
 

 
 
 

UNIVERSITI PUTRA MALAYSIA 
 

DEVELOPMENT OF A MACHINE VISION SYSTEM FOR WEEDY RICE 
SEED IDENTIFICATION 

 

 
 
 
 
 
 
 
 
 

RASHIDAH BINTI RUSLAN 
 
 
 
 
 
 
 
 
 
 

   FK 2022 44 



© C
OPYRIG

HT U
PMDEVELOPMENT OF A MACHINE VISION SYSTEM FOR WEEDY RICE

SEED IDENTIFICATION

By 

RASHIDAH BINTI RUSLAN 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in 

Fulfilment of the Requirements for the Degree of Doctor of Philosophy  

December 2021 



© C
OPYRIG

HT U
PM

COPYRIGHT 

All material contained within the thesis, including without limitation text, logos, icons, 

photographs and all other artwork, is copyright material of Universiti Putra Malaysia 

unless otherwise stated. Use may be made of any material contained within the thesis for 

non-commercial purposes from the copyright holder. Commercial use of material may 

only be made with the express, prior, written permission of Universiti Putra Malaysia. 

Copyright © Universiti Putra Malaysia 



© C
OPYRIG

HT U
PM

i 
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December 2021 

Chair : Assoc. Prof. Siti Khairunniza binti Bejo, PhD 

Faculty : Engineering 

Weedy rice contamination in certified rice seed has a dramatic impact on the rice seed 

industry in Malaysia. To ensure the purity of the certified seed, the authorized agency 

(Department of Agriculture) made a manual inspection of the rice seed samples. The task 

is laborious and time-consuming as well as very subjective and error-prone as it is 

influenced by the skills and experience of the operators in identifying the weedy rice 

seeds within the cultivated rice seed samples. High similarities between weedy rice 

morphological features and cultivated rice seed make it more challenging to separate the 

weedy rice effectively. Therefore, this study was formulated to explore the possibility of 

automating the manual process of distinguishing the weedy rice using a machine vision 

and machine learning technique. A machine vision prototype (Patent ID: PI2018500018) 

works as a platform to replace the human vision in identifying the weedy rice seed was 

developed. The hardware structure configuration includes selecting a suitable imaging 

system with uniform lighting and designing the seed plate and body case prototype. The 

finalized prototype was installed with a moving camera attached to the front light and 

equipped with imaging and features extraction software. Five cultivated rice seeds 

varieties and weedy rice variants were collected from the Seed Testing Laboratory. The 

monochrome and RGB images of the seed kernel were acquired using the prototype for 

classification model development. Each images is comprised of 15 rice seeds acquired 

on a seed plate. In total, 895 weedy rice and 7350 cultivated rice seed kernels were used. 

Ninety-four features were extracted from the morphological, colour and textural 

parameters. Features optimisation was done based on Stepwise Discriminant Analysis 

(SDA) and Principal Component Analysis (PCA) approaches. The PCA uses features 

selected from the correlation loading’s observation and PCs with the explained variances 

greater than 10%. The optimised features from the two types of input image were fed to 

seven machine learning classifiers and trained using a cross-validation technique using 

single-parameter (RGB Morph, RGB Colour, RGB Texture, Mono Morph, Mono Grey, 

Mono Texture), and three-parameter-sets (RGB MCT, Mono MGT, RGB Mono MCGT). 

The models were trained using ML classifiers such as Decision Trees (DT), Discriminant 

Analysis (DA), Naïve Bayes (NB), K-Nearest Neighbour (KNN), Support Vector 

Machines (SVM), Ensemble Classifier (EC), and Logistic Regression (LR). The results 

revealed SDA has a high percentage of features reduction than the CL plot for the single-
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parameter-set and a low percentage of features reduction for the three-parameters-set. 

Furthermore, the SDA had higher classification performance among other optimisation 

methods. For classification performance, RGB MCT dataset (combination of 

morphology, colour and textural features from RGB images) modeled by the SVM 

classifier had the best classification accuracy and average correct classification of 98.1% 

and 93%, respectively. The RGB MCT model used nine morphology, 22 colour, and 12 

texture features. The model was proven to achieve high sensitivity (97.4% to 99.8%) and 

specificity (97.5% to 100%) when tested using different seeds samples. In conclusion, 

this study contributed to the development of a complete laboratory-scaled machine vision 

equipped with the classification model using optimised morphology, colour and texture 

features. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

PEMBANGUNAN SISTEM PENGLIHATAN MESIN BAGI MENGENALPASTI 

BENIH PADI ANGIN 

Oleh 

RASHIDAH BINTI RUSLAN 

Disember 2021 

Pengerusi : Prof. Madya, Siti Khairunniza bt Bejo, PhD 

Fakulti : Kejuruteraan 

Benih sah yang dicemari oleh biji benih padi angin memberi kesan yang amat besar 

kepada industri penghasilan benih padi sah di Malaysia. Bagi mengekalkan ketulenan 

benih padi sah, agensi berautoriti (Jabatan Pertanian Malaysia) telah melakukan 

pemeriksaan secara manual kepada sampel benih padi. Tugasan ini adalah sukar dan 

memakan masa yang lama, mudah terdedah kepada kesilapan serta memerlukan 

penilaian yang subjektif oleh pengendali makmal berdasarkan kemahiran dan 

pengalaman mereka dalam mengenalpasti benih padi angin di dalam benih padi sah. 

Terdapat persamaan yang tinggi di antara benih padi angin dan benih padi sah dari segi 

bentuk morfologi dan ini menyukarkan tugasan untuk memisahkan benih padi angin 

dengan efektif. Oleh itu, kajian ini telah dirumuskan untuk meneroka kemungkinan untuk 

mengubah proses manual kepada automatik melalui teknik penglihatan mesin dan 

pembelajaran mesin. Sebuah prototaip penglihatan mesin (Patent ID: PI2018500018) 

telah dibangunkan sebagai platform bagi menggantikan proses pengenalan benih padi 

angin oleh manusia. Konfigurasi struktur perkakasan merangkumi pemilihan sistem 

pengimejan yang sesuai, sistem penataan cahaya yang seragam, dan mereka bentuk plat 

benih dan selongsong badan prototaip. Prototaip akhir telah dipasang dengan kamera 

yang bergerak bersama lampu hadapan dan dilengkapi dengan perisian bagi mengambil 

gambar biji benih serta mengekstrak ciri-ciri yang terdapat pada imej. Lima jenis benih 

padi sah dan varian benih padi angin telah dikumpulkan oleh Makmal Pengujian Biji 

Benih Padi dan digunakan di dalam kajian ini. Imej benih padi telah diambil oleh 

penglihatan mesin secara monokrom dan RGB untuk digunakan bagi pembangunan 

model pengelasan. Sembilan puluh empat ciri telah diekstrak merangkumi ciri bagi 

parameter morfologi, warna dan tekstur. Pengoptimuman ciri-ciri telah dilakukan 

melalui Stepwise Discriminant Analysis (SDA) dan Principal Component Analysis 

(PCA). Kaedah PCA adalah melalui pemilihan ciri-ciri yang di perhatikan di dalam plot 

kolerasi loading dan juga melalui pemilihan PC yang mempunyai variasi lebih dari 10%. 

Ciri-ciri optimum yang diambil dari kedua-dua jenis imej telah dimasukkan ke dalam 

tujuh pengelas pembelajaran mesin dan dilatih dengan kaedah validasi-silang 

menggunakan set-satu-parameter (RGB Morph, RGB Colour, RGB Texture, Mono 
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Morph, Mono Grey, Mono Texture), dan set-tiga-parameter (RGB MCT, Mono MGT, 

RGB MCGT). Latihan model telah menggunakan pengelas pembelajaran mesin seperti 

Decision Trees (DT), Discriminant Analysis (DA), Naïve Bayes (NB), K-Nearest 

Neighbour (KNN), Support Vector Machines (SVM), Ensemble Classifier (EC), dan 

Logistic Regression (LR). Keputusan kajian menunjukkan SDA mempunyai peratusan 

tinggi dalam menurunkan pemilihan ciri-ciri berbanding CL plot bagi set-satu-parameter 

dan peratusan yang rendah bagi set-tiga-parameter. Sementelah itu, SDA juga 

mempunyai peratusan yang tinggi bagi keputusan pengkelasan berbanding kaedah 

pengoptimuman ciri-ciri yang lain. Bagi keputusan pengelasan, data RGB MCT yang 

telah melalui pengelas SVM telah berjaya meningkatkan kejituan dan purata pengelasan 

betul dari set-satu-parameter kepada 98.1% dan 93%. Model itu telah menggunakan 

sembilan ciri morfologi, 22 ciri warna dan 12 ciri tekstur. Ia juga telah dipilih sebagai 

model terbaik bagi pengkelasan benih padi angin dari benih padi sah dan terbukti 

mencapai tahap kepekaan (97.4% to 99.8%) dan kekhukusan (97.5% to 100%) yang 

tinggi apabila diuji dengan sampel benih yang baru. Secara rumusan, kajian ini telah 

memberi sumbangan di dalam membangunkan sebuah sistem penglihatan mesin pada 

skala makmal dan dilengkapi dengan model pengkelasan yang menggunakan ciri-ciri 

optimum morfologi, warna dan tekstur. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Research Background 

Rice consumption is a defining feature of Malaysian culture.  Domestic paddy production 

in Malaysia is concentrated to ten granary areas in Peninsular with an enormous 

contribution from Muda Agricultural Development Authority (MADA) area, about 

38.8%, followed by Kemubu Agricultural Development Authority (KADA) at 9.1% and 

Integrated Agricultural Development Area (IADA) Barat Laut Selangor at 8.1% 

(Agrofood Stat, 2016). On average, Malaysia produced 4.47 MT/ha (Firdaus et al., 2020) 

over a total land cropping area of 0.7 million hectares.  Malaysia's rice production 

remained relatively constant compared to other ASEAN countries such as Vietnam, 

Thailand, Philippines and Indonesia, which have shown an increasing trend since 1990 

due to relatively constant harvested area in the ten granary areas (Che Omar et al., 2019). 

Malaysians consume at least three meals a day, consisting of rice in many forms. The 

rice consumption is expected to increase from 2.7 mil MT to 3.2 mill MT in 2027 as the 

national population grows. Malaysia produced 1.8 mill MT/ha in 2017 (Firdaus et al., 

2020), leaving a wide gap between rice production and consumption. The current gap 

between production and consumption trend was filled with net imports from Vietnam, 

Thailand, and other Asia countries.  

The government introduced the Seed Incentive program in 2007 under the Third National 

Agricultural Policy (NAP3) to boost paddy yield production. It outlines the involvement 

of the private sector for an adequate supply of quality seeds in the country. The private 

sector's participation increases the supply significantly to 80,000 MT (as of 2016) of 

high-quality seed from the initial capacity of 24,000 MT in 2007. Together with the Seed 

Incentive program, the Paddy Seed Certification Scheme (Skim Pengesahan Benih Padi) 

was introduced to ensure that the farmers supplied high-quality certified paddy seeds. 

Certified seeds are ensured of quality by laboratory testing on purity, germination, seed 

moisture content, and the search for unwanted weeds or other seeds. 

One of the threats impacting, lowering the yield of paddy production comes from the 

weedy rice infestation. Weedy rice is a type of weed that looks similar to the cultivated 

rice plant.  The first occurrence of weedy rice was reported to occur sporadically in the 

Muda area in Kedah state in 1990 (Azmi and Baki., 2007). The problem of weedy rice 

has now become widespread. In major rice granaries in Malaysia, weedy rice plants have 

been competitive with cultivated rice (Oryza sativa L.) and dominant throughout the rice 

planting field (Sudianto et al., 2016). Factors such as the transition from transplanting 

the seedling to direct seeding (since 1990s) and sharing machinery such as combine 

harvesters from one granary to another have increased the proliferation of weedy rice 
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across Malaysia's paddy field and made it difficult to control the spread (Ruzmi et al., 

2017). The wide adoption of direct seeding increased the weedy rice infestation and 

spread where manual weeding is difficult. 

Various efforts have been made either by private and government agencies to tackle the 

issues. The introduction of the Clearfied® rice program in FELCRA Seberang Perak in 

2010 can control the weedy rice infestation. However, the potential leaching of 

imidazolinone (IMI) herbicides in the soils and the emerging of acetolactate synthase 

(ALS) resistant weedy rice is found to nullify the efficacy of Clearfield® rice in long 

terms usage (Sudianto et al., 2013). Although the IMI herbicides have been discontinued, 

cultivated rice seed variety MR 220 CL2 developed for Clearfield rice is a popular choice 

among farmers due to its resistance to pests and diseases and lack of varieties selection. 

Reducing and avoiding weedy rice contamination in the cultivated rice seed is crucial. 

One of the approaches taken by the seed processing plant is to install the indented 

cylinder machine right before the seed bagging operation. The indented cylinder works 

by separating the seed according to its seed length. The seed kernel passes from the inlet 

housing into the machine's interior with pockets or indents. As the machine rotates, seeds 

fall in the indents are carried and fall out of the pockets into the trough and discharged 

by screw conveyor. Seed kernels longer or shorter than the indents are remained in the 

shell and emptied by the outlet casing (Cimbria, n.d). Despite the indented cylinder's 

installation, there are weedy rice seeds that fall into the trough and escape into the 

bagging process. Therefore, these measures are not 100% effective due to weedy rice 

having a similar cultivated rice seed size. 

To date, the standard protocol for seed purity and determination of unwanted weed is 

through a manual sampling process by the laboratory operators. Seed testing requires 

laboratory workers to count, identify and distinguish between the cultivated rice seed and 

weedy rice seed/unwanted seed or off-type seed. The maximum allowable unwanted or 

dangerous weed seeds are ten seeds/kg for certified rice. If the seed producers did not 

comply with the standard, the seed lot would be rejected, giving the producers losses. 

The losses also will reduce the required quota for farmers' supply.  The effort and 

standard operating protocols have proved to minimise weedy rice contamination in seed 

bags produced by the processing plant; however, the task is laborious and exposed to the 

paddy seeds' misidentification.  

Machine vision technology has been utilised in several agricultural sectors, such as 

application in precision agriculture practice, fresh produce quality assessment, and 

sorting and classification. The imaging technology coupled with machine learning offers 

many advantages in sensing as it is relatively accurate, non-destructive, and yields 

consistent results (Rehman et al., 2019). The ability of digital camera machine vision to 

recognise two-dimensional data attributes through the pixel size in the image that 

represents the shape, size, colour and texture in the visible colour region (Chen et al., 

2002) gives the advantage to understand the external quality parameter of agricultural 

samples.  
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Some of the machine vision applications on grain quality inspection were demonstrated 

by Kaur and Singh (2013), Pazoki et al. (2014), Golpour et al. (2014), Chaugule and Mali 

(2014), Anami et al. (2015), Huang and Chien (2017), Ansari et al. (2021). These 

researchers had proved that the purity assessment using imaging technology and seed 

separation using classification analysis on different rice seed varieties is possible with 

high accuracy.  

1.2 Problem Statement  

It is crucial to avoid contamination of weedy rice seed in the certified rice seed produced 

by the appointed seed producers due to difficulty controlling the spread in the rice field. 

The preventive measures in installing the indented cylinder during seed processing help 

remove the weedy rice from the cultivated rice seed based on its length. However, weedy 

rice seeds often have a similar size length to the cultivated rice seed escape the indented 

cylinder and appear in the seed bag. The high similarities of the seed features exhibited 

in the weedy rice seed are understood as the hybridization of wild Oryza population and 

Indica rice subspecies. In the meantime, manual quality inspection by the Seed Testing 

Laboratory is based on the distinctive physical appearance, such as size, hull and kernel 

colour. However, this task depends on the laboratory personnel's experience in 

identifying the weedy rice among the cultivated rice seed sample. Furthermore, the task 

becomes laborious during peak season and exposed to the risk of seed misidentification. 

The current techniques that rely on the physical separation based on seed length and 

physical appearances seen by human eyes do not guarantee effective separation of the 

weedy rice. Earlier work on weedy rice classification by Aznan et al. (2016) had proved 

the weedy rice seed is distinguishable from the cultivated rice seed using discriminant 

function analysis. However, this study only used morphological features of the seed and 

tested on one rice seed variety. Therefore, there is room for improvements in the weedy 

rice classification problem beyond the physical separation and the utilization of the 

morphological features from the image.   

Besides the physical appearances, other potential parameters are available such as colour 

and textural features of the seed, which can be captured in an image and extracted using 

image processing.  The combination of morphology, colour, and texture parameters 

extracted from seed images is expected to increase weedy rice's classification rate using 

various machine learning techniques. Therefore, it is vital to automate the weedy rice 

seed identification process using the image captured through machine vision technique. 

This research explores the possibility of replacing the manual process of weedy rice seed 

identification with a machine vision system to reduce the laborious work for inspection 

and human error. Specifically, this project emphasises developing a laboratory-scale 

image recognition system to identify weedy rice among the cultivated rice seed. 
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1.3 Objective 

This study aims to develop a machine vision prototype for weedy rice identification 

within local Malaysian cultivated rice seed varieties using image processing and machine 

learning technique. 

The specific objectives are: 

1. To construct the machine vision's hardware configuration systems for image 

acquisition consists of camera setting, lighting setup and seed plate design, and 

software programme development for image processing and features extraction. 

2. To optimize parameters extracted from the Monochrome and RGB seed kernel 

images using Stepwise Discriminant Analysis (SDA) and Principal Component 

Analysis (PCA). 

3. To identify the most suitable weedy rice and cultivated rice seed classification 

model developed using machine learning technique.  

1.4 Project Scope and Limitations 

This project's scope covers the process of weedy rice seed identification as being 

practiced in the Seed Testing Laboratory, Jabatan Pertanian Malaysia. Seed testing is one 

of the quality measures of certified seeds. The proposed machine vision prototype is 

expected to automate the manual weedy rice seed identification. This project's outcome 

can also be used in any laboratory whose required to check on the weedy rice seed 

contamination as prevention before sending samples to the Seed Testing Laboratory for 

certification. 

This project is limited to the following scope. 

1. The sample used in this study is based on the five popular rice seed varieties 

produced in season 2/2018 collected from the Seed Testing Laboratory, Jabatan 

Pertanian Malaysia in Teluk Cengai, Kedah. The varieties used were MR220 

CL2, MR219, RC2 RC8 and MR297. The cultivated rice seed samples were 

fully matured and obtained from the bag of the certified seeds produced by the 

processing plants. The seed sample represents the shape, size, and yield of the 

cultivated rice planted in the Muda area. 

2. The samples of weedy rice used in this study are limited to the available weedy 

rice collection saved by the Seed Testing Laboratory, Jabatan Pertanian 

Malaysia in Teluk Cengai, Kedah from season 1/2018 to season 2/2018. These 

seeds have undergone a manual selection and were only found during weedy 

rice search from the cultivated rice seed samples.  
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3. The development of the machine vision system considers the standard 

procedure conducted by the Seed Testing Laboratory, Jabatan Pertanian 

Malaysia. The weedy rice seed needs to be separated, identified, and collected 

among the cultivated rice seed. Therefore, the sampling method was designed 

to use a seed plate instead of scattered seed placement for easier identification 

of the weedy rice. The seed plate also allows for consistent data collection of 

the seed images specifically for model development.   

4. The machine learning (ML) classifier used in this study is limited to supervised 

ML. 

1.5 Structure of Thesis  

Chapter 2 presents a review of the literature. The weedy rice issues in the Malaysian 

context were summarised. Further, the weedy rice characteristics and the potential of 

machine vision and machine learning techniques to address the issues are discussed. The 

framework of developing the machine vision, the advantages of machine learning 

techniques,  the previous studies involving machine learning and grain classification 

were also reviewed and summarised in Chapter 2.  

Chapter 3 presents a proposed methodology to conduct this study. The development of 

the machine vision was outlined starting from the hardware component development. 

Then the image acquisition setup was presented, and the method for image acquisition 

was highlighted. Next, the acquired images were processed using LabVIEW explicitly 

written for this project. The parameters used in this study was presented, and the method 

for parameter extractions was discussed. The features reduction and optimisation method 

were also highlighted. Finally, the classification model parameter measures were 

outlined and defined for the evaluation of the models. Validation of the best model 

performance using the testing dataset was explained at the end of Chapter 3. 

Chapter 4 present the results and discussions on the findings of this research. The first 

result discussed the selection and limitations of the prototype development, which 

involved the image acquisition setup. Then, the results of parameters optimisation and 

the selected features using the stepwise discriminant analyses and the correlation loading 

plot from the principal component analysis were highlighted. Further, the results of the 

classification model employed using the machine learning classifiers were presented, and 

comparative analyses on the best-optimised model were made. Finally, the result of the 

testing dataset was discussed. 

Finally, Chapter 5 presented the conclusions and summarised the findings of this research. 

The main contributions of this thesis are clearly outlined. Some future recommendations 

are also presented.  
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