

UNIVERSITI PUTRA MALAYSIA

INFECTION AND SOME ASPECTS OF RESISTANCE MECHANISM OF CAPSICUM ANNUUM TO RALSTONIA SOLANACEARUM

MUHAMMED ABDUR RAHMAN

FP 1997 14

INFECTION AND SOME ASPECTS OF RESISTANCE MECHANISM OF CAPSICUM ANNUUM TO RALSTONIA SOLANACEARUM

By

MUHAMMED ABDUR RAHMAN

Thesis Submitted in Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Faculty of Agriculture, Universiti Pertanian Malaysia

March 1997

DEDICATION

To my wife Nasima,

my true friend and companion,

To my aunt Mrs. Khodeza and uncle Mr. Afzal who brought me up and to whom I owe everything

I dedicated this work

AKNOWLEDGEMENTS

I wish to acknowledge my sincere appreciation to my chairperson, Associate Professor Dr. Hiryati Abdullah for her guidance and encouragement throughout the period of my graduate studies. Thanks are also extended to Dr. Kamaruzaman Sijam and Dr. Matthieu Abdullah for their critical reading of this manuscript and for serving in my supervisory committee. To Dr. Ithnin Bujang, Department of Biology, UPM, I wish to thank him for providing me the germplasm of chilli collected from AVRDC.

I want to express my sincere gratitude to the Malaysian people for the opportunity to accomplish this goal and the Universiti Pertanian Malaysia for the financial support to carry on my doctoral programme.

Thanks also extended to the laboratory staff and technicians, Mr. Ho Q Kuan and Mrs. Aminah Jusoh, electron microscopy unit, UPM, Mrs. Salmi from Biometry, Mr. Bahrain, photographer of the Faculty of Agriculture and Mr. M. Hamdan Ali and others of the Department of Plant Protection; Faculty of Agriculture.

My special thanks to my wife, Nasima Akhter, and our children, Zerin, Tauhid and Farzana, whose patience, understanding and sacrifice make this study possible.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS.	ii
LIST OF TABLES	ix
LIST OF FIGURES.	xv
LIST OF PLATES	xvii
LIST OF ABBREVIATIONS	xix
ABSTRACT	
ABSTRAK	xxiii

CHAPTER

Ι	INTRODUCTION	1
П	REVIEW OF LITERATURE	6
	Chilli pepper (Capsicum spp.)	6
	Ralstonia solanacearum	7
	Procedures of Bacterial Inoculation	9
	Resistance of Solanaceous Hosts to Bacterial Wilt	10
	Anatomical Characters in Relation to the	
	Mechanisms of Disease Resistance	17
	Bacterial Multiplication and Distribution in	
	Relation to Disease Resistance	20
	Infection Process of Some Bacterial Pathogens	22
	Resistance Mechanism to Disease	25
	Effect of Calcium on Incidence of Diseases	32
III	SUSCEPTIBILITY OF CAPSICUM ANNUUM TO	
	RALSTONIA SOLANACEARUM, ANATOMICAL	
	DIFFERENCES AND BACTERIAL MULTIPLICATION	
	IN RESISTANT AND SUSCEPTIBLE CULTIVARS	40
	Introduction	40
	Materials and Methods	42
	Bacterial Cultures and Preparation of Inoculum	
	and Stock Culture	42

Page

Propagation of Test Plants	43
Screening of 42 Chilli Pepper Accessions/Cultivars to Ralstonia solanacearum	43
Anatomical Study of Bacterial Wilt-Resistant and Susceptible Cultivars of Chilli	46
Population Dynamics and Distribution of <i>R.</i> solanacearum in Resistant and Susceptible Chilli Cultivars	48
Results	49
Screening of 42 Chilli Pepper Accessions/ Cultivars to Ralstonia solanacearum	49
Anatomical Characters of Bacterial Wilt Resistant and Susceptible Cultivars of Chilli	53
Population Dynamics of <i>R. solanacearum</i> in Susceptible cv. LC 455 and Resistant cv. Kulai of Chilli after Stem Inoculation	55
Population Dynamics of <i>R. solanacearum</i> in Susceptible cv. LC 455 and Resistant cv. Kulai Following Root Inoculation	59
Population of <i>R. solanacearum</i> in Susceptible cv. LC 455 and Resistant cv. Kulai of Chilli Following Soil Inoculation	62
Discussion	67
INFECTION PPROCESS OF RALSTONIA	
SOLANACEARUM IN CAPSICUM ANNUUM	75
Introduction	75

IV

Materials and Methods 77 Root Infection and Vascular Colonization of C. annuum cv. LC 455 by R. solanacearum... 77 Fixation, Dehydration, Infiltration and Embedding of Tissues..... 79 Microtomy, Staining and Electron Microscopy. 81 Comparative Histopathology of Susceptible and Resistant Cultivars of Chilli Infected with R. solanacearum..... 82 84 Results Root Infection and Vascular Colonization of C. annuum cv. LC 455 by R. solanacearum... 84 Comparative Histopathology of Susceptible and Resistant Chilli Cultivars Infected with R. solanacearum 93 Discussion 116 Root Infection and Vascular Colonization of C. annuum cv. LC 455 by R. solanacearum..... 116 Comparative Histopathology of Susceptible and Resistant Cultivars of C. annuum Infected with. R. solanacearum..... 120

.

Page

EFFECT	OF CALCIUM NUTRITION ON	
BACTER	RIAL WILT IN CAPSICUM ANNUUM	131
Introd	uction	131
Mater	ials and Methods	133
Eff	ect of Ca(NO3)2 on Growth of Ralstonia	
sold	anacearum and pH of Media	133
	nt Propagation	133
Gre	eenhouse Experiments	134
	ect of Time of Application and the Efficacy of	
	Fertilizers on the Incidence of Bacterial Wilt	
in C	Chilli	135
	ect of Transplanting of Ca(NO3)2 Treated and	
Unt	treated Chilli Plants on the Incidence of	
Bac	cterial Wilt	135
	ect of Techniques of Inoculation of Ca(NO3)2	
Tre	ated and Untreated Chilli Plants on the	
Inc	idence of Bacterial Wilt	136
Fiel	ld Experiments	137
Eff	ect of Ca-fertilizers on the Incidence of	
Bac	cterial Wilt in Chilli Under Field Conditions	137
	npling and Processing for EDAX and	
His	tological Staining	139
	atomical Study of Ca Treated and Untreated	
Chi	illi cv. LC 455	140

V

	Page
Results	141
Effect of Ca(NO3)2 on Growth of <i>Ralstonia</i> solanacearum and pH of Media	141
Effect of Ca-Fertilizers on the Incidence of Bacterial Wilt in Chilli and pH of Soil Under Greenhouse Conditions	141
Effect of Transplanting of Ca(NO3)2 Treated or untreated Plants on the Incidence of Bacterial Wilt in Chilli	144
Effect of Techniques of Inoculation of Ca(NO3)2 Treated or Untreated Plants on the Incidence of Bacterial Wilt in Chilli	146
Effect of Ca-Containing Fertilizers on the Incidence of Bacterial Wilt in Chilli Under Field Conditions	146
Energy Dispersive Analysis of X-Rays (EDAX)	151
Relationship Between Incidence of Bacterial Wilt and Amount of Ca as Indicated by the X-Ray Peak Formation	157
Histological Staining for Ca	160
Differences in Anatomy Between Ca Treated and Untreated Chilli cv. LC 455 Plants	163
Discussion	170
GENERAL DISCUSSION AND CONCLUSIONS .	177
BIBLIOGRAPHY	183

VI

Page

.

APPENDIX A	216
APPENDIX B	243
VITA	244

. .

.

LIST OF TABLES

Table		Page
1	Sources of germplasm of chilli pepper accessions /cultivars	44
2	Reaction of 42 chilli pepper accessions/cultivars to Ralstonia solanacearum	50
3	Anatomical characters of susceptible cv. LC 455 and resistant cv. Kulai of chilli to Ralstonia solanacearum.	54
4	Bacterial population at different dates of sampling of resistant chilli cv. Kulai after root inoculation	61
5	Bacterial population at three sites of detection of resistant chilli cv. Kulai after root inoculation	61
6	Spatial distribution and initial population of Ralstonia solanacearum in susceptible cv. LC 455 and resistant cv. Kulai of chilli	66
7	Mean population of <i>Ralstonia solanacearum</i> in Ca(NO3)2 amended CPG broth and pH of the media	142
8	Effect of Ca-fertilizers on the incidence of bacterial wilt in <i>Capsicum annuum</i> and pH of soil under greenhouse conditions	145
9	Effect of transplanting of Ca(NO ₃) ₂ treated or untreated chilli plants cv. LC 455 on the incidence of bacterial wilt	147
10	Effect of techniques of inoculation of Ca(NO3)2 treated or untreated plants on the incidence of bacterial wilt in chilli	148

Table		Page
11	Effect of Ca-containing fertilizers on the incidence of bacterial wilt in chilli and pH of soil under field conditions.	150
12	Peak height for Ca using a stationary beam probe in the lunnen of metaxylem vessel of C . annuum cv. LC 455 treated with Ca-fertilizers in the field	152
13	Peak formation for Ca using a stationary beam probe in the lumen of metaxylem vessel of root and mid stem of C. annuum cv. LC 455 seedlings treated with Ca(NO ₃) ₂ in the nursery for 30 days	155
14	Thickness of cortex from the root and mid stem of susceptible chilli cv. LC 455 treated or untreated with Ca(NO3)2 at different sampling dates	167
15	Length of vascular elements from the root and stem of susceptible chilli cv. LC 455 treated or untreated with Ca(NO3)2 at different sampling dates	168
16	Diameter of vascular elements from the root and stem of susceptible chilli cv. LC 455 treated or untreated with Ca(NO3)2 at different sampling dates	169
17	ANOVA table of reaction of 42 chilli pepper accessions /cultivar to <i>Ralstonia solanacearum</i>	216
18	T-test table of the bacterial population at the mid stem region of susceptible cv. LC 455 and resistant cv. Kulai of chilli after stem inoculation	216
19	T-test table of the bacterial population at the collar region of susceptible cv. LC 455 and resistant cv. Kulai of chilli after stem inoculation	217

20	T-test table of the bacterial population at the tap root region of susceptible cv. LC 455 and resistant cv. Kulai of chilli after stem inoculation	218
22	Bacterial population of susceptible chilli cv. LC 455 at different dates of sampling after stem inoculation	219
23	ANOVA table of the bacterial population at different sampling dates of resistant chilli cv. Kulai after stem inoculation.	219
24	Bacterial population of resistant chilli cv. Kulai at different sampling dates and three sites of detection after stem inoculation	220
25	ANOVA table of the bacterial population at three sites of detection of resistant chilli cv Kulai and susceptible cv. LC 455 after stem inoculation	221
26	ANOVA table of the bacterial population recorded at 4 days interval, for 32 days period of sampling at three sites of detection of resistant chilli cv. Kulai	222
27	T-test of the bacterial population between two conse- cutive dates of sampling in resistant chilli cv. Kulai for 32 days period after stem inoculation	225
28	T-test table of the bacterial population at the tap root region of susceptible cv. LC 455 and resistant cv. Kulai of chilli after root inoculation	227
29	T-test table of the bacterial population at the collar region of susceptible cv. LC 455 and resistant cv. Kulai of chilli after root inoculation	228
30	T-test table of the bacterial population at the mid stem of susceptible cv. LC 455 and resistant cv. Kulai of chilli after root inoculation	229

Table

229

Page

Table		Page
31	ANOVA table of the bacterial population at different dates of sampling of susceptible chilli cv. LC 455 after root inoculation	229
32	Bacterial population of susceptible chilli cv. LC 455 at different dates of sampling after root inoculation	
230 33	ANOVA table of the bacterial population at the three sites of detection of susceptible chilli cv. LC 455 after root inoculation	230
34	ANOVA table of the bacterial population at different dates of sampling of resistant chilli cv. Kulai after root inoculation.	231
35	ANOVA table of the bacterial population at three sites of detection of resistant chilli cv. Kulai after root inoculation	231
36	ANOVA table of the bacterial population at three sites of detection of susceptible chilli cv. LC 455 after soil inoculation	232
37	ANOVA table of the bacterial population at different dates of sampling of bacterial wilt susceptible chilli cv. LC 455 after soil inoculation	232
38	Bacterial population of susceptible chilli cv. LC 455 at different dates of sampling after soil inoculation	233
39	T-test table of the bacterial population at the three sites of detection of root- and soil-inoculated susceptible chilli cv. LC 455	233
40	ANOVA table of the bacterial population at the three sites of detection of resistant chilli cv. Kulai after soil inoculation	234

Table		Page
41	Bacterial population in resistant chilli cv. Kulai after soil inoculation	234
42	T-test of the comparative bacterial population at the three sites of detection of root- and soil-inoculated resistant chilli cv. Kulai	235
43	ANOVA table of the bacterial population at three sites of detection of susceptible chilli cv. LC 455 using various techniques of inoculation	235
44	ANOVA table of the bacterial population using three techniques of inoculation of susceptible chilli cv. LC 455.	236
45	ANOVA table of the mean bacterial population at three sites of detection of resistant chilli cv. Kulai using various techniques of inoculation	236
46	ANOVA table of the mean bacterial population using three techniques of inoculation of resistant chilli cv. Kulai.	237
47	Bacterial population at the three sampling sites and using three techniques of inoculation of resistant chilli cv. Kulai	237
48	ANOVA table of population of <i>Ralstonia</i> solanacearum in CPG medium amended with Ca(NO3)2	238
49	ANOVA table of the pH of CPG medium for the growth of <i>Ralstonia solanacearum</i> amended with Ca(NO ₃)2	238
50	ANOVA table of effect of Ca-fertilizers on the incidence of bacterial wilt in susceptible cultivar of <i>Capsicum</i> <i>annuum</i> under greenhouse conditions	239

Table

51	ANOVA table of effect of Ca-fertilizers on the pH of soil in <i>Capsicum annuum</i> under greenhouse conditions	239
52	ANOVA table of the effect of transplanting of Ca(NO ₃) ₂ treated or untreated plants on the incidence of bacterial wilt in susceptible chilli cultivar	240
53	ANOVA table of the effect of techniques of inoculation of Ca(NO3)2 treated or untreated plants on the incidence of bacterial wilt in susceptible chilli cultivar	240
54	ANOVA table of the effect of Ca-containing fertilizers on the incidence of bacterial wilt in chilli under field conditions	241
55	ANOVA table of the effect of Ca-containing fertilizers on the incidence of bacterial wilt in chilli and pH of soil under field conditions	241
56	ANOVA table of the amount of Ca as indicated by the peak formation, under field conditions.	242
57	Contents of nutrient broth for multiplication of Ralstonia solanacearum	243

Figure

1	Mean bacterial population in susceptible cv. LC 455and resistant cv. Kulai chilli after stem inoculation(a, mid stem; b, collar and c, tap root). Bar shows the standard error	56
2	Mean bacterial population at (a) three sites of cv. Kulai and cv. LC 455; (b) in cv. Kulai after stem inoculation. Bar shows LSD value	58
3	Development of bacterial population in susceptible cv.LC 455 and resistant cv. Kulai of chilli following root inoculation (a, tap root; b, collar and c, mid stem). Bar	
	shows the standard error	60
4	Mean bacterial population in. resistant cv. Kulai and susceptible cv. LC 455 susceptible cv. LC 455 chilli following soil inoculation (bar shows LSD value)	63
5	Mean bacterial population in (a) at the mid stem, collar and susceptible cv. LC 455 chilli over a period of 16 days (bar denotes the LSD value)	65
6	Schematic diagram of chilli seedlings in conical flask containing MS medium and bacteria for root inoculation	78
7	Effect of Ca-containing fertilizers on the incidence of bacterial wilt in susceptible cultivar of <i>Capsicum annuum</i> under greenhouse conditions	143

Table

•

•

51	ANOVA table of effect of Ca-fertilizers on the pH of soil in <i>Capsicum annuum</i> under greenhouse conditions	239
52	ANOVA table of the effect of transplanting of Ca(NO3)2 treated or untreated plants on the incidence of bacterial wilt in susceptible chilli cultivar	240
53	ANOVA table of the effect of techniques of inoculation of Ca(NO3)2 treated or untreated plants on the incidence of bacterial wilt in susceptible chilli cultivar	240
54	ANOVA table of the effect of Ca-containing fertilizers on the incidence of bacterial wilt in chilli under field conditions	241
55	ANOVA table of the effect of Ca-containing fertilizers on the incidence of bacterial wilt in chilli and pH of soil under field conditions.	241
56	ANOVA table of the amount of Ca as indicated by the peak formation, of plants treated with Ca-fertilizers under field conditions.	242
57	Contents of nutrient broth for multiplication of Ralstonia solanacearum	243

LIST OF PLATES

.

Plate		Page
1	Scanning and transmission electron micrographs of <i>R. solanacearum</i> inoculated root of susceptible chilli cultivar, Long Chilli 455 (cv. LC 455) grown in MS liquid medium.	86
2	Light and scanning electron micrographs of inoculated susceptible chilli cv. LC 455 root, 72 hours after inoculation, grown in MS liquid medium	89
3	Scanning and transmission electron micrographs and light microscopy of infected susceptible chilli roots of cv. LC 455 grown in MS liquid medium	92
4	Light microscopy and transmission electron micrographs of inoculated and non-inoculated susceptible chilli root of cv. LC 455 grown in MS liquid medium.	95
5	Light microscopy and transmission electron micrographs of <i>R. solanacearum</i> inoculated tap root of susceptible chilli cv. LC 455 grown in sterilized soil	98
6	Transmission electron micrographs and light microscopy of susceptible chilli cv. LC 455 root infected with <i>R. solanacearum</i> grown in soil	101
7	Light and transmission electron micrographs of R solanacearum inoculated root of resistant chilli cv. Kulai grown in soil	104
	5	

		Page
8	Transmission and light microscopy of artificially inoculated root of resistant chilli cv. Kulai grown on	
	soil	107
9	Transmission electron micrographs of roots of resistant chilli cv. Kulai following soil inoculation	110
10	Transmission electron micrographs of the root of <i>R.</i> solanacearum resistant chilli cv.	
	inoculation	112
11	Light microscopy of the mid stem of the resistant chilli cv. Kulai at 12 days following root or soil inoculation	115
12	Peak formation for Ca using a stationary beam probe in the lumen of metaxylem vessel of <i>C. annuum</i> cv. LC 455 plants, fertilizers under field conditions. Arrow shows the peak for Ca.	154
13	Peak formation for Ca using a stationary beam probe in the lumen of metaxylem vessel of <i>C. annuum</i> cv. LC 455 plants grown for a period of 30 days in the nursery. Arrow shows the peak for Ca	157
14	Longitudinal sections of mid stem tissue of C. annuum cv. LC 455 grown in field. Sections were stained with 2% alizarin red S. (Scale bar = 50 μ m)	162
15	Longitudinal sections of mid stem and tap root tissue of C. annuum cv. LC 455 grown in the nursery for a period of 30 days. Sections were stained with 2%	
	alizarin red S. (Scale bar = 50 μ m)	165

•

LIST OF ABBREVIATIONS

.

FAA = Formalin-acetic acid
DPX= Mixture of distrene, tricresyl phosphate & xylene
rpm = Revolution per minute
cfu = Colony forming unit
ml = Milliliter
g = Gram
LSD= Least Significant Difference
FM = Fresh Matter
SEM = Scanning Electron Microscope
TEM = Transmission Electron Microscope
cv. = Cultivar
LC 455 = Long Chilli 455
TZC = Tetrazolium Chloride
CPG = Casamino acid-Peptone Glucose
RCBD = Randomized Complete Block Design
CRD = Complete Randomized Design
MS = Murashige and Skoog
w = Weight
EDAX = Energy Dispersive Analysis of X-rays

Abstract of dissertation submitted to the Senate of Universiti Pertanian Malaysia in fulfillment of the requirements for the degree of Doctor of Philosophy.

INFECTION AND SOME ASPECTS OF RESISTANCE MECHANISM OF CAPSICUM ANNUUM TO RALSTONIA SOLANACEARUM

by

MUHAMMED ABDUR RAHMAN

March 1997

Chairman: Assoc. Prof. Hiryati Abdullah, Ph. D.

Faculty: Agriculture

Bacterial wilt of chilli (*Capsicum annuum* L.) caused by *Ralstonia* solanacearum is a major constraint to the production of the crop in Malaysia. To-date very few resistant germplasm of chilli to the pathogen is known. Information on the mechanism of infection and resistance, and multiplication of the pathogen in chilli are lacking. There is also no information on the anatomical characters of the hosts which might be related to resistance. The present study was, therefore, undertaken to obtain this information which would provide an understanding of the disease. It could be useful in formulating wilt-resistance breeding programme in chilli and an effective control measures for the disease.

Greenhouse evaluation of the susceptibility of accessions/cultivars of *Capsicum* spp. to *R. solanacearum* revealed that the cultivar 'Kulai' was highly resistant. Three accessions were moderately resistant while all others were susceptible to highly susceptible.

Anatomical study of resistant and susceptible cultivars showed significant differences in several anatomical characters which may contribute to the limitation of the infection process, movement and multiplication of the pathogen.

Population dynamics of the pathogen in susceptible and resistant cultivars revealed that in susceptible cultivar bacterial population did not differ after inoculation, at all sites tested, regardless of inoculation techniques used. Bacterial population differed significantly between cultivars at similar sites tested and for all the techniques used. Bacterial population in stem, root and soil-inoculated resistant plants decreased significantly at all sites. However, when soil-inoculated, the pathogen was not detected from the mid stem only. Thus, the infection was not limited but the resistance may be due to the lower rate of multiplication of the pathogen in resistant plants.

Root infection and colonization of susceptible chilli cultivar by *R*. solanacearum showed that the pathogen partially degraded the outermost tissues of the longitudinal grooves on root elongation sites and infected the inner cortex, vascular parenchyma and xylem vessels. Simultaneously, bacterial penetration through emerging lateral roots also occurred. Degradation and rupturing of the wall of the xylem vessels was observed

when 75% of the plants showed signs of wilting. Thus, in susceptible chilli, natural openings may cause early infection. Morphological barriers to limit the pathogen spread were absent.

Histopathological investigation of vascular colonization of both cultivars showed several induced responses in resistant cultivar. Cell wall coating material was developed together with swelling of the primary wall of the xylem vessels; formation of various types of vesicles in the xylem cells and the distortion and lysis of the bacteria in the xylem vessels were observed. These reactions were not observed in the susceptible cultivar where bacterial spread was not limited.

Greenhouse and field experiments showed that Ca-containing fertilizers effectively reduced the incidence of bacterial wilt in chilli. Ca nutrition also influenced the growth and multiplication of the pathogen by increasing pH of the growth medium and soil.

Abstrak dissertation yang dikemukan kepada Senat Universiti Pertanian bagi memenuhi keperluan untuk ijazah Doktor falsafah

JANGKITAN DAN BEBERAPA ASPEK MEKANISME RESISTAN CAPSICUM ANNUUM KEPADA RALSTONIA SOLANACEARUM

by MOHAMMED ABDUR RAHMAN

Mac 1997

Pengerusi : Prof. Madya Hiryati Abdullah, Ph. D.

Fakulti: Pertanian

Penyakit layu bakteria pada cili (*Capsicum annuum* L.) yang disebabakan oleh *Ralstonia solanacearum*, adalah sekatan utama kepada pengeluaran tanaman ini di Malaysia. Hingga kini, hanya segelintir janaplasma cili yang resistan kepada patogen telah diketahui. Maklumat mengenai mekanisme jangkitan dan keresistanan, dan pembiakan patogen dalam cili sangat berkurangan. Maklumat mengenai ciri-ciri anatomi perumah yang mungkin berkaitan dengan keresistanan juga tiada kedapatan. Kajian ini bertujuan untuk mendapatkan maklumat yang boleh memberi kefahaman mengenai penyakit ini. Ianya berguna dalam program pembiakbakaan untuk keresistanan penyakit layu bakteria pada cili dan suatu cara kawalan yang berkesan bagi penyakit ini.

Penilaian rumah hijau untuk menilai kerentanan jenis/kultivar Capsicum spp. kepada R. solanacearum menunjukkan bahawa kultivar 'Kulai' adalah

