO3 nanoribbons annealed in a reducing gas,” International 

Journal of Hydrogen Energy, vol. 44, no. 14, pp. 7725–7733, 2019, doi: 

10.1016/j.ijhydene.2019.01.205. 

[197] M. M. Alkhabet, S. H. Girei, S. Paiman, N. Arsad, M. A. Mahdi, and M. H. 

Yaacob, “Highly Sensitive Hydrogen Sensor Based on Palladium-Coated 

Tapered Optical Fiber at Room Temperature,” Engineering Proceedings, vol. 2, 

no. 1, p. 8, Nov. 2020, doi: 10.3390/ecsa-7-08186. 

[198] N. Guru Prakash, M. Dhananjaya, A. Lakshmi Narayana, and O. M. Hussain, 

“One-dimensional MoO3/Pd nanocomposite electrodes for high performance 

supercapacitors,” Materials Research Express, vol. 6, no. 8, 2019, doi: 

10.1088/2053-1591/ab273e. 

[199] S. S. Kalanur, I. H. Yoo, and H. Seo, “Pd on MoO3 nanoplates as small-polaron-

resonant eye-readable gasochromic and electrical hydrogen sensor,” Sensors and 

Actuators, B: Chemical, vol. 247, pp. 357–365, 2017, doi: 

10.1016/j.snb.2017.03.033. 

[200] G. Liao, Q. Li, and Z. Xu, “The chemical modification of polyaniline with 

enhanced properties: A review,” Progress in Organic Coatings, vol. 126, pp. 35–

43, 2019, doi: 10.1016/j.porgcoat.2018.10.018. 

[201] N. Kumari Jangid, S. Jadoun, and N. Kaur, “A review on high-throughput 

synthesis, deposition of thin films and properties of polyaniline,” European 

Polymer Journal, vol. 125, p. 109485, 2020, doi: 

10.1016/j.eurpolymj.2020.109485. 

[202] H. Albaris and G. Karuppasamy, “Inspection of room temperature hydrogen 

sensing property of nanostructured polypyrrole/polyaniline hetero-junctions 

synthesized by one-pot interfacial polymerization,” Materials Chemistry and 

Physics, vol. 250, p. 123153, 2020, doi: 10.1016/j.matchemphys.2020.123153. 

[203] R. Pal, S. L. Goyal, I. Rawal, and S. Sharma, “Efficient room temperature 

methanol sensors based on polyaniline/graphene micro/nanocomposites,” Iranian 



© C
OPYRIG

HT U
PM

112 

Polymer Journal (English Edition), vol. 29, no. 7, pp. 591–603, 2020, doi: 

10.1007/s13726-020-00822-8. 

[204] A. Roy et al., “Polyaniline-multiwalled carbon nanotube (PANI-MWCNT): 

Room temperature resistive carbon monoxide (CO) sensor,” Synthetic Metals, 

vol. 245, pp. 182–189, 2018, doi: 10.1016/j.synthmet.2018.08.024. 

[205] A. Bora, K. Mohan, D. Pegu, C. B. Gohain, and S. K. Dolui, “A room temperature 

methanol vapor sensor based on highly conducting carboxylated multi-walled 

carbon nanotube/polyaniline nanotube composite,” Sensors and Actuators, B: 

Chemical, vol. 253, pp. 977–986, 2017, doi: 10.1016/j.snb.2017.07.023. 

[206] C. Sandaruwan, H. M. P. C. K. Herath, T. S. E. F. Karunarathne, S. P. Ratnayake, 

G. A. J. Amaratunga, and D. P. Dissanayake, “Polyaniline/palladium nanohybrids 

for moisture and hydrogen detection,” Chemistry Central Journal, vol. 12, no. 1, 

pp. 1–13, 2018, doi: 10.1186/s13065-018-0461-y. 

[207] J. S. Do, Y. Y. Chen, and M. L. Tsai, “Planar solid-state amperometric hydrogen 

gas sensor based on Nafion®/Pt/nano-structured polyaniline/Au/Al2O3 

electrode,” International Journal of Hydrogen Energy, vol. 43, no. 31, pp. 14848–

14858, 2018, doi: 10.1016/j.ijhydene.2018.06.028. 

[208] G. Mashao et al., “Zinc-based zeolitic benzimidazolate framework/polyaniline 

nanocomposite for electrochemical sensing of hydrogen gas,” Materials 

Chemistry and Physics, vol. 230, pp. 287–298, 2019, doi: 

10.1016/j.matchemphys.2019.03.079. 

[209] N. D. Sonwane, M. D. Maity, and S. B. Kondawar, “Conducting 

polyaniline/SnO2 nanocomposite for room temperature hydrogen gas sensing,” 

Materials Today: Proceedings, vol. 15, pp. 447–453, 2019, doi: 

10.1016/j.matpr.2019.04.106. 

[210] Y. Chunxia, D. Hui, D. Wei, and X. Chaowei, “Weakly-coupled multicore optical 

fiber taper-based high-temperature sensor,” Sensors and Actuators A: Physical, 

vol. 280, pp. 139–144, 2018. 

[211] K. Tian, M. Zhang, G. Farrell, R. Wang, E. Lewis, and P. Wang, “Highly sensitive 

strain sensor based on composite interference established within S-tapered 

multimode fiber structure,” Optics Express, vol. 26, no. 26, p. 33982, 2018, doi: 

10.1364/oe.26.033982. 

[212] C. Zhao, P. Gai, R. Song, Y. Chen, J. Zhang, and J.-J. Zhu, “Nanostructured 

material-based biofuel cells: recent advances and future prospects,” Chemical 

Society Reviews, vol. 46, no. 5, pp. 1545–1564, 2017. 

[213] X. Liu, T. Ma, N. Pinna, and J. Zhang, “Two-Dimensional Nanostructured 

Materials for Gas Sensing,” Advanced Functional Materials, vol. 27, no. 37, p. 

1702168, 2017, doi: 10.1002/adfm.201702168. 



© C
OPYRIG

HT U
PM

113 

[214] O. Lupan et al., “Influence of CuO nanostructures morphology on hydrogen gas 

sensing performances,” Microelectronic Engineering, vol. 164, pp. 63–70, 2016, 

doi: 10.1016/j.mee.2016.07.008. 

[215] T. T. D. Nguyen et al., “Effect of core and surface area toward hydrogen gas 

sensing performance using Pd@ZnO core-shell nanoparticles,” Journal of 

Colloid and Interface Science, vol. 587, pp. 252–259, 2021, doi: 

10.1016/j.jcis.2020.12.017. 

[216] Q. N. Abdullah, A. R. Ahmed, A. M. Ali, F. K. Yam, Z. Hassan, and M. 

Bououdina, “Novel SnO2-coated β-Ga2O3 nanostructures for room temperature 

hydrogen gas sensor,” International Journal of Hydrogen Energy, vol. 46, no. 9, 

pp. 7000–7010, 2021, doi: 10.1016/j.ijhydene.2020.11.109. 

[217] T. T. D. Nguyen, D. Van Dao, I. H. Lee, Y. T. Yu, and S. Y. Oh, “High response 

and selectivity toward hydrogen gas detection by In2O3 doped Pd@ZnO core-

shell nanoparticles,” Journal of Alloys and Compounds, vol. 854, p. 157280, 

2021, doi: 10.1016/j.jallcom.2020.157280. 

[218] L. Coelho, J. M. M. M. de Almeida, J. L. Santos, and D. Viegas, “Fiber optic 

hydrogen sensor based on an etched Bragg grating coated with palladium,” 

Applied Optics, vol. 54, no. 35, p. 10342, 2015, doi: 10.1364/ao.54.010342. 

[219] A. Omidvar, B. Jaleh, and M. Nasrollahzadeh, “Preparation of the GO/Pd 

nanocomposite and its application for the degradation of organic dyes in water,” 

Journal of Colloid and Interface Science, vol. 496, pp. 44–50, 2017, doi: 

10.1016/j.jcis.2017.01.113. 

[220] D.-T. T. Phan and G.-S. S. Chung, “Characteristics of resistivity-type hydrogen 

sensing based on palladium-graphene nanocomposites,” International Journal of 

Hydrogen Energy, vol. 39, no. 1, pp. 620–629, 2014, doi: 

10.1016/j.ijhydene.2013.08.107. 

[221] Y. Zou et al., “Doping composite of polyaniline and reduced graphene oxide with 

palladium nanoparticles for room-temperature hydrogen-gas sensing,” 

international journal of hydrogen energy, vol. 41, no. 11, pp. 5396–5404, 2016, 

doi: 10.1016/j.ijhydene.2016.02.023. 

[222] S. Dhanavel, E. A. K. Nivethaa, K. Dhanapal, V. K. Gupta, V. Narayanan, and A. 

Stephen, “α-MoO3/polyaniline composite for effective scavenging of Rhodamine 

B, Congo red and textile dye effluent,” RSC Advances, vol. 6, no. 34, pp. 28871–

28886, 2016, doi: 10.1039/c6ra02576e. 

[223] S. Dhanavel, E. A. K. Nivethaa, K. Dhanapal, V. K. Gupta, V. Narayanan, and A. 

Stephen, “α-MoO3/polyaniline composite for effective scavenging of Rhodamine 

B, Congo red and textile dye effluent,” RSC Advances, vol. 6, no. 34, pp. 28871–

28886, 2016, doi: 10.1039/c6ra02576e. 



© C
OPYRIG

HT U
PM

114 

[224] G. Liu et al., “ProHits: Integrated software for mass spectrometry-based 

interaction proteomics,” Nature Publishing Group, 2010. doi: 10.1038/nbt1010-

1015. 

[225] B. J. Inkson, Scanning Electron Microscopy (SEM) and Transmission Electron 

Microscopy (TEM) for Materials Characterization. Elsevier Ltd, 2016. doi: 

10.1016/B978-0-08-100040-3.00002-X. 

[226] M. Abd Mutalib, M. A. Rahman, M. H. D. Othman, A. F. Ismail, and J. Jaafar, 

Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) 

Spectroscopy. Elsevier B.V., 2017. doi: 10.1016/B978-0-444-63776-5.00009-7. 

[227] S. Sharma et al., “Structural-mechanical characterization of nanoparticle 

exosomes in human saliva, using correlative AFM, FESEM, and force 

spectroscopy,” ACS Nano, vol. 4, no. 4, pp. 1921–1926, 2010. 

[228] C. Cardell and I. Guerra, “An overview of emerging hyphenated SEM-EDX and 

Raman spectroscopy systems: Applications in life, environmental and materials 

sciences,” TrAC Trends in Analytical Chemistry, vol. 77, pp. 156–166, 2016. 

[229] A. N. Patel and C. Kranz, “(Multi)functional Atomic Force Microscopy 

Imaging,” Annual Review of Analytical Chemistry, vol. 11, pp. 329–350, 2018, 

doi: 10.1146/annurev-anchem-061417-125716. 

[230] M. Krieg et al., “Atomic force microscopy-based mechanobiology,” Nature 

Reviews Physics, vol. 1, no. 1, pp. 41–57, 2019, doi: 10.1038/s42254-018-0001-

7. 

[231] S. Vahabi, B. Nazemi Salman, and A. Javanmard, “Atomic force microscopy 

application in biological research: A review study,” Iranian Journal of Medical 

Sciences, vol. 38, no. 2, pp. 76–83, 2013. 

[232] Y. Yan, S. Chang, T. Wang, and Y. Geng, “Scratch on polymer materials using 

AFM tip-based approach: a review,” Polymers (Basel), vol. 11, no. 10, p. 1590, 

2019. 

[233] C. F. Holder and R. E. Schaak, “Tutorial on Powder X-ray Diffraction for 

Characterizing Nanoscale Materials,” ACS Nano, vol. 13, no. 7, pp. 7359–7365, 

2019, doi: 10.1021/acsnano.9b05157. 

[234] A. Chauhan, “Powder XRD Technique and its Applications in Science and 

Technology,” Journal of Analytical & Bioanalytical Techniques, vol. 5, no. 6, 

2014, doi: 10.4172/2155-9872.1000212. 

[235] J. Messick, “The history of the International Centre for Diffraction Data,” Powder 

Diffraction, vol. 27, no. 1, pp. 36–44, 2012, doi: 10.1017/S0885715612000085. 

[236] K. Inaba, S. Kobayashi, K. Uehara, A. Okada, S. L. Reddy, and T. Endo, “High 

Resolution X-Ray Diffraction Analyses of 

(La,Sr)MnO&lt;sub&gt;3&lt;/sub&gt;/ZnO/Sapphire(0001) Double 



© C
OPYRIG

HT U
PM

115 

Heteroepitaxial Films,” Advances in Materials Physics and Chemistry, vol. 03, 

no. 01, pp. 72–89, 2013, doi: 10.4236/ampc.2013.31a010. 

[237] A. S. M. Noor, A. Talah, M. A. A. Rosli, P. Thirunavakkarasu, and N. Tamchek, 

“Increased sensitivity of Au-Pd nanolayer on tapered optical fiber sensor for 

detecting aqueous Ethanol,” Journal of the European Optical Society, vol. 13, no. 

1, Dec. 2017, doi: 10.1186/s41476-017-0056-6. 

[238] N. E. González-Sierra et al., “Tapered optical fiber functionalized with palladium 

nanoparticles by drop casting and laser radiation for H2 and volatile organic 

compounds sensing purposes,” Sensors (Switzerland), vol. 17, no. 9, Sep. 2017, 

doi: 10.3390/s17092039. 

[239] R. Kumar et al., “Fast response and recovery of hydrogen sensing in Pd-Pt 

nanoparticle-graphene composite layers,” Nanotechnology, vol. 22, no. 27, p. 

275719, 2011, doi: 10.1088/0957-4484/22/27/275719. 

[240] Z. Wang, C. Xu, G. Gao, and X. Li, “Facile synthesis of well-dispersed Pd-

graphene nanohybrids and their catalytic properties in 4-nitrophenol reduction,” 

RSC Advances, vol. 4, no. 26, pp. 13644–13651, 2014, doi: 10.1039/c3ra47721e. 

[241] U. Holzwarth and N. Gibson, “The Scherrer equation versus the ‘Debye-Scherrer 

equation,’” Nature Nanotechnology, vol. 6, no. 9. Nature Publishing Group, p. 

534, 2011. doi: 10.1038/nnano.2011.145. 

[242] M. Rafi Shaik et al., “Green synthesis and characterization of palladium 

nanoparticles using origanum vulgare L. extract and their catalytic activity,” 

Molecules, vol. 22, no. 1, Jan. 2017, doi: 10.3390/molecules22010165. 

[243] M. Khan et al., “Biogenic synthesis of palladium nanoparticles using Pulicaria 

glutinosa extract and their catalytic activity towards the Suzuki coupling 

reaction,” Dalton Transactions, vol. 43, no. 24, pp. 9026–9031, Jun. 2014, doi: 

10.1039/c3dt53554a. 

[244] R. Jain, A. Sinha, and A. L. Khan, “Polyaniline-graphene oxide nanocomposite 

sensor for quantification of calcium channel blocker levamlodipine,” Materials 

Science and Engineering C, vol. 65, no. April, pp. 205–214, 2016, doi: 

10.1016/j.msec.2016.03.115. 

[245] K. Hassan, A. S. M. I. Uddin, and G.-S. Chung, “Hydrogen sensing properties of 

Pt/Pd bimetal decorated on highly hydrophobic Si nanowires,” international 

journal of hydrogen energy, vol. 41, no. 25, pp. 10991–11001, 2016. 

[246] S. Shamsi, A. A. Alagan, S. N. E. Sarchio, and F. Md Yasin, “Synthesis, 

characterization, and toxicity assessment of Pluronic F127-functionalized 

graphene oxide on the embryonic development of Zebrafish (Danio Rerio),” 

International Journal of Nanomedicine, vol. 15, pp. 8311–8329, 2020, doi: 

10.2147/IJN.S271159. 



© C
OPYRIG

HT U
PM

116 

[247] P. Chamoli, M. K. Das, and K. K. Kar, “Structural, optical and electronic 

characteristics of N-doped graphene nanosheets synthesized using urea as 

reducing agent and nitrogen precursor,” Materials Research Express, vol. 4, no. 

1, p. 015012, 2017. 

[248] H. Huang, Y. Wang, Y. Zhang, Z. Niu, and X. Li, “Amino-functionalized 

graphene oxide for Cr (VI), Cu (II), Pb (II) and Cd (II) removal from industrial 

wastewater,” Open Chemistry, vol. 18, no. 1, pp. 97–107, 2020. 

[249] K. G. Sun and S. H. Hur, “Highly sensitive non-enzymatic glucose sensor based 

on Pt nanoparticle decorated graphene oxide hydrogel,” Sensors and Actuators B: 

Chemical, vol. 210, pp. 618–623, 2015. 

[250] A. Aziz et al., “Silver/graphene nanocomposite-modified optical fiber sensor 

platform for ethanol detection in water medium,” Sensors and Actuators B: 

Chemical, vol. 206, pp. 119–125, 2015. 

[251] M. M. Mohammadi, A. Kumar, J. Liu, Y. Liu, T. Thundat, and M. T. Swihart, 

“Hydrogen Sensing at Room Temperature Using Flame-Synthesized Palladium-

Decorated Crumpled Reduced Graphene Oxide Nanocomposites,” ACS Sensors, 

vol. 5, no. 8, pp. 2344–2350, 2020, doi: 10.1021/acssensors.0c01040. 

[252] X. Tong et al., “Controllable synthesis of graphene sheets with different numbers 

of layers and effect of the number of graphene layers on the specific capacity of 

anode material in lithium-ion batteries,” Journal of Solid State Chemistry, vol. 

184, no. 5, pp. 982–989, 2011. 

[253] D. R. Rout, P. Senapati, H. Sutar, D. C. Sau, and R. Murmu, “Graphene Oxide 

(GO) Supported Palladium (Pd) Nanocomposites for Enhanced Hydrogenation,” 

Graphene, vol. 08, no. 03, pp. 33–51, 2019, doi: 10.4236/graphene.2019.83003. 

[254] A. N. Jarad, “Synthesis and characterization of conductive polyaniline using 24 

hours chemical oxidative process for organic solar cells.” Universiti Sains 

Malaysia, 2017. 

[255] A. N. J. Al-Daghman, “Optical Characteristics of Conductive Polymer 

Polyaniline PANI-EB,” International Journal for Research in Applied Science 

and Engineering Technology, vol. 6, no. 6, pp. 1555–1560, 2018, doi: 

10.22214/ijraset.2018.6227. 

[256] A. Shabaneh, “Development Of Chemical Sensors Based On Tapered Optical 

Fiber Tip Coated With Nanostructured Thin Films,” Universiti Putra Malaysia, 

2015. 

[257] H. Wang, Q. Hao, X. Yang, L. Lu, and X. Wang, “Effect of graphene oxide on 

the properties of its composite with polyaniline,” ACS Appl Mater Interfaces, vol. 

2, no. 3, pp. 821–828, 2010. 

[258] M. Manoj, K. M. Anilkumar, B. Jinisha, and S. Jayalekshmi, “Polyaniline–

Graphene Oxide based ordered nanocomposite electrodes for high-performance 



© C
OPYRIG

HT U
PM

117 

supercapacitor applications,” Journal of Materials Science: Materials in 

Electronics, vol. 28, no. 19, pp. 14323–14330, 2017, doi: 10.1007/s10854-017-

7292-9. 

[259] G. Gaikwad, P. Patil, D. Patil, and J. Naik, “Synthesis and evaluation of gas 

sensing properties of PANI based graphene oxide nanocomposites,” Materials 

Science and Engineering: B, vol. 218, pp. 14–22, 2017. 

[260] M. Manoj, K. M. Anilkumar, B. Jinisha, and S. Jayalekshmi, “Polyaniline–

Graphene Oxide based ordered nanocomposite electrodes for high-performance 

supercapacitor applications,” Journal of Materials Science: Materials in 

Electronics, vol. 28, no. 19, pp. 14323–14330, 2017. 

[261] N. Arjun, K. Uma, G.-T. Pan, T. C. K. Yang, and G. Sharmila, “One-pot synthesis 

of covalently functionalized reduced graphene oxide–polyaniline nanocomposite 

for supercapacitor applications,” Clean Technologies and Environmental Policy, 

vol. 20, no. 9, pp. 2025–2035, 2018. 

[262] K. Arora et al., “Optical fiber coated Zinc Oxide (ZnO) nanorods decorated with 

Palladium (Pd) for hydrogen sensing,” Sensors and Actuators, B: Chemical, vol. 

326, no. 1, p. 109291, 2020, doi: 10.1016/j.optmat.2019.109291. 

[263] S. Bai, J. Ye, R. Luo, A. Chen, and D. Li, “Hierarchical polyaniline microspheres 

loading on flexible PET films for NH3 sensing at room temperature,” RSC 

Advances, vol. 6, no. 9, pp. 6939–6945, 2016, doi: 10.1039/c5ra19079g. 

[264] Y. Chen et al., “Microbial reduction of graphene oxide by Azotobacter 

chroococcum,” Chemical Physics Letters, vol. 677, no. June 2017, pp. 143–147, 

2017, doi: 10.1016/j.cplett.2017.04.002. 

[265] K. Garg, R. Shanmugam, and P. C. Ramamurthy, “New covalent hybrids of 

graphene oxide with core modified and -expanded porphyrins: Synthesis, 

characterisation and their non linear optical properties,” Carbon N Y, vol. 122, 

no. February 2018, pp. 307–318, 2017, doi: 10.1016/j.carbon.2017.06.052. 

[266] L. Liu, W. Zhou, Y. Chen, S. Jiao, and P. Huang, “Pressure-assisted synthesis of 

a polyaniline-graphite oxide (PANI-GO) hybrid and its friction reducing behavior 

in liquid paraffin (LP),” New Journal of Chemistry, vol. 42, no. 2, pp. 936–942, 

2018, doi: 10.1039/c7nj03016a. 

[267] D.-T. Phan and G.-S. Chung, “A novel Pd nanocube–graphene hybrid for 

hydrogen detection,” Sensors and Actuators B: Chemical, vol. 199, pp. 354–360, 

2014. 

[268] M. Habib, M. Feteha, M. Soliman, A. A. Motagaly, S. El-Sheikh, and S. Ebrahim, 

“Effect of doped polyaniline/graphene oxide ratio as a hole transport layer on the 

performance of perovskite solar cell,” Journal of Materials Science: Materials in 

Electronics, vol. 31, no. 21, pp. 18870–18882, Nov. 2020, doi: 10.1007/s10854-

020-04425-0. 



© C
OPYRIG

HT U
PM

118 

[269] T. H. Chiang and H. C. Yeh, “The synthesis of α-MoO3 by ethylene glycol,” 

Materials, vol. 6, no. 10, pp. 4609–4625, 2013. 

[270] S. Sau, S. Chakraborty, T. Das, and M. Pal, “Ethanol Sensing Properties of 

Nanocrystalline α-MoO3,” Frontiers in Materials, vol. 6, no. November, 2019, 

doi: 10.3389/fmats.2019.00285. 

[271] K. R. Anilkumar, A. Parveen, G. R. Badiger, and M. V. N. Ambika Prasad, 

“Effect of molybdenum trioxide (MoO3) on the electrical conductivity of 

polyaniline,” Physica B: Condensed Matter, vol. 404, no. 12–13, pp. 1664–1667, 

2009, doi: 10.1016/j.physb.2009.01.046. 

[272] I. Darmadi, F. A. A. Nugroho, and C. Langhammer, “High-Performance 

Nanostructured Palladium-Based Hydrogen Sensors - Current Limitations and 

Strategies for Their Mitigation,” ACS Sensors, vol. 5, no. 11, pp. 3306–3327, 

2020, doi: 10.1021/acssensors.0c02019. 

[273] S. K. Sen et al., “Characterization and Antibacterial Activity Study of 

Hydrothermally Synthesized h-MoO3 Nanorods and α-MoO3 Nanoplates,” 

Bionanoscience, vol. 9, no. 4, pp. 873–882, 2019, doi: 10.1007/s12668-019-

00671-7. 

[274] S. Dhanavel, E. Nivethaa, V. Narayanan, and A. Stephen, “Visible Light Induced 

Photocatalytic Degradation of Methylene Blue using Polyaniline Modified 

Molybdenum Trioxide,” Mechanika, vol. 9, no. April, pp. 1–6, 2017, doi: 

10.2412/mmse.63.64.916. 

[275] S. Balakumar, R. A. Rakkesh, A. K. Prasad, S. Dash, and A. K. Tyagi, 

“Nanoplatelet structures of MoO 3 for H 2 gas sensors,” in International 

Conference on Nanoscience, Engineering and Technology (ICONSET 2011), 

2011, pp. 514–517. 

[276] S. Puebla, A. Mariscal-Jiménez, R. S. Galán, C. Munuera, and A. Castellanos-

Gomez, “Optical-based thickness measurement of MoO3 nanosheets,” 

Nanomaterials, vol. 10, no. 7, pp. 1–10, Jul. 2020, doi: 10.3390/nano10071272. 

[277] H. Dong et al., “Polymer framework with continuous pores for hydrogen getters: 

Molding and a boost in getter rate,” ACS Applied Polymer Materials, vol. 2, no. 

8, pp. 3243–3250, 2020. 

[278] N. Javahiraly, “Review on hydrogen leak detection: comparison between fiber 

optic sensors based on different designs with palladium,” Optical Engineering, 

vol. 54, no. 3, p. 030901, 2015. 

[279] D. Punetha, M. Kar, and S. K. Pandey, “A new type low-cost, flexible and 

wearable tertiary nanocomposite sensor for room temperature hydrogen gas 

sensing,” Scientific Reports, vol. 10, no. 1, pp. 1–11, 2020, doi: 10.1038/s41598-

020-58965-w. 



© C
OPYRIG

HT U
PM

119 

[280] H. Yan et al., “A fast response hydrogen sensor with Pd metallic grating onto a 

fiber’s end-face,” Optics Communications, vol. 359, pp. 157–161, 2016, doi: 

10.1016/j.optcom.2015.09.041. 

[281] M. Yang, H. Liu, D. Zhang, and X. Tong, “Hydrogen sensing performance 

comparison of Pd layer and Pd/WO3 composite thin film coated on side-polished 

single-and multimode fibers,” Sensors and Actuators B: Chemical, vol. 149, no. 

1, pp. 161–164, 2010. 

[282] E. A. Moro, M. D. Todd, and A. Puckett, “A performance comparison of 

transducer designs for interferometric fiber optic accelerometers,” in Smart 

Sensor Phenomena, Technology, Networks, and Systems 2010, Mar. 2010, vol. 

7648, p. 76480G. doi: 10.1117/12.847248. 

[283] P. T. Arasu, A. S. M. Noor, A. L. Khalaf, and M. H. Yaacob, “Highly sensitive 

plastic optical fiber with palladium sensing layer for detection of hydrogen gas,” 

in 2016 IEEE Region 10 Symposium (TENSYMP), 2016, pp. 390–393. 

[284] Y. H. Kim, M. J. Kim, B. S. Rho, M.-S. Park, J.-H. Jang, and B. H. Lee, “Ultra 

sensitive fiber-optic hydrogen sensor based on high order cladding mode,” IEEE 

Sensors Journal, vol. 11, no. 6, pp. 1423–1426, 2010. 

[285] H. Song et al., “Optical fiber hydrogen sensor based on an annealing-stimulated 

Pd–Y thin film,” Sensors and Actuators B: Chemical, vol. 216, pp. 11–16, 2015. 

[286] S. Basu and P. K. Basu, “Nanocrystalline metal oxides for methane sensors: role 

of noble metals,” Journal of Sensors, vol. 2009, 2009. 

[287] B. Renganathan, D. Sastikumar, R. Srinivasan, and A. R. Ganesan, 

“Nanocrystalline samarium oxide coated fiber optic gas sensor,” Materials 

Science and Engineering: B, vol. 186, pp. 122–127, 2014. 

[288] J. Rymarczyk, E. Czerwosz, R. Diduszko, and M. Kozłowski, “The thermal 

stability of the carbon-palladium films for hydrogen sensor applications,” in 

Photonics Applications in Astronomy, Communications, Industry, and High 

Energy Physics Experiments 2017, 2017, vol. 10445, p. 1044550. 

[289] R. K. Joshi, S. Krishnan, M. Yoshimura, and A. Kumar, “Pd nanoparticles and 

thin films for room temperature hydrogen sensor,” Nanoscale Res Lett, vol. 4, no. 

10, pp. 1191–1196, 2009. 

[290] S. F. Silva, L. Coelho, O. Frazão, J. L. Santos, and F. X. Malcata, “A review of 

palladium-based fiber-optic sensors for molecular hydrogen detection,” IEEE 

Sensors Journal, vol. 12, no. 1, pp. 93–102, 2011. 

[291] G. Behzadi Pour, L. Fekri Aval, M. Nasiri Sarvi, S. Fekri Aval, and H. Nazarpour 

Fard, “Hydrogen sensors: palladium-based electrode,” Journal of Materials 

Science: Materials in Electronics, vol. 30, no. 9, pp. 8145–8153, 2019. 



© C
OPYRIG

HT U
PM

120 

[292] A. J. Corso et al., “Room-temperature optical detection of hydrogen gas using 

palladium nano-islands,” International Journal of Hydrogen Energy, vol. 43, no. 

11, pp. 5783–5792, 2018. 

[293] K. Arora, S. Srivastava, P. R. Solanki, and N. K. Puri, “Electrochemical Hydrogen 

Gas Sensing Employing Palladium Oxide/Reduced Graphene Oxide (PdO-rGO) 

Nanocomposites,” IEEE Sensors Journal, vol. 19, no. 18, pp. 8262–8271, 2019, 

doi: 10.1109/JSEN.2019.2918360. 

[294] M. H. Yaacob, M. Breedon, K. Kalantar-Zadeh, and W. Wlodarski, “Absorption 

spectral response of nanotextured WO3 thin films with Pt catalyst towards H2,” 

Sensors and Actuators B: Chemical, vol. 137, no. 1, pp. 115–120, 2009. 

[295] D. T. Phan and G. S. Chung, “Characteristics of resistivity-type hydrogen sensing 

based on palladium-graphene nanocomposites,” International Journal of 

Hydrogen Energy, vol. 39, no. 1, pp. 620–629, 2014, doi: 

10.1016/j.ijhydene.2013.08.107. 

[296] D. T. Phan and G. S. Chung, “A novel Pd nanocube-graphene hybrid for hydrogen 

detection,” Sensors and Actuators, B: Chemical, vol. 199, pp. 354–360, 2014, 

doi: 10.1016/j.snb.2014.04.013. 

[297] M. G. Chung et al., “Flexible hydrogen sensors using graphene with palladium 

nanoparticle decoration,” Sensors and Actuators B: Chemical, vol. 169, pp. 387–

392, 2012. 

[298] U. Lange, T. Hirsch, V. M. Mirsky, and O. S. Wolfbeis, “Hydrogen sensor based 

on a graphene-palladium nanocomposite,” Electrochimica Acta, vol. 56, no. 10, 

pp. 3707–3712, 2011, doi: 10.1016/j.electacta.2010.10.078. 

[299] N. A. M. Yahya, M. R. Y. Hamid, B. H. Ong, N. A. Rahman, M. A. Mahdi, and 

M. H. Yaacob, “H2 Gas Sensor Based on Pd/ZnO Nanostructures Deposited on 

Tapered Optical Fiber,” IEEE Sensors Journal, vol. 20, no. 6, pp. 2982–2990, 

2020, doi: 10.1109/JSEN.2019.2957838. 

[300] M. Parmar, C. Balamurugan, and D.-W. Lee, “PANI and graphene/PANI 

nanocomposite films—Comparative toluene gas sensing behavior,” Sensors, vol. 

13, no. 12, pp. 16611–16624, 2013. 

[301] S. Pandey, “Highly sensitive and selective chemiresistor gas/vapor sensors based 

on polyaniline nanocomposite: A comprehensive review,” Journal of Science: 

Advanced Materials and Devices, vol. 1, no. 4, pp. 431–453, 2016, doi: 

10.1016/j.jsamd.2016.10.005. 

[302] T. Sen, S. Mishra, and N. G. Shimpi, “Synthesis and sensing applications of 

polyaniline nanocomposites: A review,” RSC Advances, vol. 6, no. 48, pp. 42196–

42222, 2016, doi: 10.1039/c6ra03049a. 

[303] K. Arora, N. K. Puri, I. Venditti, and C. Cametti, “Presentation preference : Poster 

Advanced Sensor Laboratory , Department of Applied Physics , Delhi 


	Blank Page



