
 

 
 
 

UNIVERSITI PUTRA MALAYSIA 
 

CONTROLLER PLACEMENT PROBLEM IN THE OPTIMIZATION OF 5G 
BASED SDN AND NFV ARCHITECTURE 

 

 
 
 
 
 
 
 
 
 

ABEER ABDALLA ZAKARIA IBRAHIM 
 
 
 
 
 
 
 
 
 
 

FK 2022 43 



© C
OPYRIG

HT U
PMCONTROLLER PLACEMENT PROBLEM IN THE OPTIMIZATION OF 5G

BASED SDN AND NFV ARCHITECTURE 

By 

ABEER ABDALLA ZAKARIA IBRAHIM 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

October 2021 



© C
OPYRIG

HT U
PM

 
v 

COPYRIGHT 
 
 

All material contained within the thesis, including without limitation text, logos, icons, 
photographs, and all other artwork, is copyright material of Universiti Putra Malaysia 
unless otherwise stated. Use may be made of any material contained within the thesis for 
non-commercial purposes from the copyright holder. Commercial use of material may 
only be made with the express, prior, written permission of Universiti Putra Malaysia. 
 
 
Copyright © Universiti Putra Malaysia  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



© C
OPYRIG

HT U
PM

 
vi 

DEDICATION 
 
 

I owe tremendous and special gratitude to my lovely family for their continued and 
unfailing love, support and understanding during the pursuit of my Ph.D. studies that 
made the completion of the thesis possible. 
 
Dedicated to  
 
My Parents, 
My caring Husband, Dr. Saber Mohammed Elnour Fadul 
My caring Son: Hussam, and 
My beautiful Daughters: Yomna and Leena 
My teachers, who provided me with the best education, 
All the people in my life who touch my heart. 
 

......With Love…… 
 
 

Abeer A. Z. Ibrahim 
October 2021 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



© C
OPYRIG

HT U
PM

 
i 
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By 
 
 

ABEER ABDALLA ZAKARIA IBRAHIM 
 
 

October 2021 
 
 

Chairman :   Associate Professor Fazirulhisyam Hashim, PhD 
Faculty :   Engineering 
 
 
The fast rise in data traffic and the vast range of services and applications accessible in 
5G networks must be addressed effectively. Integrating Software Defined Networking 
(SDN) with Network Function Virtualization (NFV) is a low-cost way to build a 
reconfigurable network, reduce operating costs, and optimize network performance. The 
separation of control functionality from forwarding devices brings orchestration and 
management to enable 5G network programmability. Although centralized control 
facilitated orchestration and administration of 5G services and applications, it could not 
handle massive and varied data volumes. 5G networks can avoid performance 
degradation, enable diverse network traffic management, and create a flexible and 
scalable design by adopting and deploying multi-controllers in the network control layer. 
However, for optimum 5G core design and cost-effectiveness, a group of controllers 
must be appropriately mapped. 
 
 
A distributed 5G-SDN-NFV-based network architecture uses the controller placement 
problem (CPP) to manage controller placement and number. A heuristic called dynamic 
mapping and multi-stage CPP algorithm (DMMCPP) was developed to solve CPP as 
resource allocation in a distributed 5G-SDN-NFV-based network. This thesis divides 
CPP solutions into three groups based on three objectives: (i) scalability and load 
balancing, (ii) reliability and resilience, and (iii) efficient routing for energy-aware 
design. First, a dynamic allocation and mapping CPP (DAMCP) is developed to solve 
network dynamic resource location problems. It demonstrates a trade-off between 
locating a minimum number of controllers and network traffic to maximize resources 
and achieve load balancing at minimum costs. Second, the increasing demand for 
controllers exposes the network to control planes and connection failures, which are the 
most frequent problems in SDN networks. If the control plane fails to improve system 
resilience quality, A reliable RAMCP is formulated as an optimal solution for fault 
tolerance. Furthermore, the approach is extended with a Particle Swarm Algorithm 
(PSO) and presented as a hybrid RASCP to validate the optimal location and number of 
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controllers. Third, the considered traffic paths across backup nodes and redundancy 
lengthen, increasing latency and power consumption in a network. The proposed energy-
aware routing algorithm (EARMCP) implements efficient flow routing mechanisms for 
network traffic to minimize the number of active links and 5G-DC devices. Extensive 
computations utilizing MATLAB 2018a on the Intel Core i7/Gen 10 processor and 16 
GB of RAM are used to evaluate the algorithm efficacy. 
 
 
According to the blueprint of our heuristic method, the allocation and the optimum 
number of controllers under an effective decentralized policy could achieve higher 
efficiency. The selected control number is picked with a higher efficiency before the 
rescheduling is approximately 80 % for optimized controllers up to 90 % of resource 
management than other comparable algorithms in such a densified network. In addition, 
energy savings of up to 70% are achieved compared to the proposed Dijkstra-based 
energy-aware algorithms. 
. 
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Peningkatan pantas dalam trafik data dan rangkaian luas perkhidmatan serta aplikasi 
yang boleh diakses dalam rangkaian 5G mesti ditangani dengan berkesan. 
Mengintegrasikan Rangkaian Tertakrif Perisian (SDN) dengan Virtualisasi Fungsi 
Rangkaian (NFV) ialah cara kos rendah untuk membina rangkaian boleh 
dikonfigurasikan semula, mengurangkan kos operasi dan mengoptimumkan prestasi 
rangkaian. Pengasingan fungsi kawalan daripada peranti pemajuan membawa orkestrasi 
dan pengurusan untuk membolehkan kebolehprograman rangkaian 5G. Walaupun 
kawalan terpusat memudahkan orkestrasi dan pentadbiran perkhidmatan dan aplikasi 
5G, ia tidak dapat mengendalikan volum data yang besar dan pelbagai. Rangkaian 5G 
boleh mengelakkan kemerosotan prestasi, mendayakan pengurusan trafik rangkaian 
yang pelbagai, dan mencipta reka bentuk yang fleksibel dan berskala dengan mengguna 
pakai dan menggunakan berbilang pengawal dalam lapisan kawalan rangkaian. Walau 
bagaimanapun, untuk reka bentuk teras 5G yang optimum dan keberkesanan kos, 
sekumpulan pengawal mesti dipetakan dengan sewajarnya. 
 
 
Seni bina rangkaian berasaskan 5G-SDN-NFV yang diedarkan menggunakan masalah 
peletakan pengawal (CPP) untuk mengurus peletakan dan nombor pengawal. Heuristik 
yang dipanggil pemetaan dinamik dan algoritma CPP berbilang peringkat (DMMCPP) 
telah dibangunkan untuk menyelesaikan CPP sebagai peruntukan sumber dalam 
rangkaian berasaskan 5G-SDN-NFV yang diedarkan. Tesis ini membahagikan 
penyelesaian CPP kepada tiga kumpulan berdasarkan tiga objektif: (i) skalabiliti dan 
pengimbangan beban, (ii) kebolehpercayaan dan daya tahan, dan (iii) penghalaan yang 
cekap untuk reka bentuk sedar tenaga. Pertama, peruntukan dinamik dan CPP pemetaan 
(DAMCP) dibangunkan untuk menyelesaikan masalah lokasi sumber dinamik 
rangkaian. Ia menunjukkan pertukaran antara mencari bilangan minimum pengawal dan 
trafik rangkaian untuk memaksimumkan sumber dan mencapai pengimbangan beban 
pada kos minimum. Kedua, peningkatan permintaan untuk pengawal mendedahkan 
rangkaian untuk mengawal pesawat dan kegagalan sambungan, yang merupakan 
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masalah paling kerap dalam rangkaian SDN. Jika satah kawalan gagal meningkatkan 
kualiti daya tahan sistem, RAMCP yang boleh dipercayai dirumuskan sebagai 
penyelesaian optimum untuk toleransi kesalahan. Tambahan pula, pendekatan ini 
dilanjutkan dengan Algoritma Swarm Partikel (PSO) dan dibentangkan sebagai RASCP 
hibrid untuk mengesahkan lokasi optimum dan bilangan pengawal. Ketiga, laluan trafik 
yang dipertimbangkan merentasi nod sandaran dan redundansi dipanjangkan, 
meningkatkan kependaman dan penggunaan kuasa dalam rangkaian. Algoritma 
penghalaan sedar tenaga (EARMCP) yang dicadangkan melaksanakan mekanisme 
penghalaan aliran yang cekap untuk trafik rangkaian untuk meminimumkan bilangan 
pautan aktif dan peranti 5G-DC. Pengiraan yang meluas menggunakan MATLAB 2018a 
pada pemproses Intel Core i7/Gen 10 dan 16 GB RAM digunakan untuk menilai 
keberkesanan algoritma. 
 
 
Mengikut pelan tindakan kaedah heuristik kami, peruntukan dan bilangan optimum 
pengawal di bawah dasar terpencar yang berkesan boleh mencapai kecekapan yang lebih 
tinggi. Nombor kawalan yang dipilih dipilih dengan kecekapan yang lebih tinggi 
sebelum penjadualan semula adalah kira-kira 80 % untuk pengawal yang dioptimumkan 
sehingga 90 % daripada pengurusan sumber daripada algoritma setanding lain dalam 
rangkaian yang padat sedemikian. Di samping itu, penjimatan tenaga sehingga 70% 
dicapai berbanding algoritma sedar tenaga berasaskan Dijkstra yang dicadangkan. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of the Study 

It was seen in 2020; the world entered a period of the Internet of Everything (IoE) age. 
A concept that brings together people, data, things, and processes. As a result, the data 
flow becomes much more valuable and vaster. Traditional hardware-based networks 
face challenges such as inadequate capacity and poor resilience. They can still not 
accommodate or operate with the increased traffic, service and applications created by 
modern technology and meet the emerging digital world's emerging demands [1].  

On the other hand, the densified networks, such as fifth-generation (5G) and sixth-
generation (6G), undergo a massive paradigm shift due to all emerging innovations that 
can elevate lifestyle to a brand new level [2]. They are versatile concepts with a broad 
range of applications and services in potential network planning of future 
communication, including but not limited to IoT, internet social network, home 
automation, military equipment, mobile communications, automobile driving, health 
facilities, and smart cities. Therefore, the advent of 5G and beyond releases till 6G 
promises high-speed communication and control over greater distances; however, the 
assurance of flexibility, scalability, reliability, and security has to be highly considered 
[3]. Figure 1.1 shows the demand for 5G infrastructure, software, and services for 
devices, applications, and services beyond 5G. 

The 5G derived more intelligent management structures from coordinating numerous 
networks, typically in control management and complexity [4]. Thus, the arrival of 5G 
releases aims to provide new opportunities for service providers to increase revenues 
while decreasing costs and latency. The expansion to much higher carrier frequencies 
and network radio is crucial because of the continuing demand for increasing traffic, 
faster consumer data rates, and the associated need for additional spectrum and broader 
transmission bandwidths. It also enhances network energy performance and reduces 
interference, while interworking and LTE coexistence will make it possible to utilize 
existing cellular networks.  These features are regarded as major challenges for future 
mobile communication networks compared to previous cellular communications 
networks and standards beyond fourth-generation (4G) technologies [5]. 

Fortunately, the architecture of next-generation wireless networks (NWNs) and 5G 
necessitates openness to build and manage the massive increase in data traffic 
hierarchically for optimal network design and planning ideas [6]. Due to the density and 
diversity of random network topologies, 5G release technologies address the 
architecture-supporting mechanisms. A key technological advance in network 
reconfigurations is virtualization and network Softwarization. They enforce the primary 
5G network drivers and provide the architectural flexibility necessary to overcome 
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network complexity [7]. Thus virtualization and programmability of 5G core functional 
modules enable sharing of physical network resources and function chaining among 
different sections [8].   

 
 
Figure 1.1: The 5G vision and beyond the architecture of wireless technologies 
 
 
Software-Defined Networking (SDN) and Network Function Virtualization (NFV) are 
technology enablers that are focused on defining fine-grained network quality of service 
(QoS) over the network architecture. SDN creates operational intelligence by decoupling 
network control functions from data layer devices to support advanced automation from 
a centralized controller [1]. At the same time, NFV provides an adequate abstraction of 
network services' functionalities and a new infrastructure scalable management to 
accommodate a wide range of network functions [9].  

The integration of 5G with SDN and NFV takes advantage of the software 
programmability of the 5G core network architecture [10]. This integration runs in a 
cloud-based architecture paradigm, improves and facilitates reliance on network 
resources, helps in the unification of state network distribution, and provides an 
adjustable configuration technique for transparently managing any network [11]. 
However, when it comes to a softwarized network, a platform is ready to support flexible 
robustness, resilience, and flexibility and network policy configuration to meet an 
architecture-supporting mechanism for a diverse 5G service requirement from an 
architectural standpoint [12].  

Making wise decisions to allocate sufficient resources to fulfil all network architecture 
requirements and context information accomplished by a network control layer is a 
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significant task network resource control (allocation) in 5G networks is challenging [13]. 
This is attainable by supporting all network traffic functions carried out through the 
centralized control plane components in  5G  cloud-based architecture [11]. The 
centralized control plane makes these networks particularly vulnerable to upgrades and 
modifications. Besides that, network hardware-based control platforms are difficult to 
update, cope or work with the elevated traffic caused by big data demands. Thus, the 
wireless network's underpinning configuration results in a lack of significant awareness 
of network infrastructure, making network-wide cohesive policies challenging to deploy. 
This process considers determining the location of data centers (DCs) and cloud, 
estimating the volume of the subnetwork or service area network in terms of coverage 
and capacity. Also, assigning the demands and analyzing the propagation media and 
latencies requested to set up the networks before implementing any new technology [14]. 

Therefore, the adoption and utilization of multiple controllers in the control layer 
architectures for 5G networks tackle the lack of performance degradation to achieve a 
flexible and scalable architecture [15]. This distributed management control approach 
has been proposed as a way of facilitating network evolution. An interface between the 
SDN control plane and current centralized Network Management Systems (NMSs) can 
help the overall network efficiency.  

Nevertheless, there is a research gap in 5G-based SDN and NFV network design and 
optimization, as well as potential traffic monitoring behavior existing management 
schemes may not be sufficient. The network resource location problem in the distributed 
multi-control architecture of SDN-WAN is among the most critical and strategic issues 
requiring proper planning and optimization of both the control plane and the physical 
infrastructure layer [16]. Also, future wireless networks can face a significant challenge 
in efficiently fulfilling the increased network capacity and bandwidth utilization as the 
spectrum resources remain limited. Many optimization models for communication 
networks and traffic routing have been investigated; however, relatively few 
optimization strategies for NPM have been proposed.  

On the other side, significant consideration should be provided to connections and node 
failures, the most frequent failures in SDN networks. Network reliability is essential to 
achieve a scalable and robust link between controllers and physical network components 
or associated servers (VMs). Although these redundancies significantly improve 
network stability, they can increase energy consumption when all network equipment is 
turned on at maximum capacity. Hence, improving energy sustainability is becoming 
increasingly essential as global energy consumption has environmental and economic 
issues [17].  

The information and Communication Technologies (ICTs) sector consumes between 
10% to 12% of global energy; however, network components consume about 2% of the 
ICT sector's energy consumption [18]. Consequently, the current and future ICT sectors 
are based on significant improvements in today's efficiency while using minimal power 
consumption compared to the old ICT market. Hence, several energy-saving approaches 
during off-peak hours may be feasible without impacting network performance and 
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stability. This performance enhancement is useful for management and control decisions 
to prepare the required demand for traffic volume and service request control tools [19]. 

The following proposals are among particular works used in the thesis: a deep study on 
the control plane in potential 5G core infrastructure capable of delivering intelligent 
control functions. Furthermore, based on such an SDN-based framework, a control plane 
planning and optimization mechanism is specified and addressed to optimally distribute 
the potential utilization and load balances management process of control load between 
multiple control planes in 5G core networks. On the other side, by incorporating fault 
tolerance strategies, this study introduces an optimization method for the reliability and 
resiliency of the control layer's failure. 

The expanded usage of the wireless network can continue to grow in the future due to 
the increase of wireless device capacity. Therefore, this study explores the potential of 
integrating SDN and NFV to allow a distributed control plane to fulfil the traffic 
demands of different applications and services. However, the integration provides the 
ability to utilize diversity in the 5G core network by efficiently distributing resources at 
runtime to its multi-network control.  

To realize the above objectives, the thesis implements a heuristic method for tackling 
the problem of optimization. We investigate the applicability of a specific management 
allocation algorithm to solve the controller placement in distributed 5G core network by 
developing an optimization multi-objective optimization model. One of the key 
contributions is to examine controllers positioning for dynamic traffic flows based on 
the number of controllers mapping for switch-to-controller assignment applied to 
different average traffic situations within the network.  

Our proposed algorithm attempts to answer the questions of the following sub-problems 
of the Controller Placement Problem (CPP) in terms of: 'How to measure the load 
imbalance of controllers and determine whether to perform switch migration'; and 'How 
to make a trade-off between location cost, assignment of switches and fault tolerance 
costs.'  

An in-depth investigation of mathematic evaluation is carried out on distributed 
configurations under different parameter settings in a reliable manner to assist in 
choosing the best network architecture. The study aims to let the algorithm adapt an 
entire system based on the historical data, ensuring that the 5G network can fully realize 
the system variables and adjust their values optimally to achieve an exemplary network 
configuration. 

Calculating the accurate number of controllers is needed for a specific service area, such 
as ultra-dense networking and 5G stringent requirements. Although the linear 
optimization formulation makes the algorithm solvable by any available solving 
techniques, the task complexity increases abruptly for such scalability criteria. Hence, 
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the execution times and computational resources needed to increase as well. Considering 
this, a heuristic method based on the CPP algorithm was developed for the placement 
strategy with Particle Swarm Optimization (PSO). In our research, a hybrid PSO 
algorithm that incorporates a heuristic assignment procedure is proposed to optimize a 
proposed Multi-objective Optimization Problem. 

1.2 Significance of the Study 

The classic network architectures are complex to implement and manage many 
applications such as cloud networking environments data centers. They are 
comparatively stagnant, rigid, and challenging to enable modern innovation 
improvements. The proprietary systems in such designs depend on manual 
configuration, which is bulky, time-consuming, and erroneous.  

Many approaches have been developed to optimize and plan the 5G network based on 
SDN and NFV. However, specific vital issues must also be tackled to enhance resource 
management and provisioning in the 5G core. Current management plans could not be 
adequate among the latest developments of 5G rather than the other iteration of mobile 
networking technologies; 5G can cover a wide variety of usage cases. Consequently, 
scalable and programmable network management is needed to maintain the coherent 
policy and global management through complex access networks. To verify the 
advantages of controller scalability, processing latency, and energy consumption, 
SDN/NFV network performance must be modelled, analyzed, and tested. 

So far, among them, the integration of SDN into 5G based on distributed network design 
has gained popularity. The control plane is comprised of a series of dedicated controllers 
that perform as the key of the SDN, whereas the data plane is formed of several basic 
packet forwarding switches. This decoupling allows the network to become fully 
programmable, which has many advantages, such as simplifying network operations, 
improving network performance quality, and enabling advanced network management. 

The significant element is to propose a strategy for describing a distributed system that 
is compatible with the mapping of controllers in the large-scale implementation of SDN 
and NFV in core 5G networks.  An optimization algorithm is often used to find the best 
network parameters that can match the simulation results with performance metrics 
parameters. Such a method is based on optimization and a mathematical traffic 
engineering model that simulates system behavior under normal and failure conditions 
when fed system performance degradation. Also, the model provides low latency and 
high energy awareness, resulting in a qualitative network. 

On the other hand, the CPP is the most critical SDN challenge that can significantly 
impact the overall network efficiency. However, the CPP topic and its challenge have 
not been thoroughly well reviewed and appropriately discussed in any other studies. 
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The network performance can suffer because of an ineffective controller positioning 
strategy. Poor controller distribution may have unexpected effects, such as a lengthy 
recovery period after a failure, scalability, and energy efficiency aware design. 

Therefore, this study presents a detailed analysis of many optimized controller 
positioning problem algorithms in SDN that are NP-hard or recognized as facility 
position problems, usually involving the numbers and location of controllers in a 
network. So, the heuristic and evolutionary algorithm also provided efficient techniques 
for CPP as a resource location problem. However, most of the previous works dealt with 
the CPP in a single domain and single parameters. Some of them concentrated on load 
balancing without calculating the exact number of controllers under the network traffic 
load and evaluating resource management's assignment efficiency. Moreover, these 
methods do not tackle network traffic flows to reduce efficiency and the number of 
controllers to reduce the cost. 

1.3 Problem Statement 

The introduction of 5G networks and beyond promises high-speed networking and 
control over longer distances; however, flexibility, scalability, reliability, and security 
must be considered carefully [15].  

Although 5G has benefited from SDN, deploying SDN in 5G core still poses many 
architectural challenges [20][21]. Nonetheless, with such a massive and dense 5G 
network and the data flow variations demand, the centralized network control is 
insufficient to accommodate all network traffic. The diversity of services, devices, and 
significant traffic flow growth accompanied by the implementation of dynamic policies 
make it difficult for networks to run without overload.  Therefore, the adoption and 
utilization of multiple controllers in the control layer architectures for 5G networks 
tackle the lack of performance degradation to achieve a proper allocation of resource and 
control plane management [22][23][24][25]. The fundamental concept behind the 
distributed architecture is to break down the sizeable wide-area network into small 
subnetworks and deploy a single controller for each area to enable unified management. 
However, proper planning and optimization of the control plane as well as user-plane 
traffic management are major problems in distributed network architecture [26]. 
Choosing an approach requires maintaining a group of controllers be correctly mapped 
to improve flexibility, scalability, and reliability to achieve an optimal cost-effectiveness 
design for 5G core resource management [27][28]. This is known as a controller 
Placement Problem (CPP) [29]. 

Therefore, controller positioning has emerged as a critical design challenge that affects 
SDN's southbound performance due to the significant influence of propagation latency 
(switch to controller latency). Moreover, control tasks such as data plane monitoring 
must be accomplished to keep state information current to optimize the southbound 
interface. In summary, the following problems have been identified and will be 
addressed in this thesis: 
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i. The unpredictable network demands and signaling overhead generated between 
the far distributed gateway and centralized control plane may overload the 
controllers due to queuing at the controller system. Similarly, assigning 
switches to their corresponding controllers without planning will result in the 
controller's failure to meet the diverse requirements of a large-scale network, 
resulting in scalability issues. However, due to a commodity server's limitations 
and the controller's bandwidth constraint, each sub-controller should manage 
and serve a limited number of switches within their capacity range [30]. 
Therefore, a dynamic mapping scheme should be configured to find the best 
location for the number of controllers to achieve optimal resource scheduling 
and maintain load balancing. 

ii. The increased demand for a single controller has contributed to the entire 
network failure, owing to limited resources that appear insufficient for the 
controller to handle all network traffic generated by 5G via multiple alternate 
signaling routes. Thus, it is essential to provide a reasonable balance between a 
certain level of redundancy and fault-tolerance strategy is required to be utilized 
under which the control plane is subjected to failure [31]. The locations and 
number of controllers be allocated to achieve a reliable connection between the 
controllers and the network's physical components and avoid overloading any 
controllers [26]. This approach is intended for resilience mechanisms that can 
be applied to improve network reliability in controller faults, where facility 
capacity is often fixed. To ensure control plane state reliability, controllers must 
proactively redirect packets from a failed link to an alternate path [32].  

iii. The redundancy lengthens the considered traffic paths across the backup nodes, 
increasing latency and power consumption in a network. Consequently, it 
becomes a challenge on the DC where the underlying mapping of network 
services (switches and routers) is not used efficiently during heavy data traffic, 
resulting in a high marginal cost of energy consumption. Therefore, a certain 
level of redundancy-based policies and re-routing traffic mechanism must find. 
The goal is to identify routes between network components that use the fewest 
active links scheme using the network's power-saving mode [33]. Besides that, 
the location of these controllers must be optimized to meet the network energy-
aware and user requirements constraints [20][34]. 

Therefore, the overall concern that must be addressed is how many SDN controllers are 
required for a completely accurate 5G-based SDN/NFV for WAN and where they should 
be placed to optimize user-defined specifications and constraints while maintaining 
acceptable runtime and accuracy. To that end, this thesis investigates a variety of 5G 
network planning and optimization models. Besides, it proposes efficient heuristic multi-
objective optimization formulation mechanisms for large-scale networks of the 5G core. 
Since the algorithm is an NP-hard problem, efficient algorithms that solve network 
problems in theoretical and realistic ways are also proposed to find the exact solution for 
every model. However, the issues listed above must be addressed during the early stages 
of SDN planning. 
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1.4 Research Objectives 

The main objective of this research is to propose, design, and develop a heuristic multi-
objective optimization algorithm for controller placement problems as dynamic resource 
allocation scheduling in the 5G core-based multi-control SDN-NFV architecture. The 
research strategy is to determine the optimum location and the number of controllers as 
well as the assignment cost of switches to their controllers to achieve the best network 
performance in terms of scalability, reliability, and energy efficiency. To attain the main 
objective, the following research activities are proposed: 
 
 

1. To develop the dynamic allocation and mapping controller placement problem 
(DAMCP) algorithm to solve the dynamic mapping and assignment of the 
switch-to-controller to achieve load balancing. 
 

2. To develop a reliable (RAMCP) to set a mechanism for overload scenario and 
fault-tolerance of control plane under failure to maximize control plane 
reliability and robustness.  
  

3. To develop a novel energy-aware routing mechanism (EARMCP) focusing on 
finding optimal network traffic routes between the control plane and the data 
plane that reduces the end-to-end latency and ensures load balancing to increase 
network power efficiency. 
 
 

1.5 Scopes and Limitations of the Research 

This thesis discusses the concept, design, and implementation of the dynamic allocation 
multi-level and multi-objective controller placement problem (DMMCP) based on the 
K-center algorithm, Graph Theory, and a Greedy Randomized Search (GRS) algorithm. 
The algorithm is implemented in MATLAB. It can be applied to classes of densified 
networks such as 5G in wireless communication systems, where network protocols, 
including OpenFlow, are implemented. 
 
 
Many approaches have been developed to design and optimize a 5G network based on 
SDN and NFV. The integration of SDN and NFV into 5G or distributed network design 
has gained prominence due to its advantages of low latency, relatively easy flexibility, 
scalability, and reliability. The scope of the study is highlighted as shown in Figure 1.2. 
Note that the traffic is presented as a network resource instead of channel parameters 
such as bandwidth or throughput.  
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Figure 1.2 : The scope of the study 
 
 
A significant aspect of this work that directly affects the research methodology for the 
design of the CPP is the selection of number and placement of controllers in a network, 
availability, resiliency, and reliability investigated. Within the scope of this research, it 
focuses on cost and delay for the control plane environment. 
 
 
The designed algorithm uses the distributed multi-control-based SDN and NFV 
reference frame architecture. The proposed algorithm simulates the system behavior 
under normal and faults conditions when its fed system performance degradation. Also, 
this research focuses on the design and development of the energy-efficient network 
associated with the routing algorithm and vector control. Therefore, the optimization 
algorithm used in this study finds a near-optimal solution for the CPP and the trade-off 
between network parameters that balance the simulation results with output metrics 
parameters. 
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1.6 Thesis Contributions 

The main contributions of this thesis are listed below:  
 

i. The thesis contributes by analyzing the challenges and future direction of a 
distributed network architecture concept for a 5G core network based on SDN 
and NFV in Chapter 3. Their solutions for the enabling technologies of 5G, 
such as SDN, cloud technologies, and VNFs. The importance is to enable SDN 
and NFV integration benefits, such as efficient resource allocation and energy-
efficient network design. 
 

ii. The model captures the main performance for resource allocation scheduling 
optimization in terms of CPP and load balancing. 
 

iii. A reliable and robust network design of a novel control plane is provided. A 
reliable optimization strategy is developed to provide a reasonable balance 
between fault tolerance requirements and the cost-effective configuration of the 
network.  
 

iv. Finally, the energy-saving design is presented to accomplish the overall 
network performance.  

 
 
Our model results are then utilized to conduct a detailed investigation of control plane 
performance under realistic data center traffic loads. Our model can be used to forecast 
network performance and provide the necessary number of servers/controllers to meet 
network performance requirements. 

1.7 Thesis Outline 

This thesis comprises seven chapters covering the comprehensive states of the research 
as depicted in Figure 1.3. 

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7

Introduction Literature 
Review

General 
Mehododlogy

Contribution 1 Contribution 2 Contribution 3 Conclusion and 
Recommendations  

 
Figure 1.3 : Thesis outline 
 
 
Firstly, Chapter 1 comprises seven sections, beginning with the background of the 
study, which introduced and described the perspective of addressing the 5G network 
evaluation and planning for future direction. This chapter identifies the main thesis 
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problem statement, objective, scope, and contribution. Secondly, Chapter 2 covers the 
critical literature review and related studies on 5G core architecture and enabling 
technologies. Also, the existing techniques for solving the proposed approaches, 
ensuring performance and accuracy in large-scale networks. The general methodology 
and the detailed proposed methods (algorithms), and their performance evaluation and 
associated results are provided in chapters three, four, five, and six.  

So, thirdly, Chapter 3 presents a general thesis methodology and focuses on the steps 
for developing the algorithm design steps of the proposed architecture outline to tackle 
the DWN and CPP. It displays the main principles of the mathematical background of 
the presented problem and developed models. It also details all the performance metrics 
used to attain the objectives of the problem and the proposed design of the algorithm 
configuration.  

Fourthly, Chapter 4 outlines the mechanisms of the proposed heuristic dynamic 
resource allocation algorithm (DAMCP) and related formulation algorithm design. 
Fifthly, Chapter 5 resolves the issue of reliable and fault tolerance network design. This 
chapter gives the reliability algorithms alongside their evaluation using PSO. Sixthly, 
Chapter 6 outlines the Energy-aware Routing CCP (EARMCP) problem and algorithm 
formulation to minimize and find the routing cost for optimum energy-saving network 
design. Chapter 7 presents the general conclusion of the study, along with a summary 
of the results and contributions that the study made. The recommendations for future 
research are also presented for the information and use of future researchers. 

Finally, the references, appendices, biodata of the author, and the list of publications are 
given at the end of the thesis.   
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