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This thesis reviewed the existing technology of the WPT system. Most Magnetic 

Resonance Coupling Wireless Power Transfer (MRC WPT) applications have been 

designed in kHz and MHz frequency spectrum. The International telecommunication 

Union has declared the following spectrum for 5G communication, and the spectrum 

range is; 3.4-3.6 GHz, 5-6 GHz, 24.25-27.5 GHz, 37-40.5 GHz, and 66-76 GHz 

frequency bands.  

 
 

The proposed design is first analyzed theoretically in MATLAB to realize the highly 

efficient MRC WPT at GHz frequency band. The Planar Spiral Coil Magnetic 

Resonance Coupling (PSC MRC) Antennas are designed at 3.4-3.5 GHz, and 5-6 GHz 

frequency band for the Circular and Square shapes with one, two and three turns. The 

PSC MRC Antennas circumference is designed to the one-wavelength loop λ. The 

Antenna will resonate when C is slightly larger than λ. The mutual coupling M has 

been calculated as the mutual coupling is crucial in determining the efficiency of the 

MRC WPT system,. and the From the results, the PSC MRC Circular one-turn of 3.4-

3.5 GHz has the best mutual coupling, M at the distance of 0 to 20 mm. while the PSC 

MRC of square two-turns is the highest mutual coupling, M when the distance is more 

than 20 mm amongst the other PSC MRC designs. Also, the theoretical efficiency of 
the proposed PSC MRC Antennas is also calculated in MATLAB. For the 3.4-3.5 GHz 

designed, theoretically, the PSCMRC Circular's efficiency is better than the PSC MRC 

Square design's efficiency. For the 5-6 GHz PSC MRC design, the Square-one-turn has 

the highest efficiency than the Circular one-turn designs. 

 

 

Next, all the designs have been simulated in the CST software to compare with the 

theoretical results. The PSC MRC Antennas are modelled on the FR4 substrate with 

thickness and copper thickness of 0.6 mm and 0.035 mm, respectively, in the CST 

Software. The parametric evaluation has been done in CST software to find the best 
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performance of S11 (dB) and SRF (GHz) of the proposed PSC MRC Antenna designs 

to be working at a 5G frequency band. The return loss S11 of each design needs to be 

below -10 dB to improve the efficiency of the MRC WPT system. In conclusion, all 

the PSC MRC Antenna for the circular and square designs at 3.4-3.5 GHz and 5-6 GHz 

are designed to be operated below -10 dB of return loss S11. 
 

 

Finally, the Circular PSC MRC Antenna one-turn, two-turns, three-turns at 3.4-3.5 

GHz and Circular one-turn PSC MRC Antenna 5-6 GHz are fabricated because they 

gave the best results when comparing with the theoretical and simulation results. The 

measurements results are compared with the simulated and the theoretical results to 

analyzed the efficiency performance with the distance,d.  

 

 

From the measurement results, the highest efficiency for the proposed PSC MRC 

Antenna design is the Circular one-turn PSC MRC Antenna at 3.4-3.5 GHz. The PSC 

MRC antenna's efficiency is 31.58 % when the distance is 2 mm, 31.26% and 31.02% 
when the distance is 3 mm and 4 mm, respectively. It can be concluded that, 

previously, most PSC MRC Antenna designs are only used for short-distance low 

frequency and CMOS applications. Strong near-field PSC MRC antenna structures are 

designed at a 5G frequency band has been obtained, which offers overall efficiency 

higher than 20%, close to 7 mm distance by generating an intense magnetic field 

around the loop coil antenna. The efficiency in CMOS applications is also lower than 

20%. 
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Tesis ini mengkaji teknologi sedia ada, iaitu sistem Pemindahan Kuasa Wayarles. 

Sebilangan besar aplikasi Gandingan Gelombang Magnet Salunan untuk sistem 

Pemindahan Kuasa Wayarles telah di gunakan dalam spektrum frekuensi kHz dan 

MHz. Kesatuan telekomunikasi Antarabangsa telah menyatakan spektrum berikut 

untuk komunikasi 5G. Julat spektrumnya adalah; 3.4-3.6 GHz, 5-6 GHz, 24.25-27.5 

GHz, 37-40.5 GHz, dan juga jalur frekuensi 66-76 GHz.  

 
 

Reka bentuk yang dicadangkan pertama kali dianalisis secara teori dalam MATLAB 

untuk mewujudkan Gandingan Gelombang Magnet Salunan untuk sistem Pemindahan 

Kuasa Wayarles yang sangat cekap pada jalur frekuensi GHz. Antena Satah Pilin 

Gandingan Gelombang Magnet Salunan untuk sistem Pemindahan Kuasa Wayarles 

direkabentuk pada jalur frekuensi 3.4-3.5 GHz dan 5-6 GHz untuk bentuk Bulat dan 

Persegi dengan satu, dua dan tiga putaran. Lingkaran Antena Satah Pilin Gandingan 

Gelombang Magnet Salunan dirancang untuk gelung panjang satu gelombang λ. 

Antena akan bergema apabila C sedikit lebih besar daripada λ. Gandingan bersama M 

telah dikira, dan PSC MRC Edaran satu-putaran 3.4-3.5 GHz mempunyai gandingan 

bersama terbaik, M pada jarak 0 hingga 20 mm. sementara PSC MRC dengan dua 

putaran persegi adalah gandingan bersama tertinggi, M apabila jaraknya lebih dari 20 
mm di antara reka bentuk Antena Satah Pilin Gandingan Gelombang Magnet Salunan 

yang lain. Juga, kecekapan teoritis Antena Satah Pilin Gandingan Gelombang Magnet 

Salunan yang dicadangkan juga dikira dalam MATLAB. Untuk 3.4-3.5 GHz yang 

dirancang, secara teorinya, kecekapan Antena Satah Pilin Gandingan Gelombang 

Magnet Salunan berbentu bulat lebih baik daripada kecekapan reka bentuk Antena 

Satah Pilin Gandingan Gelombang Magnet Salunan berbentuk segi-empat. Untuk reka 

bentuk Antena Satah Pilin Gandingan Gelombang Magnet Salunan 5-6 GHz, satu 

lingkaran segi-empat mempunyai kecekapan tertinggi berbanding dengan reka bentuk 

satu lingkaran berbentuk bulat. 
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Seterusnya, semua reka bentuk telah disimulasikan dalam perisian CST untuk 

dibandingkan dengan hasil teori. Antena Satah Pilin Gandingan Gelombang Magnet 

Salunan dimodelkan dalam Perisian CST pada substrat FR4 dengan ketebalan dan 

ketebalan tembaga masing-masing 0.6 mm dan 0.035 mm. Penilaian parametrik telah 

dilakukan dalam perisian CST untuk mencari prestasi S11 (dB) terbaik dan frekuensi 
salunan sendiri, SRF (GHz) dari cadangan Antena Satah Pilin Gandingan Gelombang 

Magnet Salunan yang dirancang untuk berfungsi pada jalur frekuensi 5G. Kehilangan 

pulangan S11 setiap reka bentuk perlu berada di bawah -10 dB untuk meningkatkan 

kecekapan sistem Gandingan Gelombang Magnet Salunan untuk sistem Pemindahan 

Kuasa Wayarles. Kesimpulannya, semua Antena Satah Pilin Gandingan Gelombang 

Magnet Salunan untuk reka bentuk bulat dan segi-empat pada 3.4-3.5 GHz dan 5-6 

GHz dirancang untuk beroperasi di bawah -10 dB kehilangan pulangan S11. Akhirnya, 

Antena Satah Pilin Gandingan Gelombang Magnet Salunan satu putaran, dua putaran, 

tiga putaran pada 3,4-3,5 GHz dan Satu putaran Antena Satah Pilin Gandingan 

Gelombang Magnet Salunan 5-6 GHz di modelkan kerana mereka memberikan hasil 

terbaik ketika membandingkan dengan hasil teori dan hasil simulasi.Hasil pengukuran 

dibandingkan dengan hasil simulasi dan teori untuk menganalisis prestasi kecekapan 
dengan jarak, d. 

 

 

Dari hasil pengukuran, kecekapan tertinggi untuk reka bentuk Antena Satah Pilin 

Gandingan Gelombang Magnet Salunan yang dicadangkan adalah Antena Satah Pilin 

Gandingan Gelombang Magnet Salunan satu putaran pada 3.4-3.5 GHz. Kecekapan 

antenanya adalah 31.58% apabila jaraknya 2 mm, 31.26% dan 31.02% apabila jarak 

masing-masing berada pada 3 mm dan 4 mm.  

 

 

Dapat disimpulkan bahawa, sebelumnya, kebanyakan reka bentuk Antena PSC MRC 
hanya digunakan untuk aplikasi frekuensi rendah dalam jarak yang pendek dan CMOS. 

Struktur antena Gandingan Gelombang Magnet Salunan untuk sistem Pemindahan 

Kuasa Wayarles medan dekat yang kuat dirancang pada jalur frekuensi 5G telah 

diperoleh, yang menawarkan kecekapan keseluruhan lebih tinggi daripada 20%, 

dengan jarak hampir 7 mm dan menghasilkan medan magnet yang kuat di sekitar 

antena gegelung. Kecekapan dalam aplikasi CMOS juga lebih rendah daripada 20%. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Wireless power transfer (WPT) is a means of transferring electric power without any 

physical connections, and it provides a safe, mobile, and convenient solution to 

recharge the battery of any electrical devices (Jolani et al., 2014; Farid, 2015; Jolani, 

Yu and Chen, 2015). The traditional power supply, which uses cords, is so messy 

compared to the wireless power supply, and they do not allow large-s cale utilization 

and mobility. However, using the battery as a replacement for the power cord power 
supply is not a great solution. The batteries have a lifetime shortage, increasing the 

hardware implementation's weight, cost, and surface area(Agiwal, Roy and Saxena, 

2016)(Newsletter, 2021). 

Furthermore, to replace or recharge the batteries inside the hardware seems to be 

unfeasible, and its high operational costs (Noohani and Magsi, 2020)(Ponnimbaduge 

Perera et al., 2018). Thus, the development of WPT techniques has allowed 

electromagnetic wave energy to be transferred from the transmitter, which is the power 

source, to the receiver destination wirelessly (Jawad et al., 2017). A century ago, Tesla 

investigated the WPT based on magnetic resonance and near-field coupling using two-

loop resonators (Zhong, Lee and Ron Hui, 2013).  

According to Tesla, depending on the energy transfer mechanism, WPT can be 
radiative or nonradiative. As for radiative power, the antenna can propagate 

electromagnetic waves over long distances through a medium, for instance, air or 

vacuum (Barman et al., 2015)(Hui, 2013). However, the power transmission efficiency 

is very low due to the radiative power emissions' Omni-directional nature (Wei, Wang, 

and Dai, 2014)(Kim, Won, and Jang, 2010). Omni-directional antennas work very well 

for information transfer, and they not suitable for a high energy transfer because a vast 

majority of energy is wasted into free space (Karalis, Joannopoulos, and Soljačić, 

2008). For this solution, to transfer energy with high efficiency, nonradiative WPT is 

used (Kim, Won and Jang, 2010). Nonradiative WPT depends on the near-field 

magnetic coupling using the conductive loops, and it can be categorized as short-range 

and mid-range WPT (Hui, Zhong and Lee, 2014)(Biswas et al., 2018). It has also 

become an active area for standardization, such as Qi and A4WP specification 
(Galinina et al., 2016). Nonradiative WPT mainly operates at the range frequency of 20 

kilohertz (kHz) to a few megahertz (MHz) (Hui, Zhong and Lee, 2014). Nevertheless, 

it has been reported that recently WPT is also being used at sub-gigahertz(GHz) where 

miniature self-resonant antennas are designed to realize the transcutaneous WPT 

(Nukala et al., 2016; YC Lie, 2017)(YC Lie, 2017)(Costanzo and Masotti, 2017).  
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WPT technique is also rapidly growing in research due to the rising of mobile 

electronics usage. There is a dramatic growth in the level of interest in near-field WPT 

and information technologies because the WPT technique has been used in mobile 

phones, electric vehicles, medical implants, wireless sensor networks, and others 

(Jawad et al., 2017)(Vijayakumaran Nair and Choi, 2016)(Carvalho et al., 2017)(Issue, 

2013).  

The Fifth Generation (5G) technology is the next evolution technology that can provide 

connectivity for any electrical device, increasing data rate, and has higher energy 

efficiency. The most important reasons for this rise in interest in higher frequency and 

are the larger available bandwidth, compact size, higher spatial resolution for a given 

antenna size, better temporal resolution, and the reusability of frequencies (M. Alonso-

del Pino, Jan 2020)(Yifei and Longming, 2020)(Agiwal, Roy and Saxena, 2016). 

Varieties of 5G enabling technologies have been developed, including extending the 

wireless communication to the higher frequency band, the advances development of 

multi-band antenna, and the wireless power transfer system (Jones, 2018)(Bonati, 

Gambin and Rossi, 2017).5G technology can realize the vision of the Internet of 

Things/Internet of Everything (IoT/IoE). It supports the significant number of devices 
connected with a reduced cost per information transfer(Barman et al., 2015). 

According to Costanzo and Masotti (2017), mobile traffic is expected to increase by 

more than 60% per year. The mobile traffic is due to the spread of electronic devices 

usage. The history of RF identification (RFID) Near-Field Wireless Power Transfer 

from few decades has applications that operate at low-frequency (LF) ranging from 30 

~ 300 kHz and high frequency (HF) ranging from 3 ~ 30 MHz bands. The LF and HF 

RFID systems' commercial applications have already been used since the 1990s (Chen 

et al., 2008). Thus, the next 5G generation wireless networks' critical essence is to 

explore and exploit this new, high-frequency mm-wave band, which ranges from 

3~300 GHz frequency band (Neil et al., 2017)(Communications and Commission, 

2019)(Galinina et al., 2016)(Newsletter, 2021).   

1.2 Problem Statement  

1. Nearfield Inductive Coupling provides high efficiency only at a short distance. 

The transfer efficiency drops faster when the distance is expending and the 

axial's misalignment between the transmitter and receiver coil.  

Wireless Power Transfer (WPT) provides a safe, convenient, and portable solution to 

transfer electric power without any physical connection and recharge any electrical 

devices' batteries. For the past few decades, most WPT system has been using 

inductive coupling to transfer electrical power, consisting of a transmitter from the 

power source and a receiver to the load coil over the air medium. The systems are e to 

be implemented. However, it can only provide high efficiency only at a very short 

distance. The transfer efficiency drops faster when the distance is expending and the 

axial's misalignment between the transmitter and receiver coil. Thus, in 2007, Magnetic 

Resonance Coupling (MRC) has been introduced from MIT (Massachusetts Institute of 

Technology), which can achieve power transmission over a significant distance (Raju 
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et al., 2014). Although magnetic resonance has an advantage in terms of distance 

compared to electromagnetic induction, the system has a limitation as the load 

absorption power is sensitive to the variations on the operating parameters. The 

transmission performance will significantly reduce due to a slight difference in 

resonance and operation frequency.  

2. Most reported MRC WPT systems uses the coils that are often bulky in 

geometry, such as helical antenna, spiral loops, and dimensional wire loops. 

Thus, the techniques are challenging to apply to small electronics designs, such 

as in 5G designs applications.  

Thus, this thesis utilizes the printed spiral coils (PSCs) MRC WPT methods to design 

the MRC WPT system for 5G Applications. This method is more suitable for low-

design profiles, small footprints, and easy fabricating MRC WPT Antenna (Jolani et 

al., 2014). Furthermore, this thesis also targets to analyze the design's critical 

parameters to achieve a highly efficient MRC WPT system for 5G Applications. The 

five key factors are the operation frequency, the coupling distance parameters, the 

power level, the coils' Q-factor, and the coil geometry, including size and weight (Yeoh 

et al., no date) 

3. According to Costanzo and Masotti (2017) , Ezhilarasan and E. (2017), and 

Bonati, Gambin, and Rossi (2017), mobile traffic is expected to increase by 

more than 60% per year. The traffic is congested due to the spreading of 

electronic devices. Furthermore, the circuit model equations are mainly designed 

for low frequency (kHz and MHz) MRC WPT systems.  

The history of RF identification (RFID) Near-Field Wireless Power Transfer for few 

decades has applications that operate at low-frequency (LF) ranging from 30 ~ 300 

kHz and high frequency (HF) ranging from 3 ~ 30 MHz bands. The LF and HF RFID 

systems' commercial applications have already been used since the 1990s (Chen et al., 

2008). Thus, the next 5G generation wireless networks' critical essence is exploring 

and exploiting this new, high-frequency mm-wave band, ranging from 3~300 GHz 
frequency band (Neil et al.). The transformation of the low frequency (kHz and MHz) 

circuit model equations to high frequency (GHz) circuit model equations is crucial to 

achieving high efficient planar coils antenna MRC WPT designs structure. This 

method is essential because no available circuit model equations have been designed at 

high frequency (GHz) for the MRC WPT system. 

Furthermore, the GHz frequency efficiency, which is mainly in CMOS, is lower than 

20% (Jia et al., 2015). This thesis aims to find Near-field Wireless Power Transfer 

configurations using Strongly Magnetic Resonance Coupling at a 5G frequency band 

to achieve an efficiency higher than 20%. The frequency of operations focuses on the 

lower frequency band, ranging from 3.4~3.5 GHz and 5~6 GHz bands. The planar 

loops antenna is used to generate the alternating magnetic field for the system as the 
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magnetic flux will be developed around any conductor loop of any shape and 

particularly intense in the form of loop coil antenna (Klaus Finkenzeller, 2010) 

 

 

1.3 Research Aim and Objectives 

This study aims to configure the MRC WPT with high efficiency at the high-frequency 

band. The targeting frequency operation is at the 5G frequency band (sub-6 GHz), 

ranging from 3.4~3.5 ad 5~6 GHz frequency band. This study designs apply the 

commonly used MRC WPT method by transforming the lower frequency band (KHz 

and MHz) to high-frequency bands (GHz).  

The objectives of this thesis are to:  

 

1. Design planar coils antenna configuration based on the MRC WPT method 

that is feasible for 5G applications.   

2. Transform the low frequency (kHz and MHz) circuit model equations to 

high frequency (GHz) circuit model equations to achieve high efficient 

planar coils antenna MRC WPT designs structure. 

3. Simulate and evaluate the proposed design of the planar coil antenna MRC 

WPT in terms of efficiency performance.  

4. Validate the proposed design by fabrication and experimentation in terms of 
efficiency and distance effects.  

 

 

1.4 Scope of Research 

The scope of this study is to find configurations, develop and analyze the high-

efficiency MCR-WPT using the planar loop antenna. According to the Bio-Savart law, 

currents can generate a magnetic field, and the magnetic field are active in the near-

field of the loop antenna (Bevelacqua, 2019)(Yi and Kevin, 2008). The planar loops 

antenna is used to generate the alternating magnetic field for the system as the 

magnetic flux will be developed around any conductor loop of any shape and 

particularly intense in the form of a loop coil antenna (Klaus Finkenzeller, 2010). The 

scope of this study is to find configurations for Near-field Wireless Power Transfer 

using Strongly Magnetic Resonance Coupling at 5G frequency band. The operation 

frequency focuses on the lower frequency band, ranging from 3.4~3.5 and GHz and 

5~6 GHz bands. The big challenge for Wireless Power Transfer for 5G is to improve 

the system's power transfer efficiency, as we know that the antenna size is proportional 
to its operating wavelength for optimum efficiency. Therefore, the antenna size should 

be reduced to increase the system's performance and design system to be operated at 

the high-frequency band (5G). 
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Furthermore, as the antenna design gets smaller, it would be impossible to use any 

passive components for the equivalent matching circuit to resonate with the operating 

frequency system. Thus, the operating frequency is achieved by adjusting the parasitic 

Capacitance Cp, which depends on the antenna pattern's geometry, the dielectric 

constant, thickness of the substrate layer, and the shielding layer pattern below the 
antenna layer. The antenna's geometry also includes the coil's length, number of turns, 

trace width, the gap between the two adjacent traces, inductance value, and Q-factor of 

the antenna coil (Chen et al., 2008). Figure 1.1 shows the type of WPT technologies.  

 

Figure 1.1 : Type of WPT Technologies 

 

 

Based on Figure 1.1, this study's scope is illustrated in Figure 1.2. The continuous lines 

show the direction to follow in this study to achieve the objective, while the dashed 

line shows the research area that is not discussed in this study. 
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1.5 Research Methodology 

Firstly, to achieve these study objectives, thorough research has been done to 

understand MRC WPT's fundamentals and the system design, resonating at the 

intended 5G application frequency. The theoretical analysis and parametric evaluation 

have been carried out in MATLAB software to find the highest efficiency needed for 

the system. The low-frequency circuit equations (kHz and MHz) is first transformed to 

the high-frequency circuit equations (GHz). The transform equations are used to 

calculate the theoretical efficiency performances of the proposed design. Then, the 3D 

full-wave electromagnetic simulator (CST Microwave Studio, Version 2016) is used to 
design the planar coil antenna, and the results between theoretical and simulation are 

compared. Then, the MRC WPT antennas are fabricated on the FR4 substrate. Finally, 

the MRC WPT antenna measurement is done to validate the design methods. The flow 

and development methodologies are explained in the flow chart shown in Figure 1.3. 
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Figure 1.3 : Methodology of Design PSC MRC WPT 

Define Magnetic Resonance Wireless Power Transfer 
(MRCWPT) and antenna coil specifications (Width, Spacing, 

Number of Turns, Size, Frequency, etc.) 

Theoretical Analysis and Parametric Evaluation using 
MATLAB software  

Optimizing the specifications 

Full-wave electromagnetic simulation of coil antenna using 
CST Microwave Studio 

Start 

Does it meet the 
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and improvement? 

MRCWPT antenna Fabrication Process 

Theoretical and 
Simulation Agree?  

MRCWPT antenna Measurement Process 

Simulation and 
Measurement Agree?  

End. 

YES 

YES 

YES 

 NO 

 NO 



© C
OPYRIG

HT U
PM

 

9 

1.6 List of Contribution 

The main contributions of this thesis can be summarized as follows:  

 

• Nearfield Inductive Coupling provides high efficiency. However, the high 

efficiency is only at a short distance because the transfer efficiency drops 

faster when the distance is expending and the axial's misalignment between 

the transmitter and receiver coil. Thus, in 2007, the technology of magnetic 

resonant coupling wireless power transfer (MRC WPT) has been introduced 

by a research group from the Massachusetts Institute of Technology (MIT). 
This method takes advantage of two electromagnetic systems with the same 

resonance coil frequency to transfer energy at a certain distance. Generally, 

when two electromagnetic systems are weak coupling at a certain distance, 

the system can excite strong magnetic resonance if the natural resonance 

frequency is the same and improves the efficiency and the distance of the 

power transfer. Furthermore, from the reported literature review, most Low 

Frequencies MRC WPT designs use bulky resoanance coil, such as helix 

coil and litz wire to design the transmitter (TX) Reciever(RX) of the MRC 

WPT system. For this reason, the Nearfield Inductive Coupling 

configuration based on the MRC WPT for extended distance to cover 5G 

Applications had been introduced using the Planar Spiral Coil (PSC) designs 
for the system's simplicity. 

 

• Most reported Near-Field Wireless Power Transfer for few decades has 

applications, for instance, RF identification (RFID), which operates at low-

frequency (LF) ranging from 30 ~ 300 kHz and high frequency (HF) 

ranging from 3 ~ 30 MHz bands. Today, unfortunately, we observe a 

plethora of registered RFID applications. Thus, the next 5G bands' critical 

essence is exploring and exploiting this new, high-frequency mm-wave 

band, ranging from 3~300 GHz frequency band. The transformation of the 

low frequency (kHz and MHz) circuit model equations to high frequency 

(GHz) circuit model equations is crucial to achieving high efficient planar 

coils antenna MRC WPT designs structure. This method is essential because 
no available circuit model equations have been designed at high frequency 

(GHz) for the MRC WPT system. For this reason, the transformation 

technique of the low frequency (kHz and MHz) magnetic resonance circuit 

model equations to high frequency (GHz) circuit model equations to achieve 

a high-efficiency PSC MRC WPT designs structure is introduced. This 

technique can be applied to design PSC MRC Antenna WPT for 5G 

applications effectively. 

 

• A possible solution to improve the antenna performance and efficiency of a 

higher frequency system (in this case, GHz), is to reduce the size of the 

antenna and the circumference of a free space wavelength of the antenna 
should be designed. Furthermore, most of the applications in the GHz 

frequency bands are mainly CMOS, yet the efficiency of the reported 

system is lower than 20% . For this reason, the strong magnetic resonance 

coupling at a 5G frequency band has been designed, which was previously 

only used for short distance low frequency and CMOS applications. The 
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planar loops antenna, a loop shape coil,  is used to generate the intense 

alternating magnetic field for the MRC WPT system as the magnetic flux 

will be developed around any conductor loop. The high efficient PSC MRC 

Antenna structures are designed, offering overall efficiency higher than 

20%, close to 7 mm distance by generating an intense magnetic field around 

the loop coil antenna. 

1.7 Thesis Organization 

This thesis contains five chapters. Chapter 1 introduces the study background, research 

motivations, and current problem to design the MRC WPT of high frequency for 5G 
applications. The research objectives, scope, and methodology of the study have also 

been discussed in this chapter.  

Chapter 2 explained the literature review of the traditional WPT system and the 

concept of using MRC WPT. The equivalent circuit model of the conventional MCR 

WPT, which utilized the low-frequency coil antenna and analytical equations, is also 

explained in this chapter. The study of the previous work for low frequency (kHz and 

MHz) and high frequency (GHz) in MRC WPT designs are also discussed in this 

chapter. The contents are summarized at the end of the chapter.  

Chapter 3 presents the design of a high-frequency MRC WPT for 5G applications. 

Firstly, the analytical calculation of the coil antenna is validated using MATLAB 

software, and the mutual coupling and maximum coil antenna efficiency for high-
frequency (GHz) design are also calculated. Next, the configurations of high-frequency 

(GHz) MRC WPT are designed in CST Microwave Studio 2016. The design is 

utilizing the Planar Spiral Coil (PSC) antenna. The PSC MRC Antenna is designed 

with a Circular and Square shape to be operated at 3.4-3.5 GHz and 5-6 GHz frequency 

band. The system consists of two coils; each of them is designed on the FR4 substrate. 

The first PSC MRC antenna is at the transmitter side (TX), and the second PSC MRC 

antenna is at the receiver side (RX). The chapter is summarized at the end. 

Chapter 4 discussed the theoretical results in MATLAB and the simulation results in 

CST software. The proposed designs are fabricated and then are measured to validate 

the performance. Next, the results are discussed and compared with the theoretical and 

simulation results. The chapter is summarized at the end.    

Chapter 5 concludes the thesis, followed by the significant contributions of the 
research. Future work in the proposed research area is also discussed and included in 

this chapter. 
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