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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in the fulfilment 

of the requirement for the degree of Doctor of Philosophy 

DESIGN AND DEVELOPMENT OF 123kV 13L CROSS-ARM WITH 

BRACING STRUCTURES FOR APPLICATION IN TRANSMISSION 

TOWERS 

By 

SHARAF HUSSEIN KADHIM SHARAF 

July 2021 

Chairman :   Associate Professor Mohamad Ridzwan bin Ishak, PhD 

Faculty :   Engineering 

In this study, experimental and numerical investigations have been conducted of the 

mechanical behavior of existing full-scale wooden 123 KV 13L cross-arms used in 

transmission towers. Two cases have been considered to be analyzed and tested 

accordingly. In the case of normal condition, standard load 7.98 KN, with 8 organized 

steps with angle Θ = 54.2º at YZ plan from Y-axis were applied. While Fr = 16 KN with 

16 organized steps with angle Θ = 12.6 º at the horizontal plane, α = 17.57 º at the vertical 
plane was applied for broken wire condition. The numerical results of the simulation 

have proven that the experiments were confident for normal and broken wire conditions 

are 93 % and 98.2 % respectively. To improve the existing design of cross-arm structure, 

an integrated TRIZ–Morphological Chart–ANP approach was used to establish four (4) 

new concepts of cross arms of transmission towers. In a conceptual design phase, a 

solution was developed through employing the TRIZ model according to TRIZ 40 

techniques. After precise analysis, the output of the selection process of the conceptual 

design was further validated, where conceptual design 2 was ranked optimal in all three 

processing scenarios.  Bracket structure P1048 by UNISTRUT® has been followed as a 

guide to be modified through conducting some modifications by employing systematic 

exploitation of proven ideas or experience. The modified design of the structure of the 

bracket was analyzed by FEM using static structural tool data from analyzing process 
were used to specify the thickness of the bracket structure to be used in the final design. 

Finally, the improved 13L 123KV Cross-arm structure has been investigated with 

experimental and numerical load-deflection behavior for the whole structure. Two 

scenarios have been conducted broken and normal wire conditions. the experimental 

results showed that the maximum value deflection at the normal condition for tangential 

and radial deflection is 11.6  mm and 11.5 mm respectively. Numerical results of 

simulation have proven that the experiments were confident for broken and normal wire 

conditions are 98.7 % and 91.4 % respectively.   
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

PEMBANGUNAN LENGAN MERENTAS DENGAN STRUKTUR 

PENYANGGA UNTUK MENARA PENGHANTARAN KUASA 123kV 13L 

Oleh 

SHARAF HUSSEIN KADHIM SHARAF 

Julai 2021 

Pengerusi :   Profesor Madya Mohamad Ridzwan bin Ishak, PhD 

Fakulti :   Kejuruteraan 

Dalam kajian ini, penyiasatan eksperimen dan berangka telah dijalankan ke atas tingkah 

laku mekanikal kayu berskala penuh 123 KV 13L silang lengan sedia ada yang 

digunakan dalam menara penghantaran. Dua kes telah dipertimbangkan untuk dianalisis 

dan diuji sewajarnya. Dalam kes keadaan biasa, beban standard 7.98 KN, dengan 8 

langkah tersusun dengan sudut Θ = 54.2º pada pelan YZ dari paksi Y telah digunakan. 

Manakala Fr = 16 KN dengan 16 langkah tersusun dengan sudut Θ = 12.6 º pada satah 
mengufuk, α = 17.57 º pada satah menegak digunakan untuk keadaan wayar putus. 

Keputusan berangka simulasi telah membuktikan bahawa eksperimen yakin untuk 

keadaan wayar biasa dan patah adalah masing-masing 93 % dan 98.2 %. Untuk 

menambah baik reka bentuk sedia ada struktur lengan silang, pendekatan TRIZ–Carta 

Morfologi–ANP bersepadu telah digunakan untuk mewujudkan empat (4) konsep 

baharu lengan silang menara penghantaran. Fasa reka bentuk konsep, penyelesaian telah 

dibangunkan melalui penggunaan model TRIZ mengikut teknik TRIZ 40. Selepas 

analisis yang tepat, output proses pemilihan reka bentuk konseptual telah disahkan lagi, 

di mana reka bentuk konseptual 2 diletakkan pada kedudukan optimum dalam ketiga-

tiga senario pemprosesan. Struktur kurungan P1048 oleh UNISTRUT® telah diikuti 

sebagai panduan untuk diubah suai melalui melakukan beberapa pengubahsuaian dengan 

menggunakan eksploitasi sistematik idea atau pengalaman yang telah terbukti. Reka 
bentuk struktur pendakap yang diubah suai telah dianalisis oleh FEM menggunakan data 

alat struktur statik daripada proses menganalisis digunakan untuk menentukan ketebalan 

struktur pendakap yang akan digunakan dalam reka bentuk akhir. Akhir sekali, struktur 

lengan silang 13L 123KV yang dipertingkatkan telah disiasat dengan tingkah laku 

pesongan beban eksperimen dan berangka untuk keseluruhan struktur. Dua senario telah 

dijalankan keadaan wayar putus dan normal. keputusan eksperimen menunjukkan nilai 

pesongan maksimum pada keadaan normal bagi pesongan tangen dan jejari masing-

masing ialah 11.6 mm dan 11.5 mm. Keputusan berangka simulasi telah membuktikan 

bahawa eksperimen yakin untuk keadaan wayar putus dan normal masing-masing adalah 

98.7 % dan 91.4 %. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background  

A transmission line is primarily composed of transmission towers. Transmission towers 

construction must withstand the weight of the transmission conductor at a certain height 

from the level. Besides, the transmission towers must be prepared to sustain all forms of 

natural catastrophes. Hence, putting up a transmission tower requires broad participation 

of all three fundamental engineering principles (mechanical, civil, and electrical) 

concepts which are evenly relevant [1]. An electricity transmission tower comprises 
several sections. One of the major structures in an energy transmission tower is the cross-

arm. Crossarms of the transmission tower help the transmission conductor. Normally, 

the substances used for cross-arms in transmission towers are timber, steel, and 

fiberglass [2]. 

In transmission towers, which are made up of wood, steel, concrete, and fiber enhanced 

polymers, there are four principal materials. Historically, the wood of Chengal 

(Neobalanocarpus), which was first commissioned in 1929, was used as a crucible in 

1963 on 132kV suspension towers after proving successful performance in a 66kV 

tower. The wooden cross arm has been selected for its high mechanical strength and 

excellent arc calming performance during lightning strikes [3–4], and wood has been 

selected as one of the low-cost facilities, compared to the two other materials. In the late 
1990s, though, it was found that matured Chengal cannot be found to produce good 

quality cross-arms easily any longer. Furthermore, it was found that after 24 years of 

service, the wood began to fail due to aging [5]. Much later in 2010, after only 14 years 

of service, a defective wood crossarm was found. 

In general, wood is the first material in the transmission line used as the structure. Wood 

is a resourceful structural material and has long been used but it requires additional 

testing, as cross-arms are beams placed on a utility pole that takes loads from the 

transmission wires and moves to the pole [6][7]. Figure 1 shows the present cross 

structure that is used by TNB  

 

 

 
 

 

 



© C
OPYRIG

HT U
PM

 

2 

 

Figure 1.1 : Present cross-arm structure that is used by TNB 

 

 

Around 22 distinct wood types, used to create cross-arms worldwide, were analyzed. 

The cross arms are composed of timber, asphalt, and composites of reinforced concrete. 

Many are constructed of timber since it is affordable and simple to reach [8]. 

Wood was known to be superior as a cross arm because of the arc-quenching property 

causing the arc to be quenched by lightning strikes [9]. However, after a direct lightning 

hit and other conditions, several cases were reported in the failed cross arm. 

The first step to seeking an alternative of wood is the identification of a few products 

that have been selected: compacted wood stick, reinforced polymer/plastics fiberglass 

(FRP), and Silicon Rubber braced arms. 

Additional properties including strong separation and corrosion tolerance are given for 

composite cross-arms. So, no painting is mandatory to save occasional repairs and 

associated job costs. In the course of a full-scale model of hollow filament-winding FRP 

elements. [10] built a 154 kV line post-typed insulation forearm, and checked for 

mechanical and electrical efficiency. Brian and Timothy [11] have researched the 
modification of the 132 kV tool with an independent cross arm to decrease the ROW of 

a current 132 kV transmission tower. All the following experiments on composite 

crossarms appropriate for stainless steel towers are performed to substitute the original 

steel cross arm, without altering tower configuration, to raise the voltage. 

Transmission Inc. FRP Developments Inc, the third-larger utility in Canada, the British 

Columbia Hydro & Power Authority (BC Hydro) identified a need to replace the wooden 

and steel H-frame interfaces with something new. This need was made public and several 

recommendations and options were given to BC Hydro. The cross-arms method has been 
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used and promoted by FRP Networking Technology Inc. After initial consultations and 

assessments, a 20-year cooperation agreement on new and cross-arms fiber-reinforced 

polymers (FRP), as well as for other products needed in the BC Hydro transmission 

system, was developed to undertake joint research and development between the BC 

Hydro and FRP TII. For h-frames, one for 138 kV, and one for wider geometries up to 
287 kV[12], two new designs had been produced. In compliance with loading conditions, 

the larger cross-arm can be used with 340 kV boards. To gather expertise in field service, 

feedback incentives for line crews, and to determine field efficiency and ease of building, 

BC Hydro has developed and carried out a comprehensive third-party research program 

and has built several cross weapons. 

In terms of price, wooden cross-arms need to replace the costliest maintenance from one 

team to the next (which could be quite expensive if only access from the helicopter is 

because of the rugged terrain) in between 25 and 40 years, depending on the 

environmental condition and initial timber. FRP cross-arms are capable of skipping up 

to 2 substitution times relative to wooden cross-arms. This saves so well of the total life-

cycle expense forecast. The life cycle calculations here are rather easy. It should be 

simple to build a more complete diagram, jurisdictions, and service models [13]. 

In very short order, FRP TII transmission weapons may be manufactured to provide 

quality frames in large quantities appropriate for utilities. FRP Transmission 

Developments, Inc. The current lead period is up to three weeks. Cross FRP TII arms 

are chemically neutral and do not release contaminants. In environmentally sensitive 

settings, the FRP TII cross arms are highly important. Both conservation organizations 

used FRP TII networks in mountains, lakes, and similar regions. If cross arms are 

disposed of by FRP TII, they will go to general deposits [14], the preferred method is 

recycling. None can pollute the atmosphere through cross-arms. Theft is a concern with 

some transmission processes. The FRP TII Cross-arms were highly immune (gunshots) 

to bullet injury. When tested, several bullets bounced off. No structural loss exists also 

in large bullet damage on the arms of the cross of very close range [15]. 

1.2 Problem Statement  

Cross-arms are the main structure of the transmission line constructed on a utility pole 

which takes up the load from the transmission wires and transfers it to the pole. The 

design of transmission towers must withstand the weight of the driver from the ground 
at a certain height. The transmission tower must also be able to sustain natural disasters 

of all forms. Therefore, a large participation of all three basic engineering concepts, 

which are equally applicable mechanical, civil, and electrical, is necessary for building 

a transmission tower [16]. There are many parts of a power transmission tower and cross-

arm is one of the central components in a power transmission tower.   

In the current cross-arm structure, the issue becomes crucial since it will affect electricity 

production and incur additional costs for reparation and maintenance. The failure of the 

crossarm that is being used at the transmission tower will be analyzed and developed. 
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The failure behavior and mechanical properties of the materials used in the cross arm are 

usually assessed with the coupons of the original material. Based on the previous 

research, fiberglass was used as an insulator in the transmission system according to 

previous research because it has a greater nonconductor strength [17]. Because of the 

inconsistency of a lot of conditions, however, many new cross-arms fail in a short period 
due to several reasons such as heavy rain, lightning, wind, and humidity in wet or hot 

conditions, and the material undergoes degradation leading to mechanical failure[18].  

However, full-scale testing of the cross-arm structures hardly exists. Determination of 

properties of the full-scale structures will provide reliable data and identify failure 

behaviors critical to the structure. Moreover, few studies improved the design of the 

wooden cross-arm for optimal performance. In addition, very limited studies have been 

carried out on full-scale testing of the cross-arm structure. 

The current problem is being forced by TNB is that the existing design of the cross-arm 

structure fails within a period for many reasons including mechanical, environmental, 

and other reasons. Based on previous reports, actual load-deflection under both normal 

and broken wire condition have not been conducted; only load deflection of full-scale 

cross-arm has been conducted until fracture point (fail). While in the current research, 
load-deflection behavior has been conducted under both situations in the limit of the 

elastic region of the structure. In normal conditions, loads have been applied in 8 

organized steps with a maximum load of (7.98 KN), while in the broken wire condition, 

it has been applied in 16 organized steps with a maximum load of (16 KN).  

Previous studies have mentioned that the numerical analysis was done of the coupon 

tests of the composite cross-arm structure and very limited studies carried out numerical 

analysis of the full-scale composite cross arm. While in current research, numerical 

analysis has been conducted on the full-scale wooden cross-arm to validate the results 

of a load-deflection test of both normal and broken wire conditions. Based on the 

previous explanation, there was no reliable data related to the full-scale wooden cross in 

both conditions. Thus, load-deflection data has been collected for further processing in 

the design of the cross-arm.  

The existing cross-arm structure being used by TNB consists of the main member and 

two tie members. Nowadays, many new cross-arms fail in a short period due to several 

reasons such as heavy rain, the lightning, wind, and humidity in wet or hot conditions 

and all these factors lead to mechanical failure in the cross-arm structure [19][20]. The 

improved cross arm structure consists of the main member and two tie members along 

with bracing members thus bracket systems are needed to joint bracing members to the 

main body. In the current research, bracket structures have been designed, fabricated, 

and installed on the main body of the cross-arm structure. The design of bracket systems 

is based on concurrent engineering method, by using systematic exploitation of proven 

ideas of experience approach. Thus, they have been designed, analyzed, and fabricated 

accordingly. 
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In the current study, an improved design of cross-arm has been developed and tested 

accordingly. Similar to the previous design of the cross-arm structure, actual load-

deflection under both normal and broken wire condition have not been conducted in the 

limit of the elastic region of the structure. In normal conditions, loads also have been 

applied in 8 organized steps with a maximum load of (7.98 KN). While in the broken 
wire condition, it has been applied in 16 organized steps with a maximum load of (16 

KN). In the current research, numerical analysis using structural analysis tool in ANSYS 

software has been conducted on the full-scale wooden cross-arm to validate the results 

of the load-deflection test in terms of both normal and broken wire conditions. These 

tests have been carried out for both present and improved design. Data from both tests 

have been compared accordingly.  

1.3 Research Objectives  

The general objective of current research is to develop and design cross-arm structures 

to be applied in transmission towers. This scheme can be achieved in an effective way 

to satisfy the following: 

 

1. To optimize the conceptual designs of the cross-arm structure with bracing 

members using the structural analysis method.  

2. To optimize the conceptual designs of the cross-arm structure with bracing 

members using the structural analysis method.  

3. To develop the bracket system of the improved cross-arm design. 

4. To investigate experimentally and numerically the load-deflection behavior 

of the improved full-scale wooden cross-arm under normal and broken wire 

conditions.  

 
1.4 Scope of Thesis  

In this research, a wooden cross-arm will be used in a full-scale cross-arm structure to 

be fabricated and tested. To carry out the investigation load-deflection, a test is used as 

an indicator to specify the quality of the cross-arm structure.  

To fabricate the improved full-scale cross-arm structure, bracket structure arms are 

developed in terms of functionality, analysis, fabrication, and assembly to be installed 

accordingly. In this work, load-deflection investigation has been carried out for both 

normal wire and broken wire conditions. Furthermore, the numerical investigation will 

be conducted for both normal and broken wire conditions for the existing cross-arm. 

Additionally, the numerical investigation will be carried for the improved cross-arm 

structure in both normal and broken wire conditions. Static structure tool in ANSYS 

software has been employed for the simulation process. In the conceptualization process, 

structural analysis software SKYCIV is used to analyze the proposed structure of the 

cross-arm in terms of deflection due to load  
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1.5 Research Questions 

1.  How to investigate the load-deflection behavior numerically and 

experimentally for the existing full-scale wooden cross-arm? 

2.  How the conceptual designs of the cross-arm with bracing members can be 

optimized using structural analysis software SKYCIV? 

3  What are the procedures required for developing the bracket system of the 

improved cross-arm design? 

4.  How to investigate the load-deflection behavior of the numerically and 

experimentally improved full-scale wooden cross-arm? 

 
1.6 Significance of Research  

The findings of this study will benefit society considering that mathematics plays an 

important role in science and technology today. This project is considered a significant 

project because it mainly deals with real problems occurring in the wooden cross-arm in 

transmission towers. This study can be conducted in the future by using the improved 
structure of the wooden cross-arm instead of the old design used by TNB. In this study, 

a new perspective will be introduced to the design of the cross-arm design, and the new 

design consists of the main members, tie members, and bracing members where the 

bracing member will be connected to the main body by using a bracket structure. 

Moreover, a new design of bracket structures has also been developed. Thus, this design 

may be used in the future with different kinds of materials of the cross-arm structure. 

Thus, researchers who are working in the same area can use the proposed method to 

select the optimum design. The present study bridges the gap in the literature by 

employing the theories of load-deflection to be implemented on the cross-arm structure. 

Moreover, many researchers can use the same numerical model along with its governed 

equations to the different types of materials. 

1.7 Thesis Outlines  

This research has five chapters, and the following is a brief outline of the synopsis of 

each chapter. The first chapter begins with an introduction to the study with sub-sections 

of Background of the Study, Problem Statement, Research Objectives, and Research 

Questions, the Scope of the Current Research.  

The second chapter is dedicated to Literature Review. It has nine sections that address 

principles relevant to the conceptual design of this research. Moreover, the chapter 

addresses the structure procedure which reviews different kinds of materials that have 

so far been used in the fabrication of cross-arm with its governed theories. 
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The third chapter is composed of five main parts. They show how the objectives of the 

study are achieved. The first part discusses how to investigate the load-deflection 

behavior of the existing wooden cross-arm. While the second part discusses how the 

optimum design of the proposed design of the cross-arm may apply a concurrent 

engineering approach. The third part presents the procedure of developing bracket 
structures used in connecting the bracing member to the main body of the cross-arm 

structure. The fourth part presents how load-deflection investigation improves the 

selected design of the crossarm structure of both normal and broken conditions. The final 

chapter shows the procedure of numerical investigation of the exiting and improved 

cross-arm of both normal and broken conditions. 

In chapter four, the focus is on the research outcomes and discussion about the present 

study. 

Chapter 5 concludes the outcomes of the current research. Recommendations for further 

researches related to the field of this study are also made and included in this chapter 
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