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Machine Type Communications (MTC) refer to the autonomous interaction be-
tween connected devices without human intervention. The deployment of MTC
on cellular networks provides ubiquitous services to Internet-of-Things (IoT)
systems. Recently, the Third-Generation Partnership Project (3GPP) introduced
the standard specifications of deploying MTC on cellular networks. The 3GPP
recommends the recent cellular networks such as Long-Term Evolution (LTE),
LTE-Advanced (LTE-A) and Fifth-Generation (5G) networks as an appropriate
infrastructure for MTC due to wide coverage, scalability, low latency and
spectral efficiency.

Indeed, with an increased number of devices connecting to the network every-
day, massive numbers of machine devices are expected to simultaneously access
the network resources especially during emergency scenarios. This massive
access results in excessive congestion and collisions in the random access
channel (RACH) which is considered the first step to access network resources.
These massive collisions cause the devices to be blocked from accessing net-
work resources which results in performance degradation for the overall MTC
system. For this reason, it is important to improve random access (RA) control
schemes to accommodate the increased number of machine devices connecting
to the network. In this thesis, RA control schemes are classified according to
targetted objectives into three categories: (1) massive access control schemes,
(2) energy efficiency schemes and (3) performance improvement schemes. Each
category is further divided into two subcategories, and the relevant RA schemes
are presented for each category. Furthermore, an analytical comparison has
been provided among the different schemes according to several performance
parameters. This work mainly focuses on the massive access control schemes
which are sub-divided into congestion control and collision resolution schemes.
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In order to increase the access success rate during massive access scenarios,
this work proposes a new dynamic backoff collision resolution scheme (DBCR)
for delay-tolerant devices. In this scheme, the RACH collisions are resolved
using a backoff procedure which dynamically adjusts the backoff indicator
(BI) based on the number of backlog devices and available resources. The
proposed scheme is integrated with three well-known random access schemes.
The mathematical analysis of the DBCR and derivation of the optimal value
of BI is presented for the three different combinations. Thereafter, extensive
simulations are performed to evaluate the proposed scheme. The analysis
and simulation results demonstrate that the DBCR scheme achieves an access
success rate of 99.9% with a slight increase in access delay which is reasonable
for delay-tolerant applications during massive arrivals scenarios.

Further, this work introduces a dynamic tree splitting (DTS) scheme to resolve
RACH collisions for delay-sensitive devices during burst arrival scenarios. The
DTS scheme assigns a specific number of resources/preambles to the collided
group of devices for their next access attempt with the aim of reducing access
delay. The number of preambles assigned for each group is determined based
on the mean number of collisions in each random access opportunity (RAO) in
order to increase the utilisation of preambles. The mathematical analysis of the
proposed scheme is presented and the access delay is derived. The analysis and
simulation results show that the DTS reduces the access delay by approximately
12% compared to the recent benchmarks, with a very low drop rate, which
indicates the efficiency and reliability of the proposed scheme.

Furthermore, a priority-based load-adaptive preambles separation (PLPS) RA
scheme for quality-of-service (QoS)-differentiated applications in 5G networks is
proposed. In this scheme, three classes of devices are considered. These are de-
vices with enhanced mobile broadband (eMBB), ultra-reliable low latency com-
munication (URLLC) and massive machine type communication (mMTC). The
available number of preambles is divided into three groups, and the number of
preambles is assigned for each group based on class priority and load intensity.
The mathematical analysis of the proposed scheme is presented along with the
derivations of several performance metrics. The analysis and simulation results
show that the PLPS scheme succeeds in achieving the targetted QoS require-
ments for each class even for a large number of devices, which is very promising
for the 5G heterogeneous services.
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SKEMA KAWALAN CAPAIAN RAWAK YANG BAGI KOMUNIKASI JENIS
MESIN BESAR DALAM RANGKAIAN SELULAR INTERNET BENDA

Oleh

ALTHUMALI, HUDA DAKHILALLAH A

Jun 2022

Pengerusi: Mohamed Othman, PhD
Fakulti: Sains Komputer dan Teknolologi Maklumat

Komunikasi Jenis Mesin (MTC) adalah interaksi autonomi antara peranti yang
berhubung tanpa campur tangan manusia. Penggunaan komunikasi MTC pada
rangkaian selular membolehkan perkhidmatan sistem Internet Benda (IoT)
digunakan di merata tempat. Baru-baru ini, Projek Perkongsian Generasi Ketiga
(3GPP) memperkenalkan spesifikasi piawai penggunaan komunikasi MTC
pada rangkaian selular. 3GPP mengesyorkan rangkaian selular terkini seperti
rangkaian Evolusi Jangka Panjang (LTE), LTE Termaju (LTE-A) dan Generasi
Kelima (5G) sebagai infrastruktur yang sesuai bagi komunikasi MTC kerana
liputan yang luas, kebolehskalaan, kependaman yang rendah dan kecekapan
spektrum.

Malah, peningkatan jumlah peranti yang berhubung ke rangkaian setiap hari
bermaksud capaian kepada sumber rangkaian dijangka dilakukan secara
serentak oleh sejumlah besar peranti mesin, terutamanya dalam situasi kece-
masan. Capaian besar-besaran ini mengakibatkan kesesakan dan perlanggaran
yang melampau dalam saluran capaian secara rawak (RACH) yang merupakan
langkah pertama dalam mengakses sumber rangkaian. Perlanggaran besar-
besaran ini pula menyebabkan peranti disekat daripada mengakses sumber
rangkaian dan mengakibatkan prestasi keseluruhan sistem MTC merosot.
Oleh itu, adalah penting bagi teknik kawalan akses secara rawak (RA) diper-
tingkatkan untuk menyesuaikan dengan peningkatan bilangan peranti mesin
yang berhubung ke rangkaian. Dalam kajian ini, teknik kawalan capaian secara
rawak dikelaskan kepada tiga kategori berdasarkan objektif yang disasarkan:
(1) teknik kawalan capaian besar-besaran, (2) teknik kecekapan tenaga dan
(3) teknik peningkatan prestasi. Setiap kategori dipecahkan lagi kepada dua
subkategori dan teknik RA yang berkaitan dibentangkan untuk setiap kategori.

iii



© C
OPYRIG

HT U
PM

Tambahan pula, perbandingan secara analitikal dibuat antara teknik-teknik
yang berbeza berdasarkan beberapa parameter prestasi. Kajian ini tertumpu
terutamanya pada teknik kawalan capaian besar-besaran yang dibahagikan
kepada teknik kawalan kesesakan dan teknik penyelesaian perlanggaran. Bagi
meningkatkan kadar kejayaan capaian semasa senario capaian besar-besaran,
kajian ini mencadangkan skema penyelesaian backoff collision dinamik (DBCR)
baharu untuk peranti tahan lengah. Dalam skema ini, perlanggaran RACH
diselesaikan menggunakan prosedur backoff yang secara dinamik melaraskan
penunjuk backoff (BI) berdasarkan bilangan peranti yang tertunggak dan
sumber yang tersedia. Skema yang dicadangkan disepadukan dengan tiga
skema capaian rawak yang terkenal.

Analisis matematik terhadap DBCR dan terbitan nilai optimum BI dipersem-
bahkan untuk tiga kombinasi yang berbeza. Setelah itu, simulasi terperinci
dibuat untuk menilai skema yang dicadangkan. Hasil analisis dan simulasi
menunjukkan bahawa skema DBCR mencapai kadar kejayaan capaian sebanyak
99.9% dengan sedikit peningkatan dalam kelewatan capaian yang munasabah
bagi aplikasi tahan kelewatan sewaktu senario ketibaan besar-besaran. Se-
lanjutnya, kajian ini memperkenalkan algoritma pemisahan pokok dinamik
(DTS) untuk menyelesaikan perlanggaran RACH bagi peranti sensitif lengah
semasa senario letusan ketibaan. Algoritma DTS menetapkan bilangan sum-
ber/pendahuluan yang khusus kepada kumpulan peranti yang berlanggar
untuk percubaan capaian seterusnya dengan tujuan mengurangkan kelewatan
capaian. Bilangan pendahuluan yang ditetapkan untuk setiap kumpulan diten-
tukan berdasarkan purata bilangan perlanggaran dalam setiap peluang capaian
rawak (RAO) untuk meningkatkan penggunaan pendahuluan. Analisis matem-
atik bagi algoritma yang dicadangkan dibentangkan dan kelewatan capaian
diperoleh. Keputusan analisis dan simulasi menunjukkan bahawa DTS berjaya
mengurangkan kelewatan capaian sebanyak hampir 12% berbanding penanda
aras terkini. DTS menunjukkan kadar penurunan yang sangat rendah, yang
menandakan kecekapan dan kebolehpercayaan algoritma yang dicadangkan.

Tambahan pula, skema RA pemisahan pendahuluan penyesuaian beban be-
rasaskan keutamaan (PLPS) untuk aplikasi terbeza bagi kualiti perkhidmatan
(QoS) dalam rangkaian 5G turut dicadangkan. Skema ini mempertimbangkan
tiga kelas peranti; jalur lebar mudah alih tertingkat (eMBB), komunikasi kepen-
daman rendah yang sangat boleh dipercayai (URLLC) dan peranti komunikasi
jenis mesin besar (mMTC). Bilangan pendahuluan yang tersedia dibahagikan
kepada tiga kumpulan, dan bilangan pendahuluan ditetapkan untuk setiap
kumpulan berdasarkan keutamaan kelas dan keamatan beban. Analisis matem-
atik bagi skema yang dicadangkan dibentangkan bersama dengan terbitan be-
berapa metrik prestasi. Keputusan analisis dan simulasi menunjukkan bahawa
skema PLPS berjaya mencapai keperluan QoS yang disasarkan untuk setiap ke-
las, walaupun untuk sejumlah besar peranti. Keputusan ini adalah amat meng-
galakkan bagi perkhidmatan heterogen 5G.
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CHAPTER 1

INTRODUCTION

1.1 Background

The Internet of Things (IoT) is a recent paradigm that has received much
attention in the last decade due to the growing interest in the use of autonomous
computing. According to the Global Standards Initiative on Internet of Things
(IoT-GSI), the IoT can be defined as the infrastructure of the information society.
In the IoT, physical objects are connected to the existing network infrastructure
to be sensed and controlled remotely through the network. These objects are
embedded with sensors, actuators and software that facilitate the sensing and
controlling process, as well as the network connection which allows data to
be exchanged among the connected objects [1]. Such connectivity results in
smart city improvements where all systems such as transportation, lighting,
power and water are managed intelligently [2]. These capabilities will give
rise to incredible developments in system efficiency and reliability. To sup-
port the IoT, machine-to-machine (M2M) communications, or in other words,
machine type communications (MTC) are required because billions of devices
will be connected to the Internet in the near future [3]. MTC stands for the
automated interaction between machine devices without human intervention.
This technology provides significant services for several IoT applications such
as e-healthcare, e-transportation, e-commerce and automated control systems.

Enabling MTC on cellular networks provides a promising future for IoT. The
Third-Generation Partnership Project (3GPP) has introduced the standards for
MTC on cellular networks [4]. Cellular networks such as Long-Term Evolution
(LTE), LTE-Advanced (LTE-A) and fifth generation (5G) networks have been con-
sidered appropriate infrastructure for MTC due to widespread coverage, scala-
bility, low latency, large capacity, spectral efficiency and Quality-of-Service (QoS)
guarantees. However, LTE/LTE-A and 5G networks are optimised for human
type communications (HTC) , which have different characteristics from MTC.
Usually, MTC includes short data packets with more frequent transmissions
compared to HTC. Therefore, the current cellular networks require some im-
provements to cope with the special characteristics of MTC.

1.1.1 Cellular IoT Networks

Cellular IoT Networks involve several MTC systems which connect to the
internet through cellular networks. Cellular-based MTC systems are composed
of three main domains: the device domain, the network domain and the appli-
cation domain [5]. As shown in Figure 1.1, the device domain contains MTC
devices which perform sensing, actuating and data gathering. These devices
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are connected to the core network through a radio access network (RAN) or an
MTC gateway. The core network and the RAN formulate the network domain
which is connected to the MTC cloud server in the application domain. The
MTC cloud server communicates with the MTC application user that could be a
human or another MTC device performing system monitoring and management
[6].
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Figure 1.1: Cellular-based MTC System.

MTC devices are connected to the core network through either an LTE/LTE-A or
5G network. LTE is a recent cellular network paradigm that was developed by
3GPP under the fourth-generation (4G) standardization. Starting from Release
8, 3GPP has defined the specifications for LTE networks that provide high peak
data rates and efficient management for radio resources [7]. LTE was recently
developed to LTE-A which aims to provide higher data rates and spectral
efficiency [8]. In LTE/LTE-A networks, the Evolved Node B (eNB) is the base
station (BS) component which is responsible for providing physical and medium
access control (MAC) layer services, such as radio resource management, access
traffic control, packet scheduling, routing and handover. Multiple eNBs are
connected using a high-speed X2 interface which facilitates communication
among them. eNBs are connected to the core network through an S1 interface
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which allows the eNB to access the mobility management entity (MME) and the
serving gateway (S-GW). The core network components facilitate the communi-
cation between the RAN and the Internet.

5G networks introduce the new radio (NR) interface to provide higher flexibility
which is required to support several types of service [9]. The 5G RAN can be
connected to a 5G core network in the stand alone (SA) architecture. Further,
5G RAN can be connected to an LTE/LTE-A core network in the non-stand
alone (NSA) Architecture as adopted in Figure 1.1. The BS of the NR is called
the logical node B (gNB). Multiple gNBs are connected together via an X2-U
interface and connected to the LTE/LTE-A core network through an S1-U
interface. 5G networks provide connectivity for several service classes including
enhanced mobile broadband (eMBB), ultra-reliable low latency communication
(URLLC) and massive Internet of things (mIoT). eMBB is designed to provide
high data rates for large payload applications such as 4K video, live streaming
and cloud gaming. URLLC aims to achieve fast and high reliable services for
critical applications such as smart transport systems, remote medical assistance
and industrial automation. Finally, mIoT is enabled through the massive MTC
(mMTC) which provides connectivity for an extremely large number of devices
with high energy efficiency for delay-tolerant applications such as sensing,
metering, and monitoring in smart grid networks. The service requirements
differ among the three classes according to connection and traffic density,
reliability and latency constraints [10].

However, deploying MTC on recent cellular networks has many challenges.
These challenges are as follows [11]:

• Cellular networks such as LTE/LTE-A provide a higher data rate at the
downlink (50 Mbps) and a lower data rate at the uplink (25 Mbps) which is
not suitable for MTC that requires an increased data rate at the uplink.

• Allowing MTC communication in cellular networks creates an overhead
problem that may affect the performance of HTC communications.

•Although MTC involves small data transmissions, congestion may occur in
the uplink due to the massive number of devices trying to access the network
simultaneously.

• Cellular network transmission and reception consume more power which
must be reduced for MTC to cope with limited-energy devices.

• Transmission protocols must be optimized to consume low power to ex-
tend the lifetime of batteries.

• Interferences may occur in the communications lines of cellular networks
due to MTC [12].
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1.1.2 Standard Random Access Procedure

When the user equipment (UE) is turned on for the first time, the UE goes
through a synchronization process by which it acquires the system information
from a particular network operator to which the UE subscribes [13]. After syn-
chronization, the UE must go through a random access (RA) procedure to in-
form the BS that the UE requires the connection. The RA procedure is carried out
through the random access channel (RACH) which periodically provides RA op-
portunities (RAOs). Normally, the UE is required to perform the RA procedure
for the following reasons [14]:

• To acquire the initial access to the network.

• To re-establish the connection after the failure of a radio link.

• To hand over from one eNB to another.

• To update the user equipment location.

• To make scheduling requests.

To support the previous situations, two forms of RA procedures are defined in
cellular networks [15] [16]:

1. Contention-based RA: in this form, the access process is triggered by
UEs that compete to access the RACH. This form is more suitable for delay-
tolerant applications due to the probability of collisions.

2. Contention-free RA: in which the access process is initiated by the BS
which allocates particular access resources to the UEs to allow them to
transmit their access requests. This form is appropriate for delay-sensitive
applications that require high success rates and involve fewer devices.

The standard RA (SRA) procedure in cellular networks is contention based,
where the UEs are competing to acquire access to the BS [17]. The SRA proce-
dure involves four message transmissions between the UE and the BS as shown
in Figure 1.2. The four message transmissions of the SRA procedure can be sum-
marised as follows [18]:

•Msg1: Preamble transmission. Whenever a UE requires network access, it
randomly choses a preamble and transmits it to the BS in the nearest avail-
able RAO. This preamble must be unique among all the transmitted pream-
bles in the same RAO, otherwise, a collision of Msg3 will occur.

•Msg2: Random access response (RAR). The BS transmits the RAR message
to the successfully received preambles. This message contains information
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about the uplink resources to be used by the UE for the next message trans-
mission. The RAR must be received by the UE within a specific time duration
called RAR window size WRAR. Otherwise, the UE should start a new RA
attempt.

•Msg3: Connection request (CR). The UE transmits a CR message to the BS
using the uplink resources determined in the RAR message. The CR message
contains the UE temporary identifier and the connection purpose. If two or
more UEs selected the same preamble in Msg1, they will receive the same
RAR message and use the same uplink resource to transmit Msg3, therefore,
a collision in Msg3 transmission will occur for both devices.

• Msg4: Connection response. The BS transmits this message as a response
to the RC message sent to the UEs that succeeded in Msg3 informing them
that they have successfully completed the RA procedure.

BS

UE

Msg1: Preamble Transmission

Msg2: Random Access Response

Msg3: Connection Request

Msg4: Connection Resolution

Figure 1.2: SRA Procedure in Cellular Networks.

After the successful completion of the RA procedure, the UEs immediately pro-
ceed to the data transmission phase. If a UE did not succeed in the RA procedure
for any reason such as connection failure or Msg3 collision, the UE performs an-
other access attempt after a specific backoff time TBO. The UE is allowed to per-
form up to kmax transmission attempts, after which the UE request is dropped.

1.2 Research Motivation

Rapid improvements in IoT have led to MTC becoming a hot area for research.
The increased number of MTC devices that are connecting to the network re-
quires more improvements to communication protocols, especially for RA con-
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trol protocols, which opens a space for researchers to keep improving these pro-
tocols. It is important for researchers to develop efficient RA control protocols
that support MTC in recent wireless networks which are considered a promis-
ing infrastructure for IoT. Although that there is good work being done in this
area, the latest RA control protocols are still insufficient, especially for massive,
delay-sensitive and heterogeneous MTC systems.

1.3 Problem Statement

The accelerated increase in the number of MTC devices connected to the
networks causes great numbers of MTC devices to access the network simulta-
neously in order react to some event. This massive synchronous access causes
intensive congestion and collisions in the RACH due to the limited number
of resources/preambles that are available for RA contention. These collisions
cause serious degradations in RACH availability which leads to high drop
rates, low access success probability and increased access delay. Although the
3GPP has introduced the standard backoff collision resolution (SBCR) scheme
to resolve the RACH collisions during massive access scenarios, there is a need
to optimize the SBCR scheme to increase the access success rate of MTC devices
during massive access scenarios.

Furthermore, the delay-sensitive services, which have strict deadline require-
ments, should have special consideration during the development of the RA
procedure. Although there are few solutions that have been proposed to solve
the RACH collisions for delay-sensitive MTC devices, still there is a lack of
RA collision resolution schemes that aim to reduce the access delay for delay-
sensitive MTC devices.

5G networks are required to provide connectivity for eMBB, URLLC and mMTC
services. Therefore, the heterogenous QoS requirements of 5G services is a major
issue. This has to be considered during the improvement of the RA procedure
for 5G networks. The problem becomes more complicated when the three
service classes exist in the same RAN which causes congestion and collisions in
the RACH and therefore failure to meet QoS requirements for different services.
Although some solutions have been proposed for improving the RA in 5G
networks, none of them have considered the three classes of services in the
same RAN. Thus, it is challenging to develop customised RA schemes for 5G
networks, especially when different service classes are sharing the same RAN.
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1.4 Research Questions

The research questions for this study are as follows:

1. How can the parameters of the backoff collision resolution scheme be op-
timized to maximize the access success rate of MTC devices during massive
access scenarios?

2. How can the access delay be reduced for delay-sensitive devices during
massive access scenarios?

3. How can the RA procedure be improved so that heterogeneous services
sharing the same RAN meet their targetted QoS requirements?

1.5 Research Objectives

The main objective of this research is to improve the performance of the RACH
of the recent cellular IoT network which involves massive MTC. In particular,
this objective is divided into three sub-objectives as follows:

1. To propose a dynamic backoff collision resolution (DBCR) scheme that
optimises the backoff parameter with the aim of increasing the access success
rate of MTC devices during massive access scenarios.

2. To propose a dynamic tree-splitting (DTS) scheme that resolves RACH
collisions to reduce the access delay for delay-sensitive MTC devices.

3. To propose a priority-based load-adaptive preamble separation (PLPS)
RA control scheme aiming to deliver the required QoS requirements for 5G
heterogenous services sharing the same RAN.

1.6 Research Scope

This research focuses on studying massive MTC in recent cellular IoT networks
including LTE, LTE-A and 5G. Specifically, it concentrates on enhancing the per-
formance of the RACH which is used by the MTC devices as a first step to access
the network resources. The RACH is one of the uplink transport channels that
are located in the MAC layer, which is one of the important layers in the cellu-
lar network protocol stack. Moreover, this research investigates massive burst
arrivals of MTC devices which usually occur when a massive number of such
devices try to access the BS simultaneously due to a specific event. In order to fa-
cilitate the work and to avoid extra costs, all the analysis and simulations in this
thesis are implemented using Matlab which is free and open source software.
The scope of this research is illustrated as a red rectangle in Figure 1.3.
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Figure 1.3: Research Scope Illustration.

1.7 Research Contributions

This thesis contributes to existing knowledge by improving the performance of
the RACH in recent cellular networks that involve mMTC. The research contri-
butions are summarized as follows:

• It proposes a DBCR scheme that optimizes the backoff parameter accord-
ing to the number of contending devices and available resources. The opti-
mal value of the backoff parameter that achieves the highest access success
probability is mathematically derived and the access success probability of
the proposed DBCR scheme is analyzed.

• It introduces a DTS scheme to resolve RACH collisions for delay-sensitive
devices during burst arrival scenarios. A mathematical analysis of the pro-
posed algorithm is presented as well as the derivations of throughput and
access delay.

• It develops a PLPS RA scheme in which RACH resources are separated
between the different devices classes according to the class priority and
load estimation. The mathematical analysis and the performance indices are
derived for the proposed scheme.
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1.8 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 – presents the literature review. It discusses related RA control
schemes which have already been proposed for massive MTC in LTE/LTE-A and
5G networks. A comparative analysis among the reviewed scheme is provided.

Chapter 3 – describes the overall research methodology. It defines the notations
related to this research. After that, the research framework, the simulation envi-
ronment and the performance metrics are described in detail.

Chapter 4 – explains the proposed DBCR scheme and provides the mathemati-
cal analysis of the access success rate and the derivation of the optimal backoff
parameter.

Chapter 5 – shows the design of the DTS algorithm which is proposed for delay-
sensitive applications. After this, the mathematical analysis of the access delay
and RACH throughput is presented.

Chapter 6 – explores the design and the evaluation of the PLPS scheme which is
proposed for 5G heterogeneous services. The mathematical analysis along with
the derivations of several performance metrics is also shown.

Chapter 7 – concludes the thesis and recommends some directions for future
work.

9
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