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Nowadays, electric vehicles have inspired many researchers and manufacturers 
to use them as an alternative to fuel vehicles with zero carbon emissions, making 
them safer for the environment. However, there are significant technical barriers 
to widespread adoption of battery electric vehicles (BEVs), such as shorter 
driving ranges, longer charging times, and limited battery capacity and volume. 
Previous research has suggested using hybrid energy storage systems (HESS) 
such as supercapacitors, flywheels, and solar power as auxiliary power sources 
rather than batteries alone to extend battery life and driving range. As a HESS 
in electric vehicles, the supercapacitor and battery are used to complement each 
other in this thesis. Due to their high power density and lack of chemical reaction, 
supercapacitors can be used in BEVs to mitigate instantaneous power 
requirements. The modelling of battery, supercapacitor, and battery-
supercapacitor models has been studied and developed using Matlab simulation 
with experimental validation data. The proposed energy management system 
(EMS) with the control strategy of the fuzzy-PI validated the proposed topology 
between battery-supercapacitor. This EMS with the proposed fuzzy rules 
enables the battery to supply average power and also enables the 
supercapacitor to supply high peak power to achieve the battery’s current peak 
reduction in a short period of time. The different speed profile patterns in EVs 
differ from smooth driving to aggressive driving, so three different driving cycles 
are used in this thesis. These driving cycles are the urban dynamic driving cycle 
(UDDS), the New European Driving Cycle (NEDC) and the Supplemental 
Federal Test Procedure (US06). EV was tested in four different case scenarios 
with initial battery state of charge (SoC) conditions of 100, 80, 60, and 40 percent 
of battery capacity for each full driving cycle. 
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The results of the proposed topology and control strategy using HESS in 
comparison to BEV have been highlighted in terms of SoC, voltage, current, 
power, and battery energy consumption. This research improves the modelling 
process of a battery by estimating the remaining capacity inside the battery cell 
by using terminal voltage. The model has been validated against experimental 
data with a maximum relative error of 0.015V compared to 0.045V in previous 
work. In supercapacitor modeling, a novel method for parameter identification is 
proposed for comparison to the sophisticated methods in the literature. The 
terminal voltage was validated experimentally with a maximum relative error of 
0.045 V, compared to a standard deviation of 0.19 V for a similar experimental 
test profile used in the literature. The proposed topology is validated against the 
full active topology in the literature. The results showed an improvement in the 
proposed topology of 55% in SoC compared to 30% in full active topology in the 
literature. The EMS (Fuzzy-PI) results showed that using HESS instead of BEV 
resulted in 82.6 percent increase in energy consumption. Also, the battery's 
current peak decreased by 81.8 percent using HESS compared to BEV.After 
benchmarking to eight prior studies using three different cycles (UDDS, NEDC, 
and US06), the greatest increase in energy consumption was 38.8%, compared 
to 17% in the literature. The proposed HESS reduces battery peak current by 45 
A, compared to 59 A in previous work. The HESS has been proven to be useful 
in the near future for electric vehicles. 
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Pada masa kini, kenderaan elektrik telah memberi inspirasi kepada ramai 
penyelidik dan pengilang untuk menggunakannya sebagai alternatif kepada 
kenderaan bahan api dengan pelepasan karbon sifar, menjadikannya lebih 
selamat untuk alam sekitar. Walau bagaimanapun, terdapat halangan teknikal 
yang ketara terhadap penggunaan meluas kenderaan elektrik bateri (BEV), 
seperti jarak pemanduan yang lebih pendek, masa pengecasan yang lebih lama 
dan kapasiti dan volum bateri yang terhad. Penyelidikan sebelum ini telah 
mencadangkan penggunaan sistem penyimpanan tenaga hibrid (HESS) seperti 
supercapacitors, roda tenaga, dan tenaga suria sebagai sumber kuasa 
tambahan dan bukannya bateri sahaja untuk memanjangkan hayat bateri dan 
jarak pemanduan. Sebagai HESS dalam kenderaan elektrik, supercapacitor dan 
bateri digunakan untuk saling melengkapi dalam tesis ini. Oleh kerana 
ketumpatan kuasa yang tinggi dan kekurangan tindak balas kimia, 
supercapacitors boleh digunakan dalam BEV untuk mengurangkan keperluan 
kuasa serta-merta. Pemodelan model bateri, supercapacitor, dan bateri-
supercapacitor telah dikaji dan dibangunkan menggunakan simulasi Matlab 
dengan data pengesahan eksperimen. Sistem pengurusan tenaga (EMS) yang 
dicadangkan dengan strategi kawalan fuzzy-PI mengesahkan topologi yang 
dicadangkan antara bateri-supercapacitor. EMS ini dengan peraturan fuzzy 
yang dicadangkan membolehkan bateri membekalkan kuasa purata dan juga 
membolehkan supercapacitor membekalkan kuasa puncak yang tinggi untuk 
mencapai pengurangan puncak semasa bateri dalam tempoh yang singkat. 
Corak profil kelajuan berbeza dalam EV berbeza daripada pemanduan lancar 
kepada pemanduan agresif, jadi tiga kitaran pemanduan berbeza digunakan 
dalam tesis ini. Kitaran pemanduan ini ialah kitaran pemanduan dinamik bandar 
(UDDS), Kitaran Pemanduan Eropah Baharu (NEDC) dan Prosedur Ujian 
Persekutuan Tambahan (US06). EV telah diuji dalam empat senario kes yang 
berbeza dengan keadaan keadaan cas bateri (SoC) awal sebanyak 100, 80, 60 
dan 40 peratus kapasiti bateri untuk setiap kitaran pemanduan penuh. 
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Keputusan topologi dan strategi kawalan yang dicadangkan menggunakan 
HESS berbanding BEV telah diserlahkan dari segi penggunaan tenaga SoC, 
voltan, arus, kuasa dan bateri. Penyelidikan ini menambah baik proses 
pemodelan bateri dengan menganggar baki kapasiti di dalam sel bateri dengan 
menggunakan voltan terminal. Model ini telah disahkan terhadap data 
eksperimen dengan ralat relatif maksimum 0.015V berbanding 0.045V dalam 
kerja sebelumnya. Dalam pemodelan supercapacitor, kaedah baru untuk 
pengenalpastian parameter dicadangkan untuk perbandingan dengan kaedah 
canggih dalam literatur. Voltan terminal telah disahkan secara eksperimen 
dengan ralat relatif maksimum 0.045 V, berbanding sisihan piawai 0.19 V untuk 
profil ujian eksperimen serupa yang digunakan dalam kesusasteraan. Topologi 
yang dicadangkan disahkan terhadap topologi aktif penuh dalam literatur. 
Keputusan menunjukkan peningkatan sebanyak 55% berbanding 30% dalam 
topologi aktif penuh berbanding topologi aktif penuh yang digunakan dalam 
literatur. Keputusan menunjukkan bahawa menggunakan HESS dan bukannya 
BEV menghasilkan peningkatan 82.6 peratus dalam penggunaan tenaga. Selain 
itu, kemuncak semasa bateri menurun sebanyak 81.8 peratus menggunakan 
HESS berbanding BEV. Selepas menanda aras kepada lapan kajian terdahulu 
menggunakan tiga kitaran berbeza (UDDS, NEDC dan US06), peningkatan 
terbesar dalam penggunaan tenaga ialah 38.8%, berbanding 17% dalam 
kesusasteraan. HESS yang dicadangkan mengurangkan arus puncak bateri 
sebanyak 45 A, berbanding 59 A dalam kerja sebelumnya. HESS telah terbukti 
berguna dalam masa terdekat untuk kenderaan elektrik. 
. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Preface 

The fast development in the last decade, especially in industry and 
transportation, makes them the most common factors in climate change and 
global warming.One of the sectors that contributes to pollution and harmful 
substances entering the environment is transportation.Vehicles such as hybrid 
electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric 
vehicles (EVs) can help to reduce dependence on non-renewable fossil fuels 
such as gasoline and diesel [1].Electric vehicles are considered one of the most 
promising transportation tools for addressing global energy and environmental 
issues.The technologies used in electric vehicles vary, but their performance is 
heavily influenced by the energy storage system (ESS) [2] and [3].The energy 
consumption by sectors is shown in Figure 1.1.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  1.1 : Energy consumption classified by sector adopted [4] 
 
 
The increasing number of automobiles on the road results in the generation of 
various gases such as carbon dioxide (CO2), nitrogen dioxide (NO2), nitrogen 
oxides (NO), with 25–30% of total greenhouse gas emissions mainly CO2 [5]. 
There has become a concern over problems associated with environmental 
pollution caused by fueled vehicle emissions and an increase in oil prices 
worldwide, as shown in Figure 1.2.  
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Figure 1.2 : World oil price  
 
 
The price of oil per barrel increased over time until it reached $150 per barrel in 
2009, which was a major concern in the transportation sections [4]. 
Environmental concerns and energy issues have led to the mass transfer of 
effort in the automotive industry from the internal combustion engine vehicle 
(ICEV) to the electric vehicle (EV) [6]. Therefore, different vehicles have been 
produced in the industry. Their types in the industry can be categorised as 
shown, in Figure 1.3.  

 

Figure 1.3 : Classification of vehicles adopted [7] 
 
 
Due to these aforementioned issues, vehicle manufacturers are introducing their 
own hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and 
EV to overtake and lead the competitive market [8]. Many companies, such as 
Tesla, Nissan, BMW, and many others, have shifted most of their production 
development toward electrifying vehicles, as shown in Figure 1.4.  
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Figure 1.4 : Production of EV (a) manufacturers type (b) year and country 
[6] 
 
 
Figure 1.4 shows that many countries across the globe have moved toward 
electrification of vehicles in recent years. Some of the models include the Nissan 
Leaf, Tesla Model S, BMW i3, Renault Zoe, and Volkswagen e-golf in different 
countries such as the USA, Japan, and across Europe. Some examples of those 
countries in detail are listed as displayed in Figure 1.5. 
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Figure 1.5 : A review on the state-of-the-art technologies of EV [7] 
 
 
According to Figure 1.5, most developed countries tend to produce millions of 
EVs each year, which gives a clear picture of the manufacturing mission toward 
electric vehicles. The simple definition of an EV is an automobile propelled by 
one or more electric motors powered by rechargeable batteries or other energy 
storage devices. The major components of an EV system are the electric motor, 
controller, power supply, charger, drive train (the system in a motor vehicle that 
connects the transmission to the drive axles and batteries). The EV configuration 
is shown in Figure 1.6. 

 

Figure 1.6 : Components of the EV 
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Figure 1.6 shows the basic components of an EV. It begins with the electric 
motor that drives the vehicle. The electric motors then convert electrical energy 
into mechanical energy. Two types of electric motors are used in EVs to provide 
power to the wheels: direct current (DC) motors and alternating current (AC) 
motors. The electric motor gets its power orders from a controller, but the 
controller gets its power information from rechargeable batteries in the battery 
pack. Since the main source of energy in an EV is the battery as an energy 
storage system, the focus of EV development studies is the battery 
characteristics. There are many types of batteries being used in EVs, which 
depend on the battery's power density, lifecycle, and capacity and vary 
according to the targeted travel distance of an EV produced. The characteristics 
of each energy storage type and their parameters are shown in Figure 1.7. 

 

Figure 1.7 : Comparison of energy storage specifications based on energy 
storage device adopted [7] 
 
 
Figure 1.7 shows the characteristics of energy storage devices with their 
parameters listed. Some of the best batteries according to literature, have high 
voltage, light mass, low self-discharge, and a prolonged lifetime. Some of the 
existing batteries and their comparisons [7]. EVs face significant energy storage 
related challenges, including the range of anxiety for traveling distances, high 
cost, battery degradation, and short cycle life, despite their advantages of high 
overall efficiency and regenerative braking capabilities to reduce CO2 gas 
emissions [9]. Furthermore, electric vehicles need charging stations and electric 
infrastructure adaptations [10], which add more costs to be marketable. So, by 
looking at the heart of the EV's energy, the total performance of the vehicle 
depends on efficient energy utilisation [11].To conclude, these issues of energy 
storage and power efficiency in EVs have an area of research and a problem 
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statement highlighting the current trend and development in EVs and the 
obstacles facing the EV, which will be covered in the next section of this 
research. 

1.2 Problem Statement 

The battery in an EV is the primary and only supply source of energy compared 
to the fuel tanks in conventional vehicles. Hence, studying the problems related 
to the battery and its issues will help researchers solve or improve these issues 
in order for manufacturers to develop BEVs as alternative solutions for 
conventional vehicles. The battery, as the energy storage component, in the 
majority of current BEVs functions to deliver energy to the electric machine 
during propulsion and braking. Many studies suggest making a battery with 
materials that have a high voltage, are light, have low self-discharge, and last a 
long time to meet the needs of BEVs.Their energy and power densities, 
reliability, cycle-life, and management, however, remain issues [12]. 

Currently, the problems related to electric vehicles are the battery life, as it is 
limited and expensive, with a maximum of 5-8 years if there is no over 
(charge/discharge) [13], [14], [15], and  [16], and short driving range, as in 2012, 
the all-electric range of the Chevy Volt and the Nissan Leaf is 56 km and 117 
km, respectively. The driving range is currently 200–250 km [13], [16], and  
[17].Long charging times are also an issue as the Nissan Leaf's 24 kWh battery 
pack charges in about 8 hours [13] and [8]. The main focus of this research is 
battery lifetime, as the main objective of manufacturers and consumers of EVs 
is to increase the lifetime of the batteries and reduce their cost [18]. Therefore, 
hybrid energy storage systems (HESS) are becoming a fundamental step 
towards the development of the EV industry as those auxiliary sources help to 
reduce the stress on the battery, leading to the extension of the driving range 
and prolonging the lifetime of the rechargeable batteries used in EVs. Therefore, 
supercapacitors were added to the battery as an auxiliary source in the EV in 
many studies and were used as a buffer. This is due to the supercapacitor 
characteristics having high power density to sustain the dynamic power profile, 
i.e., instantaneous power requirements of a vehicle, but they do not have the 
energy density to propel the vehicle for a sufficiently long driving range. 
Supercapacitors also have an almost quasi-infinite cycle life relative to lithium-
ion batteries since, operationally, they lack the chemical reactions compared to 
the battery degradation. Thus, adding a supercapacitor with a high power density 
and a long cycle life to a battery that has a high energy density can be coupled 
to obtain the HESS. This will combine the benefits of HESS that can improve the 
performance of EVs compared to the BEV [19], [20], [21], and  [22]. 

It is important to choose an appropriate topology between the energy storage 
devices (battery and supercapacitor) to prolong the battery lifetime. The 
literature uses mainly passive, semi-active, and full-active topologies.The 
passive topology connects the battery and supercapacitor directly to the load 
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without using power converters. The passive topology can not be controlled 
since there are no power converters, only internal resistance of each energy 
storage device. The semi-active topology has one power converter in parallel 
with either a battery or a supercapacitor connected to the EV load (DC bus), but 
if high current is applied during charge and discharge, this will affect battery life 
[23] and [3]. For energy storage device control, two bidirectional dc/dc power 
converters are connected in parallel to the DC bus in full active topology[24] and 
[25]. The full active topology has the advantage of flexibility control, but it may 
have a battery lifetime issue if a sudden peak current is applied while the 
supercaictor is fully charged. Thus, this study proposed using only a DC/DC 
boost converter instead of a bidirectional DC/DC converter to regulate battery 
voltage, reduce battery peak current, and avoid any negative current during 
discharge mode. A topology between the battery and the supercapacitor could 
help the battery last longer. 

The energy sources can either supply or capture the required power for the 
motor driving system. The power that is delivered is the power that is available. 
The energy management system knows how much power is needed and gives 
it to the battery and supercapacitor, so the power split logic determines how 
much power each has.Therefore, it is necessary to have a reliable energy 
management system with a control strategy to help improve the performance of 
the EV with the advantage of a combination. There have been two basic types 
of EMSs for the HESS for Evs that have been extensively investigated in the 
literature, which are the heuristic concept-based EMSs [27] and the optimal 
control theory-based EMSs such as Dynamic Programming [19], Stochastic 
Dynamic Programming [27], Model Predictive Control [28], and Neural Networks 
[29]. The heuristic EMS is based on expert knowledge and is defined by a set of 
rules or fuzzy logic. In [24] and [25], it is shown that a well-tuned rule-based 
strategy outperforms the globally optimal algorithm derived from the DP 
approach. In [3], a driving condition-adaptive rule-based energy management 
strategy (EMS) is proposed for the HESS, which considers the superiority 
achievement of each ESS as well as the protection of each ESS. In the literature, 
studies use different indicators, making results difficult to compare and interpret. 
The different topologies and EMSs used in the literature [30]. However, fuzzy 
control is an interesting method for researchers to control such a power system 
[3] and [31].Because fuzzy logic is simple and has a clear logic relationship, it is 
easy to apply [3] and [31]. As a result, this study proposed the Fuzzy-PI energy 
management system to enhance the battery lifetime using HESS. Two indicators 
will be analyzed; the final SoC of the battery and the current peak reduction using 
three standard driving cycles to compare HESS and the battery only in EV. 

1.3 Research Objectives 

The aim of this research is to develop a topology between battery and 
supercapacitor with EMS in an EV for battery life enhancement and energy 
consumption saving by the battery. In order to achieve these aims, four research 
objectives are specifically formulated as follows: 
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1. To develop and validate a lithium ion battery model with a proposed
method of initial state of charge estimation.

2. To develop and validate a supercapacitor model with a proposed
internal parametric identification method.

3. To design a proposed topology between the battery-supercapacitor
system for instantaneous power-sharing as HESS in an EV.
To validate the proposed topology using a fuzzy-PI controller with
performance evaluation based on driving cycle patterns.

1.4 Scopes of the Research 

The scopes of the research are listed as follows: 

1. The plan for this work is pure EV with an auxiliary source
supercapacitor as HESS. The EV technical specifications are adopted
from those of a Malaysian local car, the Proton IRIZ, manufactured by
Proton.

2. The modeling is specifically based on the Malaysian environment
and social requirements. The effect of different weather settings
will be excluded from the study. The effect of the incline angle of the
road on the vehicle model is also excluded in the study. The road's
incline angle is set to zero.

3. The load of the vehicle comprises of (1) a battery pack, (2) a
supercapacitor pack, (3) the DC-DC boost converter connected to the
battery, (4) the DC-DC buck-boost converter connected to the
supercapacitor, and (5) constant DC bus voltage connected to the load
(power required).

4. The modelling of the battery is based on a two-branch second-order
model with the contribution of the initial state of charge estimation, which
was validated against experimental data using the lab at UPM
University.

5. The modeling of the supercapacitor is based on the equivalent circuit
model with the contribution of enhancement of parametric modeling,
which was validated against the experimental data.

6. The modelling of the boost converter and battery is based on Kirchhoff
current and voltage laws for manipulating the current output and load
current for the desired performance.

7. The modelling of the DC-DC buck-boost converter and supercapacitor
is based on Kirchhoff current and voltage laws for manipulating the
current output and load current for the desired performance.

8. The size of the battery and the supercapacitor are excluded from the
study due to their dependency on the technical specifications of the
vehicles in UPM.



© C
OPYRIG

HT U
PM

 

 
9 

9. All modeling and simulation work is performed in the MATLAB/Simulink 
workspace environment and validated with experimental data for a 
single cell of battery and supercapacitor in UPM labs. 

 
 
1.5 Thesis Outline 

The thesis has been outlined based on the steps taken in the development of 
the vehicle model, energy management, and power management strategies for 
EV. It consists of five chapters, namely: (1) Introduction, (2) Literature Review, 
(3) Methodology, (4) Results and Discussion, and (5) Conclusion and 
Recommendations. 

Chapter 1 is the background and overview of this research. This chapter 
highlights numerous efforts by researchers and automakers regarding worldwide 
concerns about energy conservation and environmental protection in the 
transportation sector. The advantages and limitations of EV as potential 
sustainable transportation have been briefly described. A promising solution to 
EV drawbacks has been proposed by implementing power and energy 
management strategies. On top of that, the aims, objectives, scopes, and 
research contributions are also included in this chapter. 

Chapter 2 presents a review of the battery, supercapacitor, modeling, and 
energy management and power management strategies related to EV. The gaps 
and techniques proposed by previous researchers were investigated. A 
summary of previous research is also presented and discussed. 

Chapter 3 comprises three key sections of the research methodology. The first 
section describes the comprehensive modeling of the EV. The second section 
focuses on the modeling of the battery based on its mathematical equations. The 
third section is on the HESS modeling development. The fourth section is on EV 
EMS with a power scheme management strategy. Subsequently, fuzzy-PI was 
employed. 

Chapter 4 presents the simulation results and discussion according to the 
sections in the previous chapter. Initially, the proposed EV model was tested for 
its targeted performance. The results from battery and supercapacitor validation 
were then utilized to show the single cell performance based on the terminal 
voltage of the cell and SoC. The proposed topology compared with full active 
topology in the literature in simulation test  using the same Fuzzy-PI controller 
during UDDS, NEDC, and US06 driving modes based on the parameters of 
power, voltage, SoC, and current for the battery and supercapacitor.The EMS 
simulation test during UDDS, NEDC, and US06 driving modes was compared 
based on the parameters of power, voltage, SoC, and current for the battery and 
supercapacitor, and for the battery only in EV with different conditions of SoC 
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(100%, 80%, 60%, and 40%). The maximum current, voltage drop, and final SoC 
at the end of each driving cycle have been investigated and analyzed based on 
the objectives of this research.  

Chapter 5 consists of a review of the research achievements (objectives and 
aims) and the overall conclusion. This chapter also includes future work 
directions and some suggestions for further development. 
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